
How Online Forums Complement Task Documentation in
Software Crowdsourcing

Leticia S. Machado
UFPA, Belém, Brazil

leticia.schado@gmail.com

Igor Steinmacher
NAU, Arizona, US

igor.steinmacher@nau.edu

Sabrina Marczak
PUCRS, Porto Alegre, Brazil
sabrina.marczak@pucrs.br	

Cleidson R. B de Souza
UFPA, Belém, Brazil

cleidson.dsouza@acm.org

ABSTRACT

An issue in software crowdsourcing is the quality of the task doc-
umentation and the high number of registered crowd workers to
solve tasks but few submitted solutions only. This happens be-
cause uncommunicated or misunderstood requirements can lead
crowd workers to deliver a solution that does not meet the cus-
tomers’ requirements or, worse, to give up submitting a solution.
In this paper, we present an empirical study in which we analyzed
task documentation and online forums messages associated with
25 Software Crowdsourcing (SW CS) challenges. The findings
corroborate that weak documentation is a challenge in SW CS.
Meanwhile, online forums allow crowd workers to gather addi-
tional technical and operational information that is not present in
the official task documentation. We provide a stepping stone to-
wards understanding the interplay between requirements and
communication, to make it possible to improve SW CS develop-
ment processes, practices, and tools.

CCS CONCEPTS
• Software and its engineering • Collaboration in software develop-
ment

KEYWORDS
Software crowdsourcing, communication, documentation tasks.

ACM Reference format:

Leticia Machado, Igor Steinmacher, Sabrina Marczak, Cleidson R. B. de
Souza. How Online Forums Extend Task Documentation in Software
Crowdsourcing In Proceedings 13th International Workshop on Cooperative
and Human Aspects of Software Engineering, Seoul, South Korea. ACM, New
York, NY, USA, 8 pages.

1. Introduction
Software Crowdsourcing (SW CS) has become an emergent alterna-
tive strategy for software development. This strategy, based on the
crowd, has been used for companies seeking to increase the speed of
their software development efforts [1, 2, 3]. Platforms as Topcoder,
uTest, and Passabrain usually explore a competitive approach and
offer several software development activities, or challenges, to be
performed by individual developers.

Take Topcoder as an example: a requester (or client) submits a
task to it with a description and a monetary reward so that crowd
members independently create a solution for the given task. Then,
developers on the Topcoder platform check the task description and

the rewards to decide if it is worthwhile solving the task. Next, inter-
ested developers will register for the task and submit their solutions
using the platform. A core team on Topcoder and the requester will
be responsible for evaluating the developers’ solutions. The authors
of top-ranked solutions are granted monetary rewards according to
the pre-set rules. This process is known as open-call and the central
parties involved are the requesters, the crowd and the platform. In
this process the productivity and quality of the software solution de-
pends heavily on the participation and efforts of the developers who
registered and solved the task.

Several studies discuss SW CS focusing on different aspects of
this strategy. For instance, some studies explore how to recommend
developers to a given task [2, 3, 4]. These studies investigate how to
find developers whose skills can meet the task requirements. Vaz and
colleagues [5] focused on the importance of task documentation and
pointed out what information is important to the crowd. Meanwhile,
Boundreau and colleagues [6] examined how distinct sets of factors
such as measures of effort, communication (frequency, timing, con-
tent), and participants’ motivation shape not only effort choices but
the extent of interactions and the collaborative style of work. Two
other studies [1, 7] confirmed that interaction within the crowd in
SW CS can be a very time-consuming activity.

While previous studies are insightful, it is important to keep in
mind that SW CS is a socio-technical activity, i.e., a set of relation-
ships that connect organizations, individuals, technologies and work
activities [8]. This means that one aspect (like task documentation)
is not isolated from other aspects (e.g., communication). In fact, pre-
vious studies [5] have observed that the task documentation in Top-
coder often suggests crowd members to participate in the communi-
cation activities, i.e., to participate on the online forums. Despite this
relationship between communication and documentation, to the best
of our knowledge, previous studies have not studied these aspects in
conjunction in SW CS projects, they have only been studied in iso-
lation as we illustrated in the previous paragraph.

In this work, we address this research issue by studying the rela-
tionship between communication among crowd developers and the
task documentation provided by task requesters. To be specific, we
are answer the following research question: How online forums ex-
tend task documentation in competitive SW CS tasks?

To answer this research question, we choose Topcoder as our re-
search platform because it is known as one of the earliest and largest
crowdsourcing platforms in the market. Specifically, we selected 25
SW CS challenges and associated tasks from Topcoder. For each
task, we analyzed the forum messages (communication) and task re-
quirements (documentation). First, by reading each task documenta-
tion we identified the tasks that recommended using the online fo-
rums. Second, we qualitatively analyzed the messages exchanged in
the online forums. We classified the messages to identify which as-
pects of the documentation were discussed in the forums. Thus, our
goal was to understand the role of the forums as an extension to the
task documentation to support crowd workers while working on

Permission to make digital or hard copies of all or part of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be hon-
ored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.

ICSEW'20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7963-2/20/05…$15.00
https://doi.org/10.1145/3387940.3391497

solutions to SW CS challenges. As part of this work, we analyzed
which topics are discussed in the forums and how they relate to the
documentation presented as part of the task.

Overall, the main contribution of this paper is the analysis of two
related aspects — task documentation and forum communication —
of competitive SW CS projects. By triangulating data from the doc-
umentation and the content of messages from online forums, it was
possible to unveil how communication helps the crowd to build the
solutions to the tasks in SW CS projects. For instance, we identified
misunderstanding in the requirements, gaps in detailed technical and
design specifications, and requests for deadline extensions that were
addressed using the online forums. Our results suggest that forum
communication extends task documentation understanding in com-
petitive SW CS. In general, communication using forums supports
the crowd’s work to seek information and helps the crowd to deliver
their solutions.

2. Software Crowdsourcing (SW CS)
Software Crowdsourcing (SW CS) refers to the act of externally
transferring any software development task from a requester to a po-
tential and undefined large group of online workers—the crowd, in
an open call format [9] through a digital platform.
 Software development models based on the crowd through com-
petition and microtasking have drawn more attention of companies,
autonomous developers, and startups since they display a flexible
format to tap IT talent on demand by decomposing tasks into short,
self-contained pieces of work that can be independently and quickly
performed [10]. Competition is the model in which this study fo-
cused on. It consists of having crowd workers independently creating
a solution, competing against each other by a monetary reward for
task completion [10, 11].
 The perception that there is a large crowd of available on SW CS
platforms brings implications for requesters/companies who are
seeking to speed up their software development process through
crowdsourcing [11]. One of the main implications reported by the
literature ([1, 3, 12, 13]) is that workers’ decisions to participate in a
task are highly volatile, making the software development strategy
not efficient enough as a problem-solving model for clients that de-
mand tasks. The negative effect on the crowd’s interest in competi-
tions (tasks) is an important issue in SW CS since crowd workers
might register for a task, but do not submit solutions.
 Other SW CS issues have raised the interest of researchers. For
instance, several concerns regarding the adoption of SW CS from the
requester’s perspective using Topcoder are reported in an industry
case study by Stol and Fitzgerald [1]. A requester representative
stated that SW CS demands effort to prepare specifications, answer
crowdsourcing community queries, review submissions, and resolve
coordination and quality issues. More broadly, LaToza and col-
leagues [14] proposed a platform (CrowdCode) to support the de-
composition of programming tasks and, in another study [15] they
conducted an experiment with a two-phased software design compe-
tition, allowing the crowd to “borrow” from initially submitted solu-
tions, which resulted in improved design quality.

2.1. Communication in SW CS
In SW CS, the crowd workers are usually geographically distant and
do not have the opportunity for face-to-face interaction. This can

inhibit informal communication and reduce trust [16, 17]. The im-
portance of relationship management in outsourcing settings is well
documented [18, 19]. Relations among crowd workers and between
task requesters are of utter importance to get new information and
share knowledge [20]. Tajedin and Nevo [20] argue that due to sim-
ilarity between SW CS and open source software development meth-
ods, crowd workers can expect that communication quality and iden-
tification with the project are factors associated with success for the
projects outsourced.
 Several studies investigated Topcoder [2, 21, 22]. This platform
offers services expressed in the form of tasks organized into catego-
ries of challenges as follows: Design, Development, Data Science,
and Competitive Programming [21]. For each challenge (task) an
asynchronous communication channel, an online forum, is created.
In this forum, only the competitors who registered in that challenge
can access and participate in. Each forum is organized into topics
similar to threads. These forums are the place where the crowd can
discuss about documents and artifacts and, communicate useful in-
formation to perform the task. In fact, some tasks require the crowd
to seek for additional information in the forums [7].
 Boudreau and colleagues [6] conducted an experiment in Top-
coder where participants developed computational algorithms to
NASA. They examined how distinct sets of factors such as cash in-
centives, communication (frequency, timing, content), and partici-
pants’motivation shape not only effort choices, but the extent of
interactions and the collaborative style of work.
 Other studies that mention communication in the context of SW
CS are [1, 7]. Stol and Fitzgerald [1] discuss that communication via
forums can impose an overload and be time-consuming when re-
sponding questions from the crowd and it tends to require a special
person (in-house specialist) to answer these questions. The second
study, by Machado and colleagues [7], provide a similar argument
about the communication and coordination efforts due to latency of
time between posed questions and delayed responses.

2.2. Documentation in SW CS
A task in SW CS generally follows a specific flow composed of an-
nouncement, selection, completion, delivery, and validation [2]. In
SW CS a task represents the problem or part of the problem de-
manded by the client and is generally defined by the platform. This
process of definition and decomposition of a task into micro-tasks is
considered one of the major challenges of this development model
[1]. When fragmenting the task into micro-tasks, the platform needs
to ensure that each micro-task has sufficient information to enable its
development. The task documentation cannot be too specific that
loses focus nor too broad that challenges its comprehension. In gen-
eral, task requirements documentation in SW CS turns out to be a
crucial factor for the solution of the task given that the quality of the
resulting documentation is likely to affect the crowd members’ per-
formance and success [4, 5, 20].

There is a fine balance in providing a sufficiently detailed speci-
fication for the task on the one hand, and stifling innovation with
overly detailed specifications on the other [1, 12, 21]. As Saremi et
al. [12] narrate “clients discovered that contest participation de-
creased if they were unclear about what problems they wanted to
solve or presented problems that were too complex in scope". Along
the same line, Tajedin and Nevo [20] suggest that projects which can

be decomposed into small modules with limited interdependencies
and clear requirements are more likely to succeed.

Despite the importance of requirement specification to software
development both in a “traditional” strategy (collocated, distributed,
outsourcing, etc) or in SW CS, our knowledge about documentation
in SW CS tasks is limited. Stol and Fitzerald [1] compare an SW CS
project with in-house software development and conclude that the
requester “spent significant time and effort on writing specification
documentation in an SW CS project, much more than if the software
was being developed internally.” Meanwhile, Zanatta et al. [24] dis-
cuss the barriers faced by newcomers in terms of documentation in
SW CS projects including inadequate procedures and other problems
related to task documentation.

Machado and colleagues [25] provide a similar argument in a case
study on Topcoder challenges: “documentation associated with the
accomplishment of the task is fundamental for its effective execu-
tion. Difficulties with documentation (lack or incomplete) may be
linked, in a way, to many problems of assembly environment setup
for the execution of the task.”

Both software crowdsourcing and open source software (OSS)
development rely on a crowd of developers in diverse locations
working on different yet related tasks in a common environment. In
this regard, software crowdsourcing is subject to barriers similar to
OSS. These include technical problems, poor or no complementary
documentation, unclear tasks, and cultural differences [24]. Stein-
macher et al. [18] reported a set of barriers faced by newcomers in
OSS projects. One of them is documentation and refers to the need
of newcomers to learn the project’s technical and social aspects to be
able to contribute. These authors exemplify some documentation
problems including outdated documentation, unclear code com-
ments, information overload, and lack of documentation.

3. Research Method
To answer our research question, we analyzed data from Topcoder
[21] task documentation and online forum communication.

Figure 1 shows the main attributes of a task in the Topcoder plat-
form. Each task is organized as an open contest and it has many at-
tributes containing task name, registration and submission deadlines,
challenge overview, prizes value, and required programming lan-
guages and technologies.

3.1. Study setup
On Topcoder, each SW CS task is organized as a challenge through
an open competition. Designed to enable wide task accessibility and
self-selection, Topcoder allows crowd developers to freely choose to
engage in tasks based on their personal skills, experience, and inter-
ests [3, 12]. This paper focuses on tasks in the Development Chal-
lenge category and Code subcategory [21]. Each task has a scope and
is composed of technical requirements that define the expected be-
havior of the solution to the task and, if necessary, the necessary in-
terfaces to integrate with other parts of the system.

In each Topcoder’s competition, the official communication
mechanism is the online forum. Forums are the only channel used
for task communication and coordination and they are just visible to
the participants who register to the task [7, 21].

On Topcoder, there is a role called copilot. The person playing
this role follows up the task development, acting as a mediator

between the platform and the crowd. The copilot may be a member
of the crowd playing the representative role of the client who re-
quested the task. The copilot’s main responsibilities are related to
managing questions submitted by crowd members in task-based fo-
rums and answering them by interacting with the task requester, up-
dating information, and so on [22]. In short, Topcoder forums allow
communication (i) among crowd members who registered for the
task and (ii) between crowd members and copilots.

Figure 1: Topcoder’s documentation structure

3.2. Topcoder Data extraction
We collected two types of data from Topcoder:
• Communication messages: In this case, we analyzed 25 chal-

lenges (tasks) from Topcoder’s Development – Coding category
and their associated 25 forums. We collected the forum messages
from these 25 tasks during the registration and submission
phases. We classified each message to identify meanings associ-
ated with them (see Section 3.3), and

• Task documentation: we collected and analyzed the require-
ments documentation from the same 25 tasks (challenges) de-
scribed in the previous item. We investigated in the tasks’ docu-
mentation if there was a recommendation for the registered
crowd members to access the associated online forums. Tasks
represent the starting point of the SW CS activity. It plays an
important role through which crowd developers will know what
they need to produce.
As previously mentioned, we selected a sample of challenges

for analysis among the several development challenges hosted on
Topcoder. The sample selection was based on three main criteria:
(i) based on the study by Dubey’s and colleagues [23], we focused
on the two months with the greatest number of tasks available on
Topcoder: July and August; (ii) challenges with a minimum of 15
registered competitors; and (iii) challenges with a financial re-
ward of at least 500 US dollars. These criteria considered a rea-
sonable number of competitors and awards to generate a discus-
sion in the communication forum. Following these criteria, 25
competition challenges (see Table 1) were selected from the pool
of tasks in the from the coding subcategory of the development
category, and subsequently analyzed.

We analyzed the forum and task documentation associated
with each 25 coding challenge. The documentation description
was, sometimes, pointing to using the forum communication for
additional information. We detail the analysis of task documenta-
tion and communication forums in the next sections.

In Table 1, we refer to the tasks that took place in July 2017
as TJ1 to TJ9, and those from August are identified as TA1 to

Table 1: Tasks data overview

Task ID Registered
Submitted
Solutions

Forum Par-
ticipants

Total Mes-
sages

Forum Recommen-
dation

TJ1 62 5 6 102 yes

TJ2 43 1 6 21 no

TJ3 34 1 15 60 yes

TJ4 42 2 4 18 no

TJ5 33 3 5 43 yes

TJ6 52 7 9 21 no

TJ7 27 2 4 8 yes

TJ8 43 4 14 76 yes

TJ9 48 3 5 19 yes

TA1 47 4 7 34 no

TA2 48 3 8 115 yes

TA3 17 1 8 71 yes

TA4 28 2 4 27 yes

TA5 26 2 3 7 no

TA6 19 3 8 47 yes

TA7 43 4 6 32 yes

TA8 33 3 4 22 yes

TA9 26 4 5 29 yes

TA10 20 3 7 21 no

TA11 50 3 9 36 no

TA12* 24 0 0 2 yes

TA13 52 3 45 122 yes

TA14 49 2 3 35 no

TA15 36 2 13 53 yes

TA16 31 3 7 19 no

Total 933 72 178 1040 yes =16 / no =9

Avg. 37.32 2.88 7.12 41.16

Min. 17 1 0 2

Max. 62 7 43 122

TA16. We analyzed the 1,040 messages from the respective
online forums. From these, 493 were from copilots and 547 from
crowd members. The last lines of this Table present the descrip-
tive statistics of the analyzed messages.

We split the tasks into Group 1 (G1) and Group 2 (G2). We refer
to the 16 challenges that recommended the use of the forum in the
task documentation as G1, while G2 represents the 9 challenges that
did not have such explicit recommendation. Although we split the
challenges, it is worth to highlight that all 25 tasks had forums avail-
able, since this was one of our task selection criteria.

TA12 is an outlier regarding the forum behavior since no mes-
sages were exchanged by the crowd members in it. Only the platform
moderator used the forum to share the task documentation.

Table 1 shows that although the number of crowd members who
registered to participate is high (Registered column), few solutions
are effectively submitted (Submitted Solutions column). In fact,
tasks TJ2, TJ3 and TA3 had only one solution submitted. In contrast,
7 active crowd members submitted their solutions to challenge TJ6.
This is consistent with previous work by Yang and colleagues [3]

who report a high number of quitters in SW CS platforms. Finally, a
significant smaller number of crowd members participate in the fo-
rum (Forum Participants column).

Data extracted from the forums were: date and time, thread,
sender, recipient, and message content. A total of 1,040 messages
were extracted, analyzed and classified (see Section 3.3).

Recalling, the typical structure of a general task description
consists of: task name, registration and submission deadline, chal-
lenge overview, prizes value, required languages and technique
(as showed in Figure1).

3.3. Data Analysis
We qualitatively coded each message based on its content aiming to
identify meanings associated with the forum messages. The coding
process was conducted independently by two authors between De-
cember 2017 and February 2018. Then, they reviewed every code
together to reach an agreement about the final categories and topics
to be used.
 Forum messages’ content analysis was inspired on Grounded
Theory coding procedures [27], i.e., our qualitative coding proce-
dures did not consider any preconceived list of codes nor used any
theoretical framework to guide the coding process. We let the codes
emerge from the analysis process. More specifically, we used two
code types: categories and topics. Categories grouped concepts
together under a more abstract high-order concept to explain what
was happening when the crowd members exchanged messages via
forum. For instance, crowd members reported problems or shared
a tip about a particular technology. Topics were used to help un-
derstanding which subjects were discussed in each forum mes-
sage. Examples include requirements, libraries, output or access.
By using these two code levels we could identify the purpose of a
message and its related discussed subjects.

We also analyzed the task documentation from the 25 chal-
lenges. Each challenge had a short general task description, open
to all Topcoder competitors, and a more detailed supplementary
documentation (e.g., UML diagrams, prototype screens). Simi-
larly to the forums, this detailed documentation was restricted to
those who registered to the task.
 To analyze the documentation, we classified each piece of infor-
mation according to the documentation structure model proposed by
Vaz and colleagues [5]. For each challenge, we mapped which of the
items could be found in the documentation (e.g., environment set up,
required tools, acceptance and testing criteria), as well as explicit in-
dications to seek information in the forum. This classification was
conducted by one of the authors and reviewed in meetings with 2
others. In cases when the categorization was questioned, the group
discussed until reaching consensus.
 From the previous analysis on task documentation, we observed
two types of challenges: (i) those that explicitly recommend using
the task’s online forum during the challenges and (ii) those that do
not explicitly recommend using the forum. In practice, we have two
groups: Group 1 (tasks that explicitly recommend using the forum)
and Group 2 (tasks did not use explicitly forum recommendation).

By combining the analysis of the task documentation and the
analysis of the forum messages, we were able to identify if the
crowd members use the forums to seek information about the
topic(s) that was(were) recommended in the task documentation.
In addition, we were also able to observe whether crowd members

communicated in the forums about other topics during the chal-
lenges, i.e., topics that were not recommended in the task docu-
mentation. We discuss our results in the following section.

4. Results
In the following sections, we present the results of our analysis,
which answer our research question. We organize them by the two
groups of tasks we identified: Group 1 - tasks that explicitly recom-
mended using the forums, and Group 2 - tasks that did not make this
explicit recommendation.

4.1. Group 1: Tasks that Explicitly Recommend
using the Forum

We identified that 64% of the analyzed challenges (16/25) explicitly
recommended the participants to use the online forums during the
challenges’ development. We refer to these 16 challenges as Group
1 (G1). As we expected, crowd members used the forums to ex-
change messages about the subjects indicated in the task documen-
tation. Table 2 lists these topics; see Recommended Topics column.
For instance, task TJ3 suggested checking the forum to find infor-
mation about the topic Project Requirements and in fact several re-
quirements messages (69) were sent by the crowd (see #of msgs Rec.
Topics column). In addition, other topics like Processing and Dead-
line were also discussed in the online forum. We called these Extra-
Topics, i.e., messages that were not expected to be discussed on the
forum. Table 2 summarizes the total messages discussed in Group
1 (828 messages) organized into those topics explicitly recom-
mended (273 messages) and those extra ones (555 messages) ex-
changed through the forum. These Extra-Topics messages repre-
sent the “unexpected” messages posted in the forum: messages that
go beyond the topics initially suggested.
 As observed in Table 2, the most frequent posts discussed by
crowd members on Group 1 for messages about the Recommended
Topics were: Access (120 messages), Requirements, Library, Style,
Processing, and Connection. These topics indicate that crowd mem-
bers send messages in the forums to get technical and functional re-
quirements specification, to request access for code repositories or
private keys and other API issues.
 The high number of messages about the recommended topic Ac-
cess (120 as per Table 2) during challenges is consistent with the task
instructions, i.e., crowd developers seek information via forums
about access as provided in the task documentation. According to
our qualitative classification, this topic is about requests from crowd
members to the copilot to grant access to certain development envi-
ronments, for accessing code components, containers, files or private
keys necessary for developing the task solution. The second mostly
communicated topic is Requirements (69 messages). This topic re-
fers to discussions related to technical and functional requirements
specifications about the task. This may include different artifacts and
files used to support the documentation.
 In addition, the most discussed Extra-Topics were, in this order:
Requirements (156 messages), Processing, Access, Input, Deadline,
Output, Unit, Library, Style, and Connection. There is a certain over-
lap between the topics since some tasks recommended a specific
topic to be discussed and the same topic appears as an extra topic in
other tasks.

 According to our qualitative coding, the most discussed Extra-
Topic Requirements, with 156 messages, suggests that crowd mem-
bers likely see problems in the task requirements, and therefore send
several messages via forums about them, even if this topic was not
suggested in the task documentation. The second-

Table 2: Topics recommended and discussed in Group 1.
The number in between the parenthesis indicate the number (#)

of tasks in which the topic was discussed
Recommended
Topics

#of msgs
Rec. Topics

Extra-Topics
of msgs
Extra Top-
ics

of
msgs
Total

Access (5) 120 Access (7) 90 210
Requirements (7) 69 Requirements (7) 156 225
Library (3) 39 Library (9) 26 65
Style (4) 33	 Style (2) 14 47
Processing (1) 2	 Processing (7) 97 99
Connection (1) 10 Connection (2) 5 15

 Deadline (11) 58 58
 Input (7) 60 60
 Output (4) 45 45
 Units (1) 4 4
Total 273 555 828

largest discussed Extra-Topic was Processing (97 messages as per
Table 2) and it refers to sharing coding compilation code or execu-
tion errors found in the solution or in associated development servers
[22]. Discussion about Access, totaling 90 messages, refers to grant-
ing access to repositories and tools associated with the task.
 More broadly, the additional 1/3 of discussed Extra-Topics
(namely Deadline, Input, Output, and Units; total of 167 messages
out of the 555 extra-ones) demonstrate that the crowd members com-
municate with each other and with the copilots to organize and clar-
ify their understanding about the task. For instance, the topic Dead-
line refers to messages that discuss the date and time set to submit
the task. Meanwhile, the topics Input and Output are about variables
and resources related to a task, and Units is about the measures of a
given input/output variable.
 To illustrate the richness of the exchanged messages, we present
some excerpt quotes obtained from the analyzed Topcoder tasks. The
quotes that illustrate the most mentioned topics about Requirements
and Access from Group 1 (recommend topics forum uses) are pre-
sented below. In the quote about Requirements a developer – Coder
A – is seeking to understand the specification documentation pro-
vided in the challenge. She is unsure about a particular section so she
asks a question. Before the copilot has the chance to answer the ques-
tion, another developer (Coder B) suggests something and they en-
gage in a short dialog. Later, the copilot joins the conversations and
answers a different question posed by Coder B telling them to follow
the specification requirements.
 [Coder A] “All sections of the specification document seem to
have a good purpose, except Section 9.3. Should we use the formulas
in Section 9.3? How? (It seems the equivalent engineering constants
are not needed.)”
 [Coder B] “If you have a look at summary file, it says that for
laminates we need to output engineering constants. Engineering
constants (Laminate only)”
 [Coder A] “Thank you [coder]. Now the "how" question remains:
#1. Is t sub k = T sub k ? #2. What is t sub lam? #3. What is C sub
{1,1,Lam}? #4. C sub {2,2,Lam} and so on? We have matrices A, B,

and D; but not C. I checked this fast in the given links, but couldn't
this information.”
 [Coder B] “In the specification it is given, the program shall use
a standard directory as follows: README.txt Should we need to
give txt read me file or Markdown read me file?”
 [Copilot] “Let's use txt since that's what's required in the spec.”
 In the following quote, a coder asks to help for co-pilots by grant-
ing them access to the required repositories that contain complemen-
tary information about the tasks.
 [Coder A] “Dear co-pilot, Please re-check to add my handle =
hieplt 404 not found now.”
 [Copilot] “See here – [site] You would have received an invite
mail from Github. Please make sure to check your spam folder.”
 [Coder A] “Please resend invite for me. I also check on Spam and
All Inbox folder. I see nothing. Sorry!”

4.2. Group 2: Tasks that did not Explicitly Rec-
ommend using the Forum

Group 2 comprises the tasks in which there was no explicit recom-
mendation about using the forum in their documentation. This group
represents 36% (9/25) of the analyzed tasks. A total of 212 messages
were sent about these 10 discussed topics distributed (see Table 3).
The largest number of messages were related to the Requirement
topic (81), followed by Library (37), Deadline (26), and Processing
(24) as presented in Table 3.

In addition to being the topic most discussed, Requirements was
also the topic discussed related to the higher number of tasks—8 of
the 9 tasks in Group 2. Style and Input were the topics discussed by
the smaller number of tasks—one each only.

It is important to remember that in Group 2 the task document did
not inform the need for the crowd to use the forum to seek infor-
mation about a certain topic to solve the task. However, the crowd
used the online forum to uncover information about requirements,
scorecard, library, deadline, processing, connection, output, input,
access, and style anyways. The fact that crowd workers seek infor-
mation about requirements might suggest that the task documenta-
tion is not clear or that it does not have enough details to be fully
comprehended on its own and later implemented. Further, the higher
number of messages related to Library in Group 2 might suggest that
the documentation does not have enough details about the frame-
works or libraries needed to build the solution.
 In the following quote, we illustrate an example from Group 2
about the Library topic where two coders (Coder A and Coder B)
ask the copilot to check the information about an excerpt of program-
ming code from the data API on the functional specification (task
documentation). In this case, the copilot agrees with the answer by
Coder B.
 [Coder A] “This requirement is listed in previous ldap challenge.
Authenticate user via username/password (return user NT ID, and
list of groups the user is a member of). So, we should still extract
ldap groups for ldap user info for login method?
 [Coder B] “I think that's unnecessary for CRUD API. I don't see
any place in the Functional Spec that makes use of logged in user's
LDAP groups”
 [Co-pilot] “Correct, we don't need user groups any more (re-
quirements have changed a bit since the last challenge)"

Table 3. Topics Discussed in Group 2.

The number in between the parenthesis indicate the number (#)
of tasks in which the topic was discussed

Discussed
Topics

of Messages

Requirements (8) 81
Library (4) 37
Deadline (5) 26
Processing (7) 24	
Connection (2) 13	
Access (5) 10
Output (2) 9
Style (1) 6
Scorecard (2) 5
Input (1) 1
Total 212

 Other sets of topics communicated in Group 2 through the forums
mostly focused on information seeking about technical, logical and
interface aspects such as connection, output and input and, the eval-
uation criteria for each task (Scorecard topic).

4.3. Comparing the Groups
Table 4 presents the number of messages in each group according to
the associated topics. Group 1 (G1) represents the explicitly recom-
mended topics, including the extra-topics, i.e., those discussed in
parallel. Group 2 (G2) represents the topics that received no recom-
mendation to use the forum. In both groups the Requirements topic
was the one most discussed (306 messages in total) in the forums
during the tasks’ development. The Units topic appeared in Group 1
only while the Scorecard topic appeared only in the tasks from
Group 2. As discussed in Section 4.1, Units are about measures of a
given variable while Scorecard (see Section 2) indicates some infor-
mation about relevant scores for the competition’s classification and
discussion of evaluation criteria of results.

Table 4. Total of messages and topics from Group 1 and Group 2

Topics
of msgs G1
(Recommended
and Extra)

of msgs G2
(Discussed)

of msgs (G1
and G2)

Requirements 225 81 306
Access 210 10 220
Processing 99 24 123
Library 65	 37 102
Input 60	 1 61
Deadline 58 26 84
Style 47 6 53
Output 45 9 54
Connection 15 13 28
Units 4 0 4
Scorecard 0 5 5
Total 828 212 1040

 Our empirical findings indicate that crowd members and copilots
engage in both groups of messages to discuss and validate infor-
mation on different task-related topics. Such information is predom-
inantly associated with task requirements specification and this topic
is the most discussed in the forums of both groups (see Table 4).
Again, the messages exchanged about requirements evidenced that
the crowd members need additional details to clarify the task require-
ments by interpreting the documentation, discussing with crowd
members to find a common understanding about them, and/or vali-
date additional information about the task with copilots. In G1, the
following most discussed topics were Access, Processing, Library,
and Input. Meanwhile, in the forums from G2, the topics frequently

discussed were Library, Deadline, Processing, and Connection. In
other words, the common most discussed topics between G1 and G2
are requirements and processing, which relates to source code com-
pilation and execution errors.
 In particular, the quotes about the topic Processing illustrate
how crowd members engage in the forums to seek for infor-
mation. Below, two crowd members explicitly ask the copilot to
contact the client to confirm the variations they found in their re-
sults. The copilot answers them to follow the spec documentation
provided while they wait for the customer’s feedback.
 [Coder A] “I completed the algorithm but got a very different re-
sult. For symmetry material, the B matrix should be all 0.0. But in
the summary file, the B matrix is filled with many small values. Could
you please ask the client about this? It should be all 0.0 for symmetry
material by definition.”
 [Coder B] “I have no problem with the B matrix, but I see minor
variations in the values between that in the book and what I have.
[@co-pilot] how much variation is acceptable? I believe the varia-
tion is unavoidable with floating point arithmetic.”
 [Co-pilot] “I'm waiting for the customer to clarify but for now
we'll just have to follow whatever info was provided in the spec to
implement it, even if the output values are not the same.”
 The quote above can also help explain why processing is one of
the most common topics discussed in Groups 1 and 2. Processing,
as mentioned before, is about source code compilation and execution
errors, either in applications or in servers; therefore it is clearly asso-
ciated with requirements as well.

5. Discussion
To some extent, it is not surprising that in Groups 1 and 2 the most
discussed topic in the forums is Requirements since this aspect is
necessary to understand the problem described in the task and build
a solution for it. In fact, our qualitative analysis reinforces that com-
munication among crowd members and between them and co-pilots
may solve understanding problems and clarify issues about the re-
quirements during the development of the task.
 In short, our results corroborate previous results. For instance,
Boudreau and colleagues [6] claim that online forums relieve ambi-
guity in the task specification. Other studies [1, 5, 7] suggest that task
documentation in software crowdsourcing is problematic with miss-
ing, unclear, and insufficient instructions. The issue with problem-
atic requirements is that it leads to misconceptions about the task and
might also lead to a low number of solution submissions [7, 20]. One
of the possible explanations for the problem of task documentation
in software crowdsourcing is suggested by [1], who argues: "Organ-
izations may be hesitant to provide too many details on a certain
crowd sourced task (i.e., module or component), yet sufficient detail
in the specification is necessary for crowd developers understand
what the client is requesting”.
 Stol and colleagues [1] report that a common problem in CS soft-
ware development is to overwhelm the crowd with unclear and in-
sufficient instructions which might lead to few or a low number of
submissions to a task, and also submissions with poor quality. Fur-
thermore, too many constraints placed on the task might also inhibit
innovation [1, 20]. This might explain why so many different topics
were discussed in Groups 1 and 2: crowd members and copilots en-
gaged in conversations about ten different topics. Even in tasks

where there was an explicit recommendation to use the forums in the
task documentation (G1), the crowd used these forums to discuss
about four other different topics, and the messages about these topics
were about 30% of the total messages.
 In general, customers and platforms must ensure a balance be-
tween providing enough information about the requirements and
avoid providing non-useful information. This balance is also a prob-
lem in collocated or distributed software development. For instance,
the lack of documentation about requirements is a constant problem
in software development. Problems with understanding code are also
common in any development model. However, we argue that strik-
ing this balance is even more critical in SW CS projects because this
model has 3 main unique characteristics: (i) the extremely distributed
nature of work where each crowd member is in a different site, (ii)
limited communication, and (iii) a scarce view of a client’s project
and goals. We briefly expand on each one of them below.
 First, crowd members (developers) and customers are geograph-
ically distributed. Previous research within the global software engi-
neering literature [17, 19] suggests that communication across geo-
graphical barriers might be problematic because of the lack of infor-
mal communication necessary to coordinate the work. Second, we
argue that SW CS has limited communication because there is no
direct communication between customers and crowd members [24]:
crowd members need to gather information about the problem to be
solved through the forums that are mediated by the copilot, i.e., fo-
rums are the only communication channel that the Topcoder plat-
form offers to crowd members. And, finally, the crowd has only the
information about a particular task; they do not have the overall pic-
ture about the larger product under development, as it usually hap-
pens in traditional software development. This limited view has al-
ready been reported as problematic [1] [7].
 In general, our results suggest that task documentation needs to
be accompanied by a communication channel to allow crowd mem-
bers to interact with customer representatives (the copilots), and each
other. Even for somewhat small, and atomic tasks with limited com-
plexity, documentation is not enough to allow a crowd member to
develop a software module or a piece of a larger software system.
Crowd members do need to use communication channels to comple-
ment the requirements from the task documentation. As illustrated in
the previous section, the engagement of the crowd in the forums was
expressive when tasks recommended the forum usage, but still sig-
nificant when tasks instructions did not explicitly recommend to use
the forums.
 SW CS platforms’ need to include a communication channel
raises the question of whether the asynchronous nature of the inter-
actions via forums is, or is not, the best solution for software
crowdsourcing. In general, feedback is delayed and interruptions or
long pauses in communication often occur in forums [10]. In this
sense, synchronous chat tools, like Slack, had shown great benefits
as a tool to mediate the communication among software developers.
Stray et al. [25] highlight the transparency and the improvements in
coordination brought by Slack. The possibility of adding other ser-
vices (like bots) to support the interaction is also a positive aspect of
these environments [26]. Moving towards these tools may improve
the communication and the awareness in SW CS context.

6. Conclusion
There are several studies discussing software crowdsourcing, but so-
cial and technical works that have been largely unexplored in the
context of SW CS. This study presents an empirical study on 25 SW
CS challenges where we analyzed their tasks documentation and
messages posted on online forums associated with tasks.
 The findings suggest that weak documentation is a challenge
within the SW CS context. However, when the crowd engages in
online forums, they can obtain important additional information
about the tasks that are not available in the official task documenta-
tion. Most of the tasks analyzed recommend using forums and those
tasks that do not recommend use forums still use the forums any-
ways. In addition, the tasks that recommend using forums use them
for more reasons than originally planned. Furthermore, our results
suggest there is a need for platforms that offer more communication
alternatives to engage the crowd members and to support with copi-
lots during the task execution. Our results, although might not be
generalizable to other platforms nor to a larger dataset of tasks in
Topcoder, suggest that all the parties need to discuss different aspects
of the task in different levels.
 We provide a stepping stone for further research into require-
ments communication and cooperation for improving SW CS devel-
opment processes, practices, and tools. New insights into that com-
munication via forum and how this communication channel extends
task documentation in competitive SW CS challenges have been ob-
tained in this study.
 Future work might be investigated to text mining to (semi-)auto-
matically identify topics (requirements, environment, testing cases,
etc.) being discussed in the forums so that they are made easily avail-
able to other crowd members; identify discussions, alternatives and
design decisions regarding the requirements and other aspects so that
they can also be easily made available to other crowd members.

ACKNOWLEDGEMENTS
This research has been partially funded by the Brazilian National
Council for Research and Development (CNPq), under research
grants 420801/2016-2 and 311256/2018-0.

REFERENCES
[1] Stol, Klaas-Jan, and Brian Fitzgerald. Two's company, three's a

crowd: a case study of crowdsourcing software development.
In ICSE, pp. 187-198. 2014

[2] Ke Mao, Licia Capra, Mark Harman, and Yue Jia. A survey of
the use of crowdsourcing in software engineering. Journal of
Systems and Software 126 (2017): 57-84.

[3] Ye Yang, Muhammad Rezaul Karim, Razieh Saremi, and
Guenther Ruhe. Who should take this task? Dynamic decision
support for crowd workers. In ESEM, pp. 1-10. 2016.	

[4] Ke Mao, Yang, Y.,Wang, Q., Jia, Y.; Harman, M. Developer
Recommendation for Crowdsourced Software Development
Tasks. In 9th SOSE, 2015, pp. 347-356

[5] Luis Vaz, Igor Steinmacher, and Sabrina Marczak. An empirical
study on task documentation in software crowdsourcing on
Topcoder. In 14th ICGSE, pp. 48-57, 2019.

[6] Kevin Boudreau, P. Gaulé, K. Group, C. Riedl, and A. Woolley.
2014. From Crowds to Collaborators: Initiating Effort
Catalyzing Interactions Among Online Creative Workers.
SSRN Electronic Journal (012014).

[7] Leticia Machado, A. Zanatta, S. Marczak, and R. Prikladnicki.
2017. The Good, the Bad and the Ugly: An Onboard Journey in
Software Crowdsourcing Competitive Model.
https://doi.org/10.1109/CSI-SE.2017.6

[8] Aniket Kittur, J. Nickerson, M. Bernstein, E. Gerber, A Shaw,
John Zimmerman, Matt Lease, and John Horton. 2013. The
Future of Crowd Work. ACM CSCW, 1301–1318.

[9] Jeff Howe. 2008. Crowdsourcing: Why the Power of the Crowd
Is Driving the Future of Business (1 ed.). Crown Publishing
Group, New York, NY, USA.

[10] Thomas LaToza and Andre van der Hoek. 2016. Crowdsourcing
in Software Engineering: Models, Motivations, and Challenges.
IEEE Software, 33 (012016),74–80.

[11] Klaas-Jan Stol, Bora Caglayan, and Brian Fitzgerald. 2017.
Competition-Based Crowdsourcing Software Development: A
Multi-Method Study from a Customer Perspective. IEEE
Transactions on Software Engineering PP(112017).

[12] Razieh Saremi and Ye Yang. 2015. Dynamic Simulation of
Software Workers and Task Completion. 17–23. https:
//doi.org/10.1109/CSI- SE.2015.11

[13] Razieh Saremi, Ye Yang, Guenther Ruhe, and David Messinger.
2017. Leveraging Crowdsourcing For Team Elasticity: An
Empirical Evaluation at Topcoder. ICSE 2017 SEIP (05 2017).

[14] Thomas LaToza,, Towne, W., Andre van der Hoek, and James
Herbsleb, (2013). Crowd development. 6th CHASE, (pp. 85-88).

[15] Thomas LaToza, M. Chen, L. Jiang, M. Zhao, and A. van der
Hoek. 2015. Borrowing from the Crowd: A Study of
Recombination in Software Design Competitions.
https://doi.org/10.1109/ICSE.2015.72

[16] Erran Carmel and Ritu Agarwal. Tactical approaches for
alleviating distance in global software development. IEEE
software 18, no. 2 (2001): 22-29

[17] James D. Herbsleb and Rebecca E. Grinter. Architectures,
coordination, and distance: Conway's law and beyond. IEEE
software 16, no. 5 (1999): 63-70.

[18] Igor Steinmacher, C. Treude, and M. A. Gerosa. Let me in:
Guidelines for the successful onboarding of newcomers to open
source projects. IEEE Software 36, no. 4 (2018): 41-49.

[19] Julia Kotlarsky and Ilan Oshri. Social ties, knowledge sharing
and successful collaboration in globally distributed system
development projects. EJIS 14, no. 1 (2005): 37-48.

[20] Tajedin, Hamed, and Dorit Nevo. Determinants of success in
crowdsourcing software development. In Conference on
Computers and people research, pp. 173-178. 2013.

[21] Topcoder. 2019. Topcoder. Retrieved May 2, 2019 from
https://www.topcoder.com 21]

[22] Cleidson R. B. de Souza, L. Machado, and R. R. M. Melo. On
Moderating Software Crowdsourcing Challenges. ACM on
Human-Computer Interaction 4, no. GROUP (2020): 1-22.

[23] Alpana Dubey, K. Abhinav, S. Taneja, G. Virdi, A
Dwarakanath, A Kass, and S Mani. 2016. Dynamics of Software
Development Crowdsourcing.

[24] Alexandre Zanatta, I. Steinmacher, L. Machado, Cleidson. R. d.
Souza and R. Prikladnicki, "Barriers Faced by Newcomers in
Software Crowdsourcing Projects," IEEE Software, vol. 34, no.
2, pp. 37-43, Mar 2017.

[25] Viktoria Stray, Nils Brede Moe, Mehdi Noroozi. Slack me if you
can!: using enterprise social networking tools in virtual agile
teams. ICGSE 2019: 101-111

[26] Bin Lin, Alexey Zagalsky, Margaret-Anne D. Storey, Alexander
Serebrenik. Why Developers Are Slacking Off: Understanding
How Software Teams Use Slack. CSCW Companion 2016:
333-336

[27]		 Corbin, Juliet, and Anselm Strauss. Basics of qualitative
research: Techniques and procedures for developing grounded
theory. Sage publications, 2014.

