
Conversational Bot for Newcomers Onboarding to Open Source
Projects

James Dominic*, Jada Houser*, Igor Steinmacher**, Charles Ritter*, Paige Rodeghero*
*Clemson University

Clemson, South Carolina
{domini4,jahouse,crritte,prodegh}@clemson.edu

**University of Northern Arizona
Flagstaff, Arizona

igor.Steinmacher@nau.edu

ABSTRACT
This paper targets the problems newcomers face when onboarding
to open source projects and the low retention rate of newcomers.
Open source software projects are becoming increasingly more
popular. Many major companies have started building open source
software. Unfortunately, many newcomers only commit once to
an open source project before moving on to another project. Even
worse, many novices struggle with joining open source communi-
ties and end up leaving quickly, sometimes before their first suc-
cessful contribution. In this paper, we propose a conversational bot
that would recommend projects to newcomers and assist in the
onboarding to the open source community. The bot would be able
to provide helpful resources, such as Stack Overflow related content.
It would also be able to recommend human mentors. We believe
that this bot would improve newcomers’ experience by providing
support not only during their first contribution, but by acting as an
agent to engage them to the project.

CCS CONCEPTS
• Software and its engineering→ Open source model.

KEYWORDS
open source software, bot, onboarding, newcomer

ACM Reference Format:
James Dominic*, Jada Houser*, Igor Steinmacher**, Charles Ritter*, Paige
Rodeghero*. 2020. Conversational Bot for Newcomers Onboarding to Open
Source Projects. In IEEE/ACM 42nd International Conference on Software
EngineeringWorkshops (ICSEW’20), May 23–29, 2020, Seoul, Republic of Korea.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3387940.3391534

1 INTRODUCTION
Onboarding refers to the process of teaching newcomers (new
workers) the knowledge and skills needed to succeed in their po-
sitions [2]. It serves as a way to integrate new workers into the
environment both so they can understand how to succeed in their

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7963-2/20/05. . . $15.00
https://doi.org/10.1145/3387940.3391534

position but also integrate with their coworkers so they can work
effectively as a team. It is during this period that programmers
become familiar with a new project, its source code, and its team.
While it is considered a necessity, it is also very costly and error
prone [6, 22]. In response to the expensive onboarding process,
the software engineering research community has responded by
experimenting with methodologies, such as pair programming [51],
that help overcome the shortcomings of onboarding. Unfortunately,
the onboarding techniques described in the literature are largely
not applicable to programmers onboarding remotely. OSS projects
leverage the coordinated effort from globally distributed stakehold-
ers who build high-quality software [14]. To remain sustainable
and to evolve, several projects rely on the onboarding and retention
of newcomers. These newcomers serve not only as a workforce to
keep the project running but also as a source of innovation [21].

However, attracting newcomers [42] and engaging them [9]
are not easy tasks. Previous work shows that the barriers posed
during the joining process may lead newcomers to give up on
contributing [42]. Joining an OSS project is a complex, multi-stage
process and this complexity could push newcomers away from
the project [44]. This is because newcomers are expected to learn
about the project on their own and can feel lost in the complexity
of a project [11]. The barriers related to newcomers’ orientation
play a key role, especially in keeping the newcomers confident and
motivated to continue with the project [43].

There is an increase of bots being developed to support develop-
ers in OSS projects [50]. There are many different types of bots that
OSS programmers utilize to help them with their work. Content
recommendation bots retrieve information from their users and
recommend items that may be of interest to those users [34]. They
are widely used by services such as search engines, review sites, and
online stores in order to encourage users to engage more with the
service. Some bots that help programmers by performing repetitive
tasks. A typical example of such use of bots in software engineering
can be found in software testing [30, 39] and ongoing research in
software bug fixing [18, 38]. Finding a suitable project to contribute
to can be challenging for newcomers to OSS. NNLRank was a neural
network model proposed to recommend projects to newcomers,
which they were likely to contribute [26]. Bots have also been devel-
oped to recommend experts and reviewers for tasks [8, 35], which
may help newcomers to get help if needed.

https://doi.org/10.1145/3387940.3391534
https://doi.org/10.1145/3387940.3391534

ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea James Dominic*, Jada Houser*, Igor Steinmacher**, Charles Ritter*, Paige Rodeghero*

Because of the difficulties that newcomers face when onboarding
to new projects, we believe that having a bot that guides the new-
comer, offering help when there is no activity, provides resources
and recommends experienced developers for assist, the newcomer
will feel more confident and will be poised to have a successful
contribution. We also believe that, with this bot, newcomers are
more likely to stick with a project rather than moving onto the next.
Specifically, when the newcomers have the chance to interact with
a person from the project, the sense of belonging in a community
will increase. We believe this may increase the chances of long-term
engagement.

2 BACKGROUND AND RELATEDWORK
In this section, we discuss the background and related work of
conversational bots, bots in software engineering, and onboarding
to open source projects.

2.1 Conversational Bots
The origin of conversational bots (or chatbots), dates back to 1950
when Alan Turing proposed that machines could think [47]. Ad-
vances in Natural Language Processing (NLP) and Machine Learn-
ing (ML) caused (i) a higher usage of bots in several domains; and (ii)
partnerships in which computers and humans construct meaning
around each other’s activities [13]. According to Lebeuf [23], the
mainstream adoption of software bots also occurred because of (i)
numerous technological breakthroughs; (ii) dominant adoption of
both messaging and voice-only platforms; (iii) and the abundance
of public APIs and datasets. Bots enhance collaborative work [16]
and influence changes in the workplace [24].

Although several popular bots do, in fact, have some language
capability, engaging in conversations is not required for software
bots [23, 31]. More specifically, chatbots stand out from software
bots because of their ability to communicate with users through
human language. Over the last few years, technological enterprises
have developed bots as intelligent personal assistants, such as Ap-
ple’s Siri [52] and Google Assistant [41], using conversational in-
terfaces to automate personal tasks for users.

Thousands of bots perform specific tasks in a narrow domain
of expertise [10]. For example, chatbots have been used for educa-
tion [19], focusing on students’ engagement [4, 5, 15], self-guided
learning [36], course advising [20], and tutoring [46] .

2.2 Bots in Software Engineering
Recently, bots are also becoming commonplace in software engi-
neering, supporting social and technical aspects of software de-
velopment [25, 45]. For example, Matthies et al. [28] proposed a
Slack bot to support agile retrospectives aiming to enhance the
development process. From a technical perspective, Urli et al. [48]
introduced Repairnator, a program repair bot that continuously
monitors bugs during Continuous Integration (CI), and then tries
to fix them by submitting a pull request. In addition, Ren et al. [37]
designed an approach to identify duplicated code changes in forks
early. Still, Wyrich and Bogner [53] proposed the Refactoring-Bot, a
bot that automatically refactors the code to remove code smells.

More related to our vision, Cerezo et al. [8] developed a bot
aiming to recommend software artifact experts based on the source

code repository history. Developers can ask who is an expert in a
given file, method, or package, and the bot answer with a list of peo-
ple created by a recommending system. Peng and Ma [35] analyzed
how the developers perceive mention bot, a bot that recommends
pull request reviewers based on previous interactions with GitHub.
Xu et al. [54] also proposed a recommendation bot, AnswerBot,
which automatically generates an answer to a technical problem
mining answers from Stack Overflow. Abdellatif and Shihab [1]
designed MSRBot, also created a bot that answers developers’ ques-
tions based on data from software repositories, including questions
about developers responsible for commits, number of bugs fixed by
a developer, and the date of broken commits.

Although it is possible to notice a growing body of knowledge
in the topic, the bots that are available to support software develop-
ment tasks are usually designed to serve a specific goal. Still, many
of them miss the conversational aspect, acting proactively given an
external event. More importantly, even with some bots aiming to
recommend experts, answers, and reviewers, the newcomer sup-
port is still a missing piece in this territory. We advocate that a
conversational bot (chatbot) that offers support to newcomers by
helping them throughout their onboarding process would play the
role of a mentor, recommending projects, artifacts, experts, and to
keep track of their evolution.

2.3 Onboarding to Open Source Projects
The onboarding of newcomers in OSS projects has been widely stud-
ied [29, 49]. Among the studies that focus on newcomers to OSS
projects, some report scripts, paths, and cases of developers success-
fully joining projects. Other researchers focus on understanding
and dealing with the barriers to onboarding newcomers [17, 42, 43].
While joining the project is difficult, retention is also analyzed as a
problem in OSS context. Zhou and Mockus [55], for example, found
that the individual’s willingness and the project’s climate were asso-
ciated with the odds that an individual would become a long-term
contributor. Fang and Neufeld [12] focused on understanding de-
velopers’ motivation to stay and found that the initial conditions
to participate did not adequately predict long-term participation,
but that situated learning and identity construction behaviors were
positively linked to sustained participation.

Mentorship is usually applied as a way to support the newcom-
ers. However, in OSS, it is not a widely-spread approach to offer
formal mentorship programs. Nevertheless, this topic attracted
the attention of some researchers. [7, 27, 32] proposed different
approaches to identifying and recommending mentors to OSS new-
comers, claiming that mentoring would benefit newcomers’ on-
boarding. For example, Canfora et al. [7], proposed a recommending
system that mines the project’s mailing list and versioning control
to find mentors who have already worked on the topic that the
newcomer is working on.

Even recent literature has pointed out that the problem of on-
boarding is still an open challenge. Given the lack to support the
onboarding and engagement of newcomers to OSS, and the rise of
bots to support software development, our vision adds to this topic
by proposing a bot that not only helps to guide newcomers’ first
steps but also engages the newcomers with community members
to promote long-term engagement.

Conversational Bot for Newcomers Onboarding to Open Source Projects ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea

Figure 1: The bot interactions with the OSS newcomer. The various stages and the control flow between them are shown.

3 PROPOSED CONVERSATIONAL BOT
In this section, we discuss the proposed recommendation bot system
and the implementation of the system.

3.1 System Overview
We propose to create a conversational bot that could help newcom-
ers with finding open source projects that they can contribute to
and guide them throughout the process. For an example of how the
bot would interact with the newcomer, see Figure 1. In the next few
paragraphs, we will briefly describe the system.

First, when the newcomer initiates a conversation with the bot,
the bot would collect information on the newcomer’s previous
source code contributions, personal interests, and preferred pro-
gramming languages. The bot would be able to scan for information
shared by the newcomers publicly on GitHub (or other OSS plat-
forms). Based upon this information, the bot would suggest OSS
projects that the newcomers may find interesting. The bot would
provide a brief summary of the present status of the recommended
project and the potential tasks that the newcomer may be interested.

Once the newcomer starts working on the project, the bot would
go into an idle mode in which it will not interact unless requested
by the newcomer—who may ask questions. The bot may be set
to wait for a period of time (potentially a week) before it checks
in with the newcomer regarding their progress, and offer support.
However, the newcomer would be able to interact with the bot any
time. The bot would help newcomers with specific programming
challenges they face while working towards a successful contri-
bution. The newcomer would be able to ask the bot for help or
clarifications. The bot will provide answers based on content mined
from Stack Overflow (and potentially other sources), summarize

previous related solutions and send relevant links and documents
to the newcomer. The bot would go back to an idle state once it has
helped the newcomer. It could also check in for a second time if no
progress is made in a specific time duration (again, this could be a
week’s worth of time).

If needed, the bot would also be able to help connect the new-
comer with an experienced programmer (someone who has already
worked on the current project and has multiple successful contribu-
tions). If a connection is made between and experience programmer
and newcomer, the bot would send the experienced programmer a
summary of the specific issues the newcomer was facing.

Once the newcomer has a successful contribution, the bot would
provide the newcomer with a survey so that it could recommend
new issues based on the newcomer’s experience. However, if de-
sired, the bot could also recommend a different open source project
to work on. Contributor disengagement is a costly and critical issue
as it can affect the sustainability of a project [40]. In the future,
once we are able to build such a bot, we will study the effects of the
bot on newcomer engagement.

3.2 Technical Design
The bot’s core features would employ methods in Natural Language
Processing, specifically in Natural Language Understanding (NLU)
and text summarization. In order to implement these features, we
plan to incorporate a number of tools. These tools include Rasa
Open Source and the GitHub and Stack Exchange APIs.

Rasa Open Source is an open source framework for building
conversational bots. It is capable of facilitating the Natural Lan-
guage Understanding (NLU) process needed for the bot to engage in
conversation with the newcomer. GitHub’s REST API would allow
access to the newcomer’s public GitHub information and provide

ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea James Dominic*, Jada Houser*, Igor Steinmacher**, Charles Ritter*, Paige Rodeghero*

the means to search site-wide for projects and issues relevant to the
newcomer’s preferences. The Stack Exchange API provides access
to content such as questions, answers, and comments from Stack
Overflow as well as other Stack Exchange community QA websites.
Thus enabling the bot to collect content relevant to the newcomer’s
issue for text summarization.

3.3 Conversational Bot and Newcomer Dialog
System

The bot could be integrated with collaboration software such as
Slack, thereby eliminating the need to develop an interface from
scratch. By sending messages to the bot, the newcomer would be
able to express and update project interests, receive recommenda-
tions and summaries of projects and issues, request assistance, and
complete check-in and post-contribution surveys.

4 CURRENT STATE OF DEVELOPMENT
We have started to build a dialogue corpus. The data set currently
contains 20 individual conversations between two professional pro-
grammers of varying experience levels in a pair programming set-
ting. The programmers were introduced to a new software project
and work together to fix source code bugs. Analyzing this data will
help us better understand the type of questions which arise from
programmers onboarding onto a new project. This dialogue corpus,
together with other data will be used for training the bot.

5 CURRENT RESEARCH LIMITATIONS
One research limitation is the size of the data that is needed for
training the conversational bot. We have a relatively small dialogue
corpus created with conversations between newcomers in a pair
programming setting [3][33]. This might impact the accuracy we
can achieve while training the conversational bot to work in the
specific context. Collecting more data is time consuming and ex-
pensive. Unfortunately, we believe that the data collection process
must continue until the data set increases with significantly more
dialogue or we must rely on an artificial dialogue corpus.

6 CONCLUSION
Our paper proposes a new conversational bot for OSS project new-
comers. The vision is that the bot would be able to recommend
open source projects, issues from proposed projects that could be
of interest, provide helpful resources, and connect the newcomer
to human assistance (expert programmers that have had previous
successful contributions on the same project). In this paper, we first
cover the related work. We then introduce a system prototype for
the development of the conversational bot. We provide the steps
we believe are necessary for the development of the bot. Finally,
we outline some of the research barriers that must be over come
to be able to provide a bot that is able to interact with newcomers
seamlessly. We believe that this type of conversational bot would
increase the retention rate of open source contributors, both in the
open source community and to specific open source projects.

REFERENCES
[1] Ahmad Abdellatif and Emad Shihab. 2019. MSRBot: Using Bots to Answer

Questions from Software Repositories. arXiv preprint arXiv:1905.06991 (2019).

[2] Talya N Bauer and Berrin Erdogan. 2011. Organizational socialization: The
effective onboarding of new employees. (2011).

[3] Yoshua Bengio, Yann LeCun, et al. 2007. Scaling learning algorithms towards AI.
Large-scale kernel machines 34, 5 (2007), 1–41.

[4] Luciana Benotti, María Cecilia Martínez, and Fernando Schapachnik. 2014. En-
gaging high school students using chatbots. In Proceedings of the 2014 conference
on Innovation technology in computer science education. ACM, 63–68.

[5] Patrick Bii. 2013. Chatbot technology: A possible means of unlocking student
potential to learn how to learn. Educational Research 4, 2 (2013), 218–221.

[6] Jeffrey Bonar and Elliot Soloway. 1983. Uncovering principles of novice program-
ming. In Proceedings of the 10th ACM SIGACT-SIGPLAN symposium on Principles
of programming languages. ACM, 10–13.

[7] Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and Sebastiano
Panichella. 2012. Who is Going to Mentor Newcomers in Open Source Projects?
(FSE ’12). ACM, New York, NY, USA, Article 44, 11 pages. https://doi.org/10.
1145/2393596.2393647

[8] Jhonny Cerezo, Juraj Kubelka, Romain Robbes, and Alexandre Bergel. 2019.
Building an Expert Recommender Chatbot (BotSE ’19). IEEE Press, Piscataway,
NJ, USA, 59–63. https://doi.org/10.1109/BotSE.2019.00022

[9] Jailton Coelho and Marco Tulio Valente. 2017. Why modern open source projects
fail. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering. ACM, 186–196.

[10] Robert Dale. 2016. The return of the chatbots. Natural Language Engineering 22,
5 (2016), 811–817.

[11] Nicolas Ducheneaut. 2005. Socialization in an Open Source Software Community:
A Socio-Technical Analysis. Computer Supported Cooperative Work 14, 4 (Aug.
2005), 323–368. https://doi.org/10.1007/s10606-005-9000-1

[12] Yulin Fang and Derrick Neufeld. 2009. Understanding Sustained Participation in
Open Source Software Projects. Journal of Management Information Systems 25,
4 (April 2009), 9–50. https://doi.org/10.2753/MIS0742-1222250401

[13] Umer Farooq and Jonathan Grudin. 2016. Human-computer integration. interac-
tions 23, 6 (2016), 27–32.

[14] Brian Fitzgerald. 2006. The transformation of open source software. MIS quarterly
(2006), 587–598.

[15] Luke K Fryer, Mary Ainley, Andrew Thompson, Aaron Gibson, and Zelinda
Sherlock. 2017. Stimulating and sustaining interest in a language course: An
experimental comparison of Chatbot and Human task partners. Computers in
Human Behavior 75 (2017), 461–468.

[16] R Stuart Geiger. 2013. Are computers merely supporting cooperative work:
towards an ethnography of bot development. In Proceedings of the 2013 conference
on Computer supported cooperative work companion. ACM, 51–56.

[17] Carlos Jensen, Scott King, and Victor Kuechler. 2011. Joining Free/Open Source
Software Communities: An Analysis of Newbies’ First Interactions on Project
Mailing Lists (HICSS ’11). IEEE Computer Society, Washington, DC, USA, 1–10.
https://doi.org/10.1109/HICSS.2011.264

[18] Kishore Karnane and Corey Goss. 2015. Automating root-cause analysis to reduce
time to find bugs by up to 50%. Cadence Design Systems, Tech. Rep (2015).

[19] Alice Kerry, Richard Ellis, and Susan Bull. 2008. Conversational agents in E-
Learning. In International Conference on Innovative Techniques and Applications
of Artificial Intelligence. Springer, 169–182.

[20] Hyekyung Kim, Miguel E Ruiz, and Lorna Peterson. 2007. Usability and effec-
tiveness evaluation of a course-advising chat bot. Proceedings of the American
Society for Information Science and Technology 44, 1 (2007), 1–5.

[21] Robert E. Kraut and Paul Resnick. 2012. Building Successful Online Communities:
Evidence-Based Social Design. The MIT Press. http://www.worldcat.org/isbn/
0262016575

[22] Adriaan Labuschagne and Reid Holmes. 2015. Do onboarding programs work?.
In Mining Software Repositories (MSR), 2015 IEEE/ACM 12th Working Conference
on. IEEE, 381–385.

[23] Carlene R Lebeuf. 2018. A taxonomy of software bots: towards a deeper under-
standing of software bot characteristics. Ph.D. Dissertation.

[24] Minha Lee, Lily Frank, Femke Beute, Yvonne de Kort, and Wijnand IJsselsteijn.
2017. Bots mind the social-technical gap. In Proceedings of 15th European con-
ference on computer-supported cooperative work-exploratory papers. European
Society for Socially Embedded Technologies (EUSSET).

[25] Bin Lin, Alexey Zagalsky, Margaret-Anne Storey, and Alexander Serebrenik. 2016.
Why developers are slacking off: Understanding how software teams use slack.
In Proceedings of the 19th ACM Conference on Computer Supported Cooperative
Work and Social Computing Companion. ACM, 333–336.

[26] Chao Liu, Dan Yang, Xiaohong Zhang, Baishakhi Ray, and Md Masudur Rahman.
2018. Recommending GitHub Projects for Developer Onboarding. IEEE Access 6
(2018), 52082–52094.

[27] Yuri Malheiros, Alan Moraes, Cleyton Trindade, and Silvio Meira. 2012. A Source
Code Recommender System to Support Newcomers (COMPSAC ’12). IEEE, Los
Alamitos, California, USA, 19–24. https://doi.org/10.1109/COMPSAC.2012.11

[28] Christoph Matthies, Franziska Dobrigkeit, and Guenter Hesse. 2019. An Addi-
tional Set of (Automated) Eyes: Chatbots for Agile Retrospectives (BotSE ’19). IEEE
Press, Piscataway, NJ, USA, 34–37. https://doi.org/10.1109/BotSE.2019.00017

https://doi.org/10.1145/2393596.2393647
https://doi.org/10.1145/2393596.2393647
https://doi.org/10.1109/BotSE.2019.00022
https://doi.org/10.1007/s10606-005-9000-1
https://doi.org/10.2753/MIS0742-1222250401
https://doi.org/10.1109/HICSS.2011.264
http://www.worldcat.org/isbn/0262016575
http://www.worldcat.org/isbn/0262016575
https://doi.org/10.1109/COMPSAC.2012.11
https://doi.org/10.1109/BotSE.2019.00017

Conversational Bot for Newcomers Onboarding to Open Source Projects ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea

[29] Kumiyo Nakakoji, Yasuhiro Yamamoto, Yoshiyuki Nishinaka, Kouichi Kishida,
and Yunwen Ye. 2002. Evolution Patterns of Open-source Software Systems and
Communities (IWPSE ’02). ACM, New York, NY, USA, 76–85. https://doi.org/10.
1145/512035.512055

[30] Bao N Nguyen, Bryan Robbins, Ishan Banerjee, and Atif Memon. 2014. GUITAR:
an innovative tool for automated testing of GUI-driven software. Automated
software engineering 21, 1 (2014), 65–105.

[31] Elahe Paikari, JaeEun Choi, SeonKyu Kim, Sooyoung Baek, MyeongSoo Kim,
SeungEon Lee, ChaeYeon Han, YoungJae Kim, KaHye Ahn, Chan Cheong, and
Andre van der Hoek. 2019. A Chatbot for Conflict Detection and Resolution
(BotSE ’19). IEEE Press, Piscataway, NJ, USA, 29–33. https://doi.org/10.1109/
BotSE.2019.00016

[32] Sebastiano Panichella. 2015. Supporting newcomers in software development
projects (ICSME 2015). IEEE, 586–589. https://doi.org/10.1109/ICSM.2015.7332519

[33] Meenal J Patel, Alexander Khalaf, and Howard J Aizenstein. 2016. Studying
depression using imaging and machine learning methods. NeuroImage: Clinical
10 (2016), 115–123.

[34] Michael J Pazzani and Daniel Billsus. 2007. Content-based recommendation
systems. In The adaptive web. Springer, 325–341.

[35] Zhenhui Peng and Xiaojuan Ma. 2019. Exploring how software developers work
with mention bot in GitHub. CCF Transactions on Pervasive Computing and
Interaction 1, 3 (01 Nov 2019), 190–203. https://doi.org/10.1007/s42486-019-
00013-2

[36] Juanan Pereira. 2016. Leveraging chatbots to improve self-guided learning
through conversational quizzes. In Proceedings of the Fourth International Confer-
ence on Technological Ecosystems for Enhancing Multiculturality. ACM, 911–918.

[37] Luyao Ren, Shurui Zhou, Christian Kästner, and Andrzej Wąsowski. 2019. Identi-
fying Redundancies in Fork-based Development. In 2019 IEEE 26th International
Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE,
230–241.

[38] Bilyaminu Auwal Romo and Andrea Capiluppi. 2015. Towards an automation of
the traceability of bugs from development logs: a study based on open source
software. In Proceedings of the 19th International Conference on Evaluation and
Assessment in Software Engineering. ACM, 33.

[39] Nurul Husna Saad and Normi Sham Awang Abu Bakar. 2014. Automated testing
tools for mobile applications. In The 5th International Conference on Information
and Communication Technology for The Muslim World (ICT4M). IEEE, 1–5.

[40] Pratyush N Sharma, John Hulland, and Sherae Daniel. 2012. Examining turnover
in open source software projects using logistic hierarchical linear modeling
approach. In IFIP International Conference on Open Source Systems. Springer,
331–337.

[41] Nick Statt. 2016. Why Google’s fancy new AI assistant is just called’Google’.
Retrieved March 21 (2016), 2017.

[42] Igor Steinmacher, Tayana Conte, Marco Aurélio Gerosa, and David Redmiles.
2015. Social barriers faced by newcomers placing their first contribution in open
source software projects. In Proceedings of the 18th ACM conference on Computer
supported cooperative work & social computing. ACM, 1379–1392.

[43] Igor Steinmacher, Tayana Uchoa Conte, Christoph Treude, and Marco Aurélio
Gerosa. 2016. Overcoming open source project entry barriers with a portal
for newcomers. In Proceedings of the 38th International Conference on Software
Engineering. ACM, 273–284.

[44] Igor Steinmacher, Marco Aurélio Gerosa, and David Redmiles. 2014. Attracting,
onboarding, and retaining newcomer developers in open source software projects.
In Workshop on Global Software Development in a CSCW Perspective.

[45] Margaret-Anne Storey and Alexey Zagalsky. 2016. Disrupting Developer Pro-
ductivity One Bot at a Time (FSE 2016). ACM, New York, NY, USA, 928–931.
https://doi.org/10.1145/2950290.2983989

[46] Silvia Tamayo-Moreno and Diana Pérez-Marín. 2017. Designing and Evaluating
Pedagogic Conversational Agents to Teach Children. International Journal of
Social, Behavioral, Educational, Economic, Business and Industrial Engineering 11,
3 (2017), 488–493.

[47] Alan M Turing. 1950. Computing machinery and intelligence. Mind 59, 236
(1950), 433–460.

[48] Simon Urli, Zhongxing Yu, Lionel Seinturier, andMartinMonperrus. 2018. How to
design a program repair bot?: insights from the repairnator project. In Proceedings
of the 40th International Conference on Software Engineering: Software Engineering
in Practice. ACM, 95–104.

[49] Georg von Krogh, Sebastian Spaeth, and Karim R. Lakhani. 2003. Community,
joining, and specialization in open source software innovation: A case study.
Research Policy 32, 7 (2003), 1217–1241.

[50] Mairieli Wessel, Bruno Mendes de Souza, Igor Steinmacher, Igor S. Wiese,
Ivanilton Polato, Ana Paula Chaves, and Marco A. Gerosa. 2018. The Power
of Bots: Characterizing and Understanding Bots in OSS Projects. Proc. ACM
Hum.-Comput. Interact. 2, CSCW, Article 182 (Nov. 2018), 19 pages. https:
//doi.org/10.1145/3274451

[51] Laurie Williams, Anuja Shukla, and Annie I Anton. 2004. An initial exploration of
the relationship between pair programming and Brooks’ law. InAgile Development
Conference, 2004. IEEE, 11–20.

[52] Norman Winarsky, Bill Mark, and Henry Kressel. 2012. The Development of Siri
and the SRI Venture Creation Process. SRI International, Menlo Park, USA, Tech.
Rep (2012).

[53] Marvin Wyrich and Justus Bogner. 2019. Towards an Autonomous Bot for
Automatic Source Code Refactoring (BotSE ’19). IEEE Press, Piscataway, NJ, USA,
24–28. https://doi.org/10.1109/BotSE.2019.00015

[54] Bowen Xu, Zhenchang Xing, Xin Xia, and David Lo. 2017. AnswerBot: automated
generation of answer summary to developersź technical questions. In Proceedings
of the 32nd IEEE/ACM International Conference on Automated Software Engineering.
IEEE Press, 706–716.

[55] Minghui Zhou and Audris Mockus. 2015. Who Will Stay in the FLOSS Commu-
nity? Modelling Participant’s Initial Behaviour. IEEE Transactions on Software
Engineering 41, 1 (2015), 82–99. https://doi.org/10.1109/TSE.2014.2349496

https://doi.org/10.1145/512035.512055
https://doi.org/10.1145/512035.512055
https://doi.org/10.1109/BotSE.2019.00016
https://doi.org/10.1109/BotSE.2019.00016
https://doi.org/10.1109/ICSM.2015.7332519
https://doi.org/10.1007/s42486-019-00013-2
https://doi.org/10.1007/s42486-019-00013-2
https://doi.org/10.1145/2950290.2983989
https://doi.org/10.1145/3274451
https://doi.org/10.1145/3274451
https://doi.org/10.1109/BotSE.2019.00015
https://doi.org/10.1109/TSE.2014.2349496

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Conversational Bots
	2.2 Bots in Software Engineering
	2.3 Onboarding to Open Source Projects

	3 Proposed Conversational Bot
	3.1 System Overview
	3.2 Technical Design
	3.3 Conversational Bot and Newcomer Dialog System

	4 Current State of Development
	5 Current Research Limitations
	6 Conclusion
	References

