
182

The Power of Bots: Understanding Bots in OSS Projects

MAIRIELI WESSEL, University of São Paulo, Brazil
BRUNO MENDES DE SOUZA, Federal University of Technology, Paraná, Brazil
IGOR STEINMACHER, Northern Arizona University, USA and Federal University of Technology, Paraná,
Brazil
IGOR S. WIESE, Federal University of Technology, Paraná, Brazil
IVANILTON POLATO, Federal University of Technology, Paraná, Brazil
ANA PAULA CHAVES, Federal University of Technology, Paraná, Brazil and Northern Arizona University,
USA
MARCO A. GEROSA, Northern Arizona University, USA

Leveraging the pull request model of social coding platforms, Open Source Software (OSS) integrators review
developers’ contributions, checking aspects like license, code quality, and testability. Some projects use bots to
automate predefined, sometimes repetitive tasks, thereby assisting integrators’ and contributors’ work. Our
research investigates the usage and impact of such bots. We sampled 351 popular projects from GitHub and
found that 93 (26%) use bots. We classified the bots, collected metrics from before and after bot adoption, and
surveyed 228 developers and integrators. Our results indicate that bots perform numerous tasks. Although
integrators reported that bots are useful for maintenance tasks, we did not find a consistent, statistically
significant difference between before and after bot adoption across the analyzed projects in terms of number of
comments, commits, changed files, and time to close pull requests. Our survey respondents deem the current
bots as not smart enough and provided insights into the bots’ relevance for specific tasks, challenges, and
potential new features. We discuss some of the raised suggestions and challenges in light of the literature
in order to help GitHub bot designers reuse and test ideas and technologies already investigated in other
contexts.

CCS Concepts: • Human-centered computing→ Open source software;

Additional Key Words and Phrases: Automated agents; pull request; bots; open source; pull-based model

ACM Reference Format:
Mairieli Wessel, Bruno Mendes de Souza, Igor Steinmacher, Igor S. Wiese, Ivanilton Polato, Ana Paula Chaves,
and Marco A. Gerosa. 2018. The Power of Bots: Understanding Bots in OSS Projects. Proceedings of the ACM on
Human-Computer Interaction 2, CSCW, Article 182 (November 2018), 19 pages. https://doi.org/10.1145/3274451

1 INTRODUCTION
Open Source Software (OSS) developers have a long tradition of collaborating on platforms such
as version control and bug reporting systems that support technical aspects of the development.
Recently, new platforms that better support social interaction have been proposed: the so-called

Authors’ addresses: Mairieli Wessel, University of São Paulo, São Paulo, SP, Brazil, mairieli@ime.usp.br; Bruno Mendes
de Souza, Federal University of Technology, Paraná, Campo Mourão, PR, Brazil, brunosouza@alunos.utfpr.edu.br; Igor
Steinmacher, Northern Arizona University, Flagstaff, AZ, USA , Federal University of Technology, Paraná, Campo Mourão,
PR, Brazil, igor.steinmacher@nau.edu; Igor S. Wiese, Federal University of Technology, Paraná, Campo Mourão, PR, Brazil,
igor@utfpr.edu.br; Ivanilton Polato, Federal University of Technology, Paraná, Campo Mourão, PR, Brazil, ipolato@utfpr.
edu.br; Ana Paula Chaves, Federal University of Technology, Paraná, Campo Mourão, PR, Brazil , Northern Arizona
University, Flagstaff, AZ, USA, anachaves@utfpr.edu.br; Marco A. Gerosa, Northern Arizona University, Flagstaff, AZ, USA,
marco.gerosa@nau.edu.

© 2018 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version
of Record was published in Proceedings of the ACM on Human-Computer Interaction, https://doi.org/10.1145/3274451.

Proceedings of the ACM on Human-Computer Interaction, Vol. 2, No. CSCW, Article 182. Publication date: November 2018.

https://doi.org/10.1145/3274451
https://doi.org/10.1145/3274451

182:2 Wessel et al.

“social-coding platforms” [12] (such as GitHub, GitLab, and Bitbucket), which are transforming
collaboration in software development [22, 60, 61]. These platforms provide features that aid
collaboration and sharing, such as pull requests, which have shaped software projects’ work prac-
tices [14, 22, 44, 71]. Previous work has examined how the pull-based model affects OSS developers
[23, 26, 42] and integrators’ behavior [11, 24]. This model offers new opportunities for community
engagement, but at the same time increases the workload for integrators to communicate, review
code, deal with license issues, explain project guidelines, run tests, and merge pull requests [23].

To reduce the workload with repetitive tasks, OSS communities have been adopting bots, which
are software agents that integrates their work with humans’ tasks [16], serving as a conduit between
users and services [55] and sometimes performing complex tasks that cannot be entirely auto-
mated [31]. Some bots (“chatbots” or “chatterbots”) interact with humans through a conversational
interface using natural language [31]. According to Farooq and Grudin [16], integration implies
partnership, which means that the partners complement each others’ activities. In this paper, we
analyzed bots in OSS projects (more specifically on GitHub) that have a user profile and play a role
within the development team, executing well-defined tasks that complements other developers’
work.

Bots are extensively proposed and analyzed in the literature of different domains, including social
media [1, 47, 70], online learning [20, 30, 38, 45], and Wikipedia [10, 19]. For collaborative software
engineering, some preliminary studies seek to understand bots and how they are used to interact
with messaging tools [34] and social media [41]. More specifically, some studies on bots focus on
continuous integration builds and deployment [63]. Although some preliminary work focuses on
the use of bots in software development projects [31, 55, 63], little is known about bots in OSS and
the challenges they impose from the integrators’ and contributors’ perspectives. Therefore, in this
paper we investigate how often popular software projects hosted on GitHub adopt bots. We also
report a quantitative analysis of activity indicators before and after bot adoption and a qualitative
analysis on how contributors and integrators perceive the relevance of bot support. We collected
data from 351 OSS projects and surveyed 205 contributors and 23 integrators.

From our data analysis, we make the following contributions: (i) bring attention to bots, a relevant
yet neglected resource that offers support for collaborative tasks in OSS; (ii) characterize the usage
of bots in OSS projects; (iii) elucidate how contributors and integrators see the importance and
support of bots; and (iv) present challenges introduced by bots and features that could enhance
current support.

2 BACKGROUND
The origin of bots dates back to 1950, when Alan Turing proposed that machines could think [62].
Since then, the interaction between computers and humans has been a challenge for researchers [13,
65, 75]. Recently, advances in fields such as Artificial Intelligence, Natural Language Processing, and
Machine Learning have enabled a proliferation of bots in several domains and the establishment of
partnerships in which computers and humans construct meaning around each other’s activities [16].
Bots enhance collaborative work [18] and influence changes in the workplace [33].

Technology enterprises have invested effort in developing bots as intelligent personal assistants,
such as Apple’s Siri [68] and Google Assistant [49], using conversational interfaces to help users
perform a wide set of personal tasks. In contrast, thousands of bots perform single, particular tasks
in a narrow domain of expertise [13]. For example, bots have been applied in the educational con-
text [27], focusing on students’ engagement [4, 6, 17], self-guided learning [40], course advising [28],
tutoring [56, 57], and coaching [35]. There are also bots in marketing, e-commerce [36, 58], and
customer services [21, 25]. Bots have also played a relevant role in peer production communities,
such as Wikipedia [10, 18] and social networks [1].

Proceedings of the ACM on Human-Computer Interaction, Vol. 2, No. CSCW, Article 182. Publication date: November 2018.

The Power of Bots: Understanding Bots in OSS Projects 182:3

In Software Engineering, bots support several activities, such as communication and decision-
making [55]. Previous studies on how developers use bots in a popular messaging tool evidenced
that bots support both technical and social activities [34]. In collaborative software development
environments, bots automate tasks that generally require human interaction [31]. For example, Urli
et al. [63] propose a bot that serves as a program repair tool-chain for continuous integration build
failures in projects hosted on GitHub. Pérez-Soler et al. [41] developed a bot that interacts with
developers via social networks to orchestrate collaborative software modeling. Beschastnikh et al.
[5] proposed the use of bots as a solution for the automated deployment and evaluation of software
engineering analysis techniques. However, while these studies provide recommendations on how
to develop bots, as well as evaluate bots’ capabilities and performance, they do not draw attention
to the impact of bot adoption on software development or how software engineers perceive the
bots’ support.
Towards understanding the practical implications of bot adoption, Storey and Zagalsky [55]

describe a cognitive framework to explain how bots support software development productivity.
The framework identifies the roles bots play for different phases of the software development
lifecycle, as well as the bots’ contributions to developers’ efficiency and effectiveness. Paikari
and van der Hoek [39] introduce a framework to examine the current state of bots and identify
directions for future work. Mirhosseini and Parnin [37] suggest that bots can encourage project
maintainers to update dependencies and Lebeuf et al. [32] investigate how bots can potentially
mitigate collaboration breakdowns. Although these papers analyzed the role of bots in software
development, they do not focus on how contributors and integrators perceive the bots during their
activities and the effects of bot adoption.

3 METHOD
This study aims to understand bot usage on GitHub projects, answering three research questions:

RQ1. How common are bots in GitHub projects?

We aimed to understand how commonly OSS projects use bots and what they use them for by
manually analyzing a subset of the most starred projects from GitHub.

RQ2. How do the characteristics of pull requests compare before and after the bot adoption?

By answering this question, we want to understand whether the acceptance rate, interaction, and
decision-making time of a project change after the bot adoption. We quantitatively analyzed pull
requests of 44 software projects, investigating the number of merged and unmerged pull requests,
number of commits, time-to-close, and number of comments.

RQ3. How do contributors and integrators perceive bots’ support during the pull request
submission process?

In this research question, we analyze the contributors’ and integrators’ perspectives by means of
a survey aimed at understanding: (1) whether stakeholders perceive the presence of bots on pull
request that they submit/merge; (2) whether stakeholders agree about the relevance of bot support
on software tasks; (3) problems/challenges of using bots; and (4) missing features.

3.1 Selecting OSS Projects
We selected OSS projects hosted on GitHub (excluding non-software projects, such as textbooks
or bookmarks) that received at least 2.5k stars before August 2017 (number of stars is a proxy for

Proceedings of the ACM on Human-Computer Interaction, Vol. 2, No. CSCW, Article 182. Publication date: November 2018.

182:4 Wessel et al.

popularity [7]). We started with 4, 037 projects. To conduct our analysis, we sampled 351 projects,
providing us a confidence level of 95% with a ±5% confidence interval.
To identify a bot, we verified whether it had a GitHub account and analyzed its name and

description looking for bot references (e.g., Bootstrap’s Pull Request Checker bot1). We also analyzed
pull requests, looking for message patterns that could indicate that a profile is a bot (e.g., “This is
an automated pull request to...”). Additionally, we found bots that were properly tagged in the pull
request messages (e.g., Welcome bot).

In each selected project, wemanually classified the type of bots. There have been some attempts to
categorize the roles of bots in software engineering, like Storey and Zagalsky [55], who considered
multiple interaction channels (IRC, Slack, and HipChat). Specifically for GitHub bots, Paikari and
van der Hoek [39] categorized the bots according to the interaction characteristics, but did not
analyze the roles that bots play in the development process. Since the purposes of the previous
taxonomies are different from the current study’s goal, we analyzed the task performed by the
bots in the context of pull requests received by OSS projects. Two researchers independently
conducted the manual classification, followed by consensus discussions. At the end of this process,
we identified 93 projects (26.5%) making use of at least one bot.

These bots supported a total of 113, 414 pull requests submitted by 3, 371 different contributors
and merged by 370 integrators. To enable comparison, we retained only those projects that had
been active for at least six months before and six months after the bot adoption. Moreover, when
analyzing the quantitative data from before and after adoption, we noticed that many projects had
too few contributors during one of these periods. Thus, we also discarded projects with 7 or fewer
contributors in these periods (first quartile). At the end of this process, our dataset comprised 44
projects, including active, popular, non-trivial, and diverse OSS projects.

Fig. 1. Time Series overview

After identifying when a bot was adopted in the project, we collected data from 180 days before
and 180 days after this event to conduct the quantitative analysis, as illustrated in Figure 1.

3.2 Understanding the developers’ perspective
We conducted two surveys to understand how contributors and integrators perceive the adoption
of bots to support pull requests. We analyzed pull requests submitted after the bot adoption and
surveyed contributors who submitted pull requests and integrators who merged them.

The surveys were designed based on recommendations from Kitchenham et al. [29]. We also em-
ployed principles for increasing survey participation [48], such as sending personalized invitations,
allowing participants to remain completely anonymous, and asking closed and direct questions.
The contributor and integrator surveys were set up as online questionnaires.2

1https://github.com/mozilla/pdf.js/pull/8634
2The questionnaires can be found online at [https://github.com/mairieli/CSCW-2018/tree/master/questionnaires].

Proceedings of the ACM on Human-Computer Interaction, Vol. 2, No. CSCW, Article 182. Publication date: November 2018.

https://github.com/mairieli/CSCW-2018/tree/master/questionnaires

The Power of Bots: Understanding Bots in OSS Projects 182:5

Both surveys were sent on December 18, 2017, and we received answers for a 30-day period.
Participation was voluntary and the estimated time to complete each survey was 5-10 minutes. In
our first survey, our target population comprised 3,371 contributors who made their valid e-mail
addresses publicly available via the GitHub API. We received answers from 205 people. Our second
survey was delivered to 368 integrators with valid e-mail addresses. We received 23 answers. For
both surveys, we had a response rate of ∼ 6%. Our contributor survey had six questions:

Q1. Did you notice the participation of bots during your pull request submission/acceptance
process? Choices: {yes, no}

Q2. Based on your experience, it was easier to contribute to the project... Choices: {When my
pull request was assisted only by project members, When my pull request was assisted only
by a bot; When my pull request was assisted by bots and members}

Q3. Based on your experience, rate the relevance (on a 5-point Likert Scale with neutral: Very
Irrelevant, Irrelevant, Neutral, Relevant, Very Relevant) of bot support in your project for
the following tasks: explain the project guidelines (e.g., explain how to contribute for new
contributors); decrease code review effort; decrease time to merge/reject of pull request;
automate the continuous integration task; run tests/quality assurance tasks; license issues
related to contributions; improve the social interaction between integrators and contributors.

Q4. In your project, do bots support contributors/integrators in other tasks not mentioned above?
If yes, in which tasks?

Q5. What are the problems/challenges of using bots in your project?
Q6. What features would you like to add to the bot(s) used in your project?

The integrators’ survey comprised the last four questions (Q3-Q6).

3.3 Data analysis
First, we quantitatively collected and analyzed the number of projects using bots, the number of bots
per project, and the types of bots used (RQ1). Second, to answer RQ2, we used the non-parametric
Mann-Whitney-Wilcoxon (MWW) test [67] to identify whether there were differences among
project indicators (e.g., number of comments, number of commits, and close time) collected from
pull requests before and after bot adoption. We also used Cliff’s Delta statistic [46] to quantify
the difference between these groups of observation beyond p-value interpretation. Moreover, we
observed the monthly distribution of each metric to search for indications of changes.

In the third analysis, we used a card sorting approach to qualitatively analyze the answers to our
surveys’ open-ended questions (RQ3). Card sorting is a widely used technique for creating mental
models and deriving taxonomies from data [?], evolving categories to identify common themes.
Three researchers conducted this analysis in two steps. In the first step, each researcher analyzed
the answers (cards) independently and applied codes to each answer, sorting them into meaningful
groups. This was followed by a discussion meeting until they reached consensus on the code names
and on the categorization of each item. At the end of this process, the answers were sorted into
high-level groups. In the second step, the researchers analyzed the categories, aiming to refine the
classification and group related-codes into more significant, higher-level categories and themes. Our
card sort was open, meaning we had no predefined codes or groups; the codes emerged and evolved
during the analysis process. In addition, we quantitatively analyzed closed-ended questions (RQ3)
to understand developers’ perceptions about the relevance of bot support on software development
tasks. In Section 4.3, we highlight the main themes that emerged along with quotes extracted from
the open questions, which were chosen based on their representativeness.

Proceedings of the ACM on Human-Computer Interaction, Vol. 2, No. CSCW, Article 182. Publication date: November 2018.

182:6 Wessel et al.

4 RESULTS
In the following, we report the results of our study, grouped by each research question.

4.1 RQ1. How common are bots in GitHub projects?
We identified 48 different bots in 93 projects. We classified the bots according to the tasks they
perform:
Ensure License Agreement Signing (10 bots). Bots that comment on pull requests to direct
contributors to sign a Contributor License Agreement (CLA) (e.g., Googlebot, Facebook Community
bot, and meteor-bot).
Report Continuous Integration Failures (10 bots). Bots responsible for notifying contributors
of test failures in CI tools (e.g., Elastic Machine, swift-ci, and The Travis Bot).
Review Code (7 bots). Bots that analyze source code (e.g., code style, code coverage, code quality,
and smells) and give feedback (e.g., Hound bot – verifies code style violations; Coveralls bot –
shows which parts of the source code are not covered by the test suite).
Review Pull Requests (7 bots). Bots that analyze pull requests and comment on them, identifying
potential mistakes and how to fix them (e.g., Node.js GitHub Bot, Calypso Bot, and Bootstrap’s Pull
Request Checker Bot).
Assign Reviewers (7 bots). Bots that aks a maintainer to review the pull request (e.g., Rust highfive
robot).
Welcome Newcomers (4 bots). Bots that send a welcome message to new contributors (e.g.,
Welcome bot).
Merge Pull Requests (4 bots). Bots that test pull requests and merge them if they pass (e.g.,
Kubernetes Submit Queue).
Scrap the Forge (3 bots). Bots external to the project that look for potential enhancements and
automatically open pull requests. They look for typos in README files (ReadmeCritic), known
vulnerabilities (Snyk bot), and outdated domain usage (npm-to-cdn-bot).
Run Automated Tests (2 bots). Bots that run tests to validate the changes made in the pull
request (e.g., pdf.js test).
Build (2 bots). Bots designed to build the application upon request (Mary Poppins bot and pdf.js
bot).
Control Dependencies (1 bot). Greenkeeper is a bot that informs when updates in the dependen-
cies will break the software, reporting the analysis as a comment on the pull request.
Create Issues (1 bot). Doctrine Bot automatically opens issue on the bug tracker to help contribu-
tors.
Run Benchmarks (1 bot). Svelte-Bot is a bot that runs a benchmark and shows the results as a
comment. It tests many application functions using different configurations – e.g., different versions
and web browsers – to evaluate the application’s performance.

The number of different bots per programming language is presented in Figure 2. To analyze how
the projects’ characteristics affect the use of bots, we show the domain, the main programming
language, and the first bot adoption date for each project. We found 76 projects using only one
bot, 16 projects using two bots, and only one project using three different bots. Ten of these bots
performed two tasks per project, one bot performed three tasks, and the other 37 bots performed a
single task. We noticed that bot adoption rose in popularity in 2014, with 17 adoptions. We also
observed a similar rate of adoption by software projects in 2015 (19 projects) and 2017 (18 projects),
with a peak in 2016 (31 projects). Regarding programming languages, JavaScript comprised the

Proceedings of the ACM on Human-Computer Interaction, Vol. 2, No. CSCW, Article 182. Publication date: November 2018.

The Power of Bots: Understanding Bots in OSS Projects 182:7

largest sample of the selected projects. These projects normally use more than one bot. In contrast,
we highlight Ruby, Objective-C, and Python, which represented more than 5 projects in our sample,
but use a single bot.

2012

2013

2014

2015

2016

2017

C C
#

C
+

+

C
S

S

G
o

H
T

M
L

Ja
va

Ja
va

S
cr

ip
t

O
bj

ec
tiv

e−
C

P
H

P

P
yt

ho
n

R
ub

y

R
us

t

S
w

ift

Ty
pe

S
cr

ip
t

V
im

 s
cr

ip
t

Language

F
irs

t b
ot

 a
do

pt
io

n

Num. of bots

1

2

3

Domain

Application software

Non−web libraries and frameworks

Software tools

System software

Web libraries and frameworks

Fig. 2. Characteristic of projects versus bot adoption

RQ1. We found that almost one-third of the projects adopted at least one bot. The "boom"
of adoption occurred after 2013. Projects commonly adopt bots to ensure license agreement
signing, report continuous integration failures, assign reviewers, and automatically review
the source code and the pull requests.

4.2 RQ2. How do the characteristics of pull requests compare before and after the bot
adoption?

To look for changes in pull requests characteristics, we examined several metrics across the 44
selected projects, as can be seen in Figure 3. The top graphs refer to merged pull requests while the
bottom graphs represent the unmerged pull requests for each six consecutive time intervals (months)
before and after the first adoption of a bot. We used a log scale to normalize the distributions. The
median values before and after bot adoption were, respectively: 15 and 17 for number of merged
pull requests and 8 and 9 for unmerged; 131 and 116 hours for time to merge a pull request; 537 and
332 hours for time to reject a pull request; 19 and 27 for number commits per merged pull request
and 16 and 19 for unmerged; and 2.7 and 3.1 comments for merged pull request and 3.9 and 3.7 for
unmerged.

To verify whether we could evidence statistically significant differences for number of comments,
commits, changed files, and close time for each project before and after bot implementation,
we conducted Mann-Whitney-Wilcoxon tests for the different metrics. Our data shows that the
percentage of the projects that showed statistically significant differences for merged and unmerged
pull requests, respectively, were: (i) for the number of comments received per pull request, 66% and
39%; (ii) for number of commits per pull request, 34% and 25%; (iii) for number of changed files, 34%
and 25%; and (iv) for time to close pull requests, 45% and 32%. The number of comments for merged

Proceedings of the ACM on Human-Computer Interaction, Vol. 2, No. CSCW, Article 182. Publication date: November 2018.

182:8 Wessel et al.

(a) Merged and unmerged pull requests (b) Close time

(c) Number of Commits (d) Number of Comments

Fig. 3. Distribution of metrics before and after bot adoption

pull requests presents the more noticeable difference, since we found a statistically significant
difference for 29 out of 44 projects (66.0%). When analyzing the effect-size (using Cliff’s delta), we
noticed that the number of comments increased in 20 projects (5 with large, 4 with medium, 9 with
small, and 2 with negligible effect-sizes), while it decreased for 9 (1 with large, 2 with medium, 4
with small, and 2 with negligible effect-sizes).

RQ2. The statistical results for each project showed that although there are statistically
significant differences for some projects regarding the number of commits, number of changed
files, and closed time before and after the bot adoption, the differences are not consistent
across the projects. The most noticeable difference regarded the number of comments per
pull request; however, for some projects the effect size indicated an increase and for others a
decrease after bot adoption.

Proceedings of the ACM on Human-Computer Interaction, Vol. 2, No. CSCW, Article 182. Publication date: November 2018.

The Power of Bots: Understanding Bots in OSS Projects 182:9

4.3 RQ3. How do contributors and integrators perceive the relevance of bot support
during the pull request process?

When asked if they noticed the participation of bots during the pull request process, 200 (97.6%)
contributors answered “yes.” Moreover, as can be observed in Table 1, more than 90% of our
respondents answered that they find it easier to submit a pull request when bots and project
members collaborate during the review process.

Table 1. Contributors’ answers on whether it is easier to contribute to the project when pull requests are
assessed by bots or project members

Assisted by # of answers (%)

Bots only 7 (3.4%)
Project members only 9 (4.4%)
Bots and project members 189 (92.2%)

We also asked contributors about their perception of the relevance of bots to support specific
tasks. The answers followed a 5-point Likert scale with neutral, from “Very Irrelevant” to “Very
Relevant.” In Figure 4, we observe that most of the respondents perceived bots as helpful for most
of the tasks. More than 90% of them highlighted that bots are relevant to automate continuous
integration and run tests/quality assurance tasks. On the other hand, only 38% of the respondents
somewhat agreed that bots are relevant to improve social interaction, which can indicate that they
do not perceive bots as social proxies.

5%

2%

6%

20%

8%

20%

34%

92%

90%

76%

64%

64%

62%

38%

3%

8%

18%

16%

28%

18%

28%
Q7. Improve the social interaction between

integrators and contributors

Q6. License Issues related to contributions

Q5. Run tests / quality assurance tasks

Q4. Automate the continuous integration task

Q3. Decrease time to merge / reject of Pull
Request

Q2. Decrease code review effort

Q1. Explain the Project Guidelines

100 50 0 50 100
Percentage

Response Very irrelevant Irrelevant Neutral Relevant Very relevant

Fig. 4. Contributors’ perceptions on the relevance of bot support in specific project tasks

Regarding integrators, we found that their perception was quite similar to the contributors, as
shown in Figure 5. The main difference can be observed in Q1, for which 64% of the integrators did
not agree that bots are capable of explaining project guidelines.

4.3.1 Challenges in using bots in pull requests. We openly asked contributors and integrators about
the “problems/challenges of using bots.” The challenges were grouped into 16 categories, as can be
seen in Table 2.

From the developers’ perspective, the most recurrent challenge with the current bots is that bots
have poor decision support mechanisms (39 mentions). This challenge includes the cases in which
the respondents say that bots “are not smart enough yet,” which suggests they were expecting the
bots to help them solve the hurdles, and not only raise problems, as a respondent explained: “bots

Proceedings of the ACM on Human-Computer Interaction, Vol. 2, No. CSCW, Article 182. Publication date: November 2018.

182:10 Wessel et al.

14%

14%

23%

23%

14%

50%

41%

86%

82%

73%

68%

64%

36%

32%

0%

5%

5%

9%

23%

14%

27%Q7. Improve the social interaction between
integrators and contributors

Q6. License Issues related to contributions

Q5. Run tests / quality assurance tasks

Q4. Automate the continuous integration required

Q3. Decrease time to merge / reject your Pull
Request

Q2. Help during the code review

Q1. Explain the Project Guidelines

100 50 0 50 100

Fig. 5. Integrators’ perceptions on the relevance of bot support in specific project tasks

Table 2. Problems/challenges introduced by bots in pull requests

Challenge Contributors Integrators

Bots have poor decision support mechanisms 39 (19.0%) 1 (4.5%)
Bots provide non-comprehensive/poor feedback 31 (15.1%) –
Bots take wrong actions 18 (8.8%) –
Bots are not able to review code 17 (8.3%) –
Bots require manual intervention 9 (4.4%) 1 (4.5%)
Bots introduce communication noise 4 (1.9%) –
Tailored bot configuration 3 (1.5%) 8 (36.3%)
Lack of information on how to interact with the bot 3 (1.5%) 1 (4.5%)
Bots have lack of guidance for newcomers 2 (1.0%) –
Bots require high maintenance 1 (0.5%) 2 (9.1%)
Difficulty to coordinate multiple bots 1 (0.5%) 1 (4.5%)
Contributors don’t understand the value of bots for maintainers – 2 (9.1%)
Bots reduce human-human interaction – 1 (4.5%)
Difficulty to find the appropriate bot – 1 (4.5%)
Lack of available resources – 1 (4.5%)
No challenge 79 (38.5%) 5 (22.7%)
Did not answer / N/A 23 (11.2%) –

help streamline repetitive tasks, but cannot help with the decision-making, such as deciding if a
build-passing/CI-approved request is indeed useful for the project at large.” They also suggested that
bots need to learn from previous interactions: “Sometimes they don’t learn from other situations.”
Several developers (31) also complained about the way the bots interact, saying that the bots

provide non-comprehensive/poor feedback. In one example of bots’ inability to provide adequate
feedback, a respondent complained that bots can provide harsh responses, and thus “feel unfriendly
in certain situations.” This challenge relates to the way the bot is designed to provide answers,
which can at times be misleading and unhelpful. One respondent mentioned that the bots do not
provide “enough information on how to solve the issue,” while another reported that “the worst
problem is when the bot answers something that is not helpful.”

With 18 mentions, bots take the wrong action was the third most reported problem of the current
bots. In general, respondents complained that bots mistakenly close pull requests. One example
was “closing an issue after X days of no activity (without having a single answer/post on the issue).”
Other respondents mentioned race-conditions and test-flakes: “A significant challenge is coming
across test-flakes. . . tests sometimes tend to fail for reasons completely unrelated to the changes
being introduced through the patch.”

Proceedings of the ACM on Human-Computer Interaction, Vol. 2, No. CSCW, Article 182. Publication date: November 2018.

The Power of Bots: Understanding Bots in OSS Projects 182:11

Some other categories, although less recurrent, called our attention. Two of them refer to
communication issues: bots introduce communication noise; and lack of information on how to
interact with the bot. These challenges add to bots provide non-comprehensive/poor feedback, showing
that it is necessary to improve the bot’s usability. Another interesting challenge mentioned by
respondents is that bots lack guidance for newcomers, which is a trending topic in OSS [53].
From the integrators’ perspective, we observe that the challenges somewhat differ from those

mentioned by contributors. It is clear that the challenges from the integrators’ perspective relate
more to choosing, setting up, and maintaining the bots. The most recurrent challenged mentioned
by integrators refers to bots’ configuration (Tailored bot configuration), which was reported by
8 respondents (36.3%), for instance: “configuring bots can be a lengthy process,” and “designing
the execution environment for our bot and giving it appropriate authority is difficult and takes
time and effort.” Two participants also mentioned that bots “are developed in an unstable way,” so
“they require high maintenance.” We found other challenges: difficulty to find the appropriate bot;
difficulty to coordinate multiple bots; and lack of available resources.

Notably, in addition to configuration and maintenance, two integrators reported that a challenge
they see is that “developers don’t understand the value of bots for maintainers.” We could observe
this fact from the feedback and the challenges reported on the developers’ survey. One of them
offered a nice explanation on that matter: “bots aren’t magic, and sometimes it’s hard for people to
understand that they too are software that has to be carefully written. In other words, it’s easy for
people to put ungrounded faith or hope in a bot just because it’s a bot.”

4.3.2 Bot improvements. We also asked our participants about improvements and features they
would like to add to bots. Most developers (55.6%) and 6 integrators (27.3%) did not suggest anything.
The other answers were grouped, as can be seen in Table 3.

Table 3. Improvements proposed by developers and integrators

Features Contributors Integrators

Make the bots smarter 19 (9.3%) –
Improve code review 16 (7.8%) 2 (9.1%)
Improve notification/awareness 11 (5.4%) 3 (18.2%)
Enhance user interaction 8 (3.9%) 2 (9.1%)
Recommend Related/similar PRs 5 (2.4%) 1 (4.5%)
Provide contribution guidelines 5 (2.4%) 1 (4.5%)
Improve feature communicability 5 (2.4%) –
Recommend related artifacts 5 (2.4%) –
Assign Reviewers 5 (2.4%) –
Provide a way to request human help 4 (1.9%) –
Release/deploy control 3 (1.5%) 2 (9.1%)
Provide guidelines for newcomers 2 (1.0%) –
Keep the history of changes 2 (1.0%) 1 (4.5%)
Manage commit queues 2 (1.0%) –
Estimate response time 2 (0.5%) –
Calculate metrics 1 (0.5%) 1 (4.5%)
Answer specific questions 1 (0.5%) –
Personal assistant 1 (0.5%) –
Provide conversation statistics 1 (0.5%) –
Label issues automatically – 2 (9.1%)
Measure performance – 1 (4.5%)
Offer polls to recommend new project features – 1 (4.5%)
Resolve merge conflicts – 1 (4.5%)

Proceedings of the ACM on Human-Computer Interaction, Vol. 2, No. CSCW, Article 182. Publication date: November 2018.

182:12 Wessel et al.

From the developers’ perspective, the most recurrent suggestions relate to a desire to make
the bots smarter, since “they are not smart enough yet.” Most of the respondents mentioned that
bots should learn from previous interactions and bring insights from the source code or issue
tracker so they can provide better support to pull requests: “intelligence based on others issues and
pull requests,” and “bot could learn about all code on GitHub.” One respondent, who previously
mentioned a challenge related to flaky tests, proposed: “the ability for it to recognize test flakes by
analyzing common failures often occurring across multiple pull requests over time, and to restart
test jobs automatically when this happens.” Still, some others provided more generic answers,
briefly mentioning: “Machine learning” or “AI.”
Another recurrent feature request from contributors regards improving code review. They men-

tioned different features, ranging from “check code style guidelines” to “auto-correct typical mis-
takes.” More specifically, four developers suggested using “more linting code capabilities.”
Improving the ways users can interact with bots was also mentioned. Since most bots are

reactive and do not have any available interaction feature, 8 developers mentioned enhance user
interaction as a good way to improve bots. One of them requested that: “it will be better to add
more interactivity to some bots.” Improve notification/awareness was also a recurrent category.
Contributors mentioned better ways to remind project owners or reviewers about unresolved issues
(e.g., “keep reminding repo owners about relevant issues that were not resolved or closed”), to
send notifications about specific areas (e.g., “bots that remind me of any open issues in my areas
of interest”), and notifications about the progress of the issue (e.g., “tracking all activity about
this pull request”). Contributors also requested easier ways to learn how to interact with the bots,
mentioning they need to know how to communicate their features.
In addition to the most recurrent ones, the developers mentioned as potential new features:

recommend related PRs and recommend related artifacts. Additionally, two developers mentioned
that bots would provide great value in receiving newcomers. One of them mentioned that a bot
could be a “guide for first-time contributors. Where to get help from, e.g., mailing list, IRC, Slack.”
The second one mentioned that a bot could “guide people to low hanging fruits/issues and help
them to engage in the project.”
From the integrators’ perspective, we noticed that improving interaction and receiving notifi-

cations from the bots are desired features. The most recurrent request refers to ways to improve
notifications/awareness. However, as with the challenges, they focused on making easier integration
and project maintenance. We can observe in Table 3 that integrators and developers mentioned
features to provide release/deploy control, keep the history of changes, and calculate metrics, while
only integrators mentioned the last four features on the table, which relate to improving project
maintenance.

RQ3. Contributors and integrators reported 16 challenges for using bots in OSS projects.
We found that 37% of these challenges were perceived by both contributors and integrators.
Twenty four new features were also mentioned, with 33% of intersection in their suggestions.
We observed that, while contributors want smarter bots that can recommend related artifacts
and issues, and that have improved ways to interact, integrators reported both challenges and
features related to facilitating bot and project maintenance.

5 DISCUSSION
An interesting result that emerged from the survey is the request for smarter bots. According
to Farooq and Grudin [16], bots involve human-machine integration, which implies partnership.
However, for OSS communities, this partnership still has room for improvement; as Table 2 shows,

Proceedings of the ACM on Human-Computer Interaction, Vol. 2, No. CSCW, Article 182. Publication date: November 2018.

The Power of Bots: Understanding Bots in OSS Projects 182:13

several developers complained that bots have poor decision support mechanisms and bots take wrong
actions. Moreover, developers and integrators provided an extensive list of desired features, such as
making the bots smarter, recommending related/similar PRs, assigning reviewers, answering specific
questions, and automatically labeling issues. Indeed, we could observe that the bots for GitHub
OSS projects perform simple and repetitive tasks (Section 4.1), aiming to reduce integrators’ effort.
Little support is provided to the contributors at large. This poor support may justify the challenge
mentioned by integrators that developers don’t understand the value of bots for maintainers.

Existing literature charts many examples of bots that could help developers make decisions. Solu-
tions to the aforementioned challenges could be inspired by intelligent interactive systems, which
leverage techniques for rational decision coaching [35]. Bots could collaborate with developers by
asking meaningful questions that lead them to decisions. Making smarter decisions (e.g., deciding
the usefulness of a build) would require bots to be enriched with learning models for the target
criteria (in the example, usefulness). This is a trending topic in other domains. For example, some
bots in the education field learn from previous interactions and estimate students’ interest level [38]
or learning styles [30], adapting their interactions to improve collaboration. Similar models could
be used in OSS development. Software Engineering literature on recommending systems explores,
for example, issue/bug similarity techniques [2, 66, 74], approaches to retrieving related API or
Q&A discussions by analyzing a piece of code or a question [43, 59, 73], and ways to recommend
people given an issue or a pull request [3, 72]. To design smarter bots to support developers on
OSS projects, there is room for research on how to combine the knowledge on building bots and
modeling interactions from other domains with the techniques and approaches available in software
engineering.

According to Lee et al. [33], “bots change the way people socialize when introduced to a commu-
nity communication platform.” However, in our survey almost 50% of the contributors andmore than
50% of the integrators disagreed with the premise that bots improve social interaction. Moreover,
from the answers to the open-ended questions, we observed that challenges and feature requests
related to the way bots interact with developers, such as bots provide non-comprehensive/poor feed-
back and bots introduce communication noise. In addition, requests to improve notification/awareness
and enhance user interaction can also be observed in the top requested features (Table 3). We learned
from the literature that the customer service field had investigated similar problems. Gnewuch et al.
[21] highlighted that most customer service bots could not meet users’ interaction expectations.
The authors listed issues such as not using appropriate language and giving generic information,
and proposed requirements to develop enriched bots.
Better communicating a bot’s features is another potential improvement on how bots interact

with developers. According to Lebeuf et al. [31], this is important because “the bot’s purpose —
what it can and can’t do — must be evident and match user expectations.” HCI studies provide
some steps toward understanding how bots should convey their features (what they can do, their
context state, and intelligence level [25, 64]); from the CSCW perspective, it would be relevant
to understand how the proposed approaches improve the success of accomplishing collaborative
tasks.
Our study results also underscored that improving support for newcomer onboarding was

mentioned both in challenges and as a desired feature. It is well-known that onboarding to an OSS
community can be a journey full of obstacles [50]. This is especially relevant with the rise of casual
contributors [42] and the number of quasi-contributors who do not succeed in contributing [52].
The literature offers potential ways to support newcomers and make this process smoother [9, 51,
54, 66, 69]. It would be beneficial for communities to take these approaches and guidelines into
consideration to provide, as requested, contribution guidelines, or to offer an interactive way to help
new members feel welcome and learn the contribution process. To provide this step, researchers

Proceedings of the ACM on Human-Computer Interaction, Vol. 2, No. CSCW, Article 182. Publication date: November 2018.

182:14 Wessel et al.

might find inspiration in the education domain, where bots have been proposed to advise students
[20] and help students to share knowledge within communities [45].

From the integrators’ perspective, we observed that the concerns and ideas about desired features
pertain to bots’ maintenance and setup. Bot developers need to consider the diversity of languages,
frameworks, and platforms used in OSS projects. We believe that the setup and maintenance
challenge can be explained by the maturity level of bots in the GitHub pull request context.

As decribed by Storey and Zagalsky [55], bots implement “a conduit or an interface between users
and services, typically through a conversational user interface.” Bots provide new forms of interactions
with already existing tools [8], automating tasks and binding services together. However, GitHub
bots are not as evolved as in other domains (e.g., education and customer service) and developers
feel that bots should provide smarter ways to access current tools and services.

6 THREATS TO VALIDITY
While our results only apply to popular OSS projects hosted on GitHub, many relevant projects
are currently hosted on this platform [15]. Our results are also limited by our selection of projects,
which one might argue is small or non-representative. However, the selected projects are diverse
in several dimensions, such as domain, programming languages, popularity, and activity. We
also used a statistical approach to randomly select a sample of projects (see Section 3.1 for more
details). Moreover, we likely did not discover all possible pull request characteristics that bots can
influence. Even analyzing several projects, we could not find any statistically significant differences.
This could be due to the presence of different bots with different goals and bots external to the
projects, which can result in different outcomes. Future work can analyze specific types of bots.
Moreover, most bots are designed to support maintainers facilitating their tasks. To complement
our quantitative analysis, we conducted a survey to gain information from the stakeholders who
interact with the bots. With our methodology and infrastructure, similar analysis can be conducted
in the future to explore additional details about bot usage on GitHub. For replication purposes, we
made our data and source code publicly available.3

Finally, since we leverage qualitative research methods to categorize the open-ended questions
asked in our surveys, as well as to classify bots, we may have introduced categorization bias.
To mitigate this bias, we conducted this process in pairs and carefully discussed categorization
among the authors. Also regarding our surveys, the order that we presented the questions to the
respondents may have influenced the way they answered them. We tried to order the questions
based on the natural sequence of actions to help respondents understand the questions’ context.
We designed our survey to be short, with anonymous responses and voluntary participation.

7 CONCLUSION
In this paper, we showed that bots are rather common (one-third of the projects in our sample adopt
them) and are used for a variety of tasks, such as ensuring license agreement signing, reporting
continuous integration failures, reviewing code and pull requests, and assigning reviewers (RQ1).
When we quantitatively compared pull requests characteristics before and after bot adoption (RQ2),
we could not find consistent statistically significant results across the analyzed projects. The only
noticeable difference regards the number of comments per pull request, which increased for some
projects and decreased for others. In our surveys (RQ3), most contributors and integrators see
relevance of bot support for explaining project guidelines, decreasing code review effort and time
to merge or reject pull requests, automate continuous integration tasks, and deal with license issues

3https://github.com/mairieli/CSCW-2018

Proceedings of the ACM on Human-Computer Interaction, Vol. 2, No. CSCW, Article 182. Publication date: November 2018.

https://github.com/mairieli/CSCW-2018

The Power of Bots: Understanding Bots in OSS Projects 182:15

for contributors. However, they manifested diverging opinions regarding the relevance of bots for
improving social interaction in the project.
Contributors and integrators reported 16 challenges for using bots in OSS projects and 24

new features or improvements. In general, little support is provided for contributors’ work and
newcomers. While contributors want smarter bots, integrators want tailored bot configuration. As
we discuss in the paper, the literature of the education, consumer service, software engineering,
and HCI fields can help GitHub bot designers to enhance existing bots to achieve a higher level of
partnership with contributors and integrators.

ACKNOWLEDGEMENTS
We would like to wholeheartedly thank each and every the developers who participated in our
research. We also thank the reviewers for their valuable comments that made this paper stronger.
This work is supported by the CNPq (Grant #430642/2016-4); FAPESP (Grant #2015/24527-3) and
Northern Arizona University.

REFERENCES
[1] Norah Abokhodair, Daisy Yoo, and David W. McDonald. 2015. Dissecting a Social Botnet: Growth, Content and

Influence in Twitter. In Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work & Social
Computing (CSCW ’15). ACM, New York, NY, USA, 839–851. https://doi.org/10.1145/2675133.2675208

[2] Karan Aggarwal, Finbarr Timbers, Tanner Rutgers, Abram Hindle, Eleni Stroulia, and Russell Greiner. 2016. Detecting
duplicate bug reports with software engineering domain knowledge. Journal of Software: Evolution and Process 29, 3
(2016), e1821. https://doi.org/10.1002/smr.1821 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.1821

[3] John Anvik, Lyndon Hiew, and Gail C. Murphy. 2006. Who Should Fix This Bug?. In Proceedings of the 28th International
Conference on Software Engineering (ICSE ’06). ACM, New York, NY, USA, 361–370. https://doi.org/10.1145/1134285.
1134336

[4] Luciana Benotti, María Cecilia Martínez, and Fernando Schapachnik. 2014. Engaging High School Students Using
Chatbots. In Proceedings of the 2014 Conference on Innovation & Technology in Computer Science Education (ITiCSE
’14). ACM, New York, NY, USA, 63–68. https://doi.org/10.1145/2591708.2591728

[5] Ivan Beschastnikh, Mircea F. Lungu, and Yanyan Zhuang. 2017. Accelerating Software Engineering Research Adoption
with Analysis Bots. In Proceedings of the 39th International Conference on Software Engineering: New Ideas and Emerging
Results Track (ICSE-NIER ’17). IEEE Press, Piscataway, NJ, USA, 35–38. https://doi.org/10.1109/ICSE-NIER.2017.17

[6] Patrick Bii. 2013. Chatbot technology: A possible means of unlocking student potential to learn how to learn. Educational
Research 4, 2 (2013), 218–221.

[7] Hudson Borges, Andre Hora, and Marco Tulio Valente. 2016. Understanding the Factors That Impact the Popularity
of GitHub Repositories. In 2016 IEEE International Conference on Software Maintenance and Evolution (ICSME). IEEE,
Washington, DC, USA, 334–344. https://doi.org/10.1109/ICSME.2016.31

[8] Nick C. Bradley, Thomas Fritz, and Reid Holmes. 2018. Context-aware Conversational Developer Assistants. In
Proceedings of the 40th International Conference on Software Engineering (ICSE ’18). ACM, New York, NY, USA, 993–1003.
https://doi.org/10.1145/3180155.3180238

[9] Gerardo Canfora, Massimiliano di Penta, Rocco Oliveto, and Sebastiano Panichella. 2012. Who is Going to Mentor
Newcomers in Open Source Projects?. In ACM SIGSOFT 20th International Symposium on the Foundations of Software
Engineering (FSE ’12). ACM, New York, NY, USA, Article 44, 11 pages. https://doi.org/10.1145/2393596.2393647

[10] Dan Cosley, Dan Frankowski, Loren Terveen, and John Riedl. 2007. SuggestBot: Using Intelligent Task Routing to Help
People Find Work in Wikipedia. In Proceedings of the 12th International Conference on Intelligent User Interfaces (IUI
’07). ACM, New York, NY, USA, 32–41. https://doi.org/10.1145/1216295.1216309

[11] Catarina Costa, Jair Figueiredo, Leonardo Murta, and Anita Sarma. 2016. TIPMerge: Recommending Experts for
Integrating Changes Across Branches. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE 2016). ACM, New York, NY, USA, 523–534. https://doi.org/10.1145/2950290.
2950339

[12] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. 2012. Social Coding in GitHub: Transparency and
Collaboration in an Open Software Repository. In CSCW. ACM, New York, NY, USA, 1277–1286.

[13] Robert Dale. 2016. The return of the chatbots. Natural Language Engineering 22, 5 (2016), 811–817.
[14] Manoel Limeira de Lima Júnior, Daricélio Moreira Soares, Alexandre Plastino, and Leonardo Murta. 2018. Automatic

Assignment of Integrators to Pull Requests:The Importance of Selecting Appropriate Attributes. Journal of Systems

Proceedings of the ACM on Human-Computer Interaction, Vol. 2, No. CSCW, Article 182. Publication date: November 2018.

https://doi.org/10.1145/2675133.2675208
https://doi.org/10.1002/smr.1821
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.1821
https://doi.org/10.1145/1134285.1134336
https://doi.org/10.1145/1134285.1134336
https://doi.org/10.1145/2591708.2591728
https://doi.org/10.1109/ICSE-NIER.2017.17
https://doi.org/10.1109/ICSME.2016.31
https://doi.org/10.1145/3180155.3180238
https://doi.org/10.1145/2393596.2393647
https://doi.org/10.1145/1216295.1216309
https://doi.org/10.1145/2950290.2950339
https://doi.org/10.1145/2950290.2950339

182:16 Wessel et al.

and Software 144 (2018), 181 – 196. https://doi.org/10.1016/j.jss.2018.05.065
[15] Luiz Felipe Dias, Igor Steinmacher, Gustavo Pinto, Daniel Alencar da Costa, and Marco Aurélio Gerosa. 2016. How

Does the Shift to GitHub Impact Project Collaboration?. In 2016 IEEE International Conference on Software Maintenance
and Evolution, ICSME 2016, Raleigh, NC, USA, October 2-7, 2016. IEEE Computer Society, Los Alamitos, California, USA,
473–477.

[16] Umer Farooq and Jonathan Grudin. 2016. Human-computer Integration. interactions 23, 6 (Oct. 2016), 26–32. https:
//doi.org/10.1145/3001896

[17] Luke K Fryer, Mary Ainley, Andrew Thompson, Aaron Gibson, and Zelinda Sherlock. 2017. Stimulating and sustaining
interest in a language course: An experimental comparison of Chatbot and Human task partners. Computers in Human
Behavior 75 (2017), 461 – 468. https://doi.org/10.1016/j.chb.2017.05.045

[18] R. Stuart Geiger. 2013. Are Computers Merely "Supporting" Cooperative Work: Towards an Ethnography of Bot
Development. In Proceedings of the 2013 Conference on Computer Supported Cooperative Work Companion (CSCW ’13).
ACM, New York, NY, USA, 51–56. https://doi.org/10.1145/2441955.2441970

[19] R. Stuart Geiger and Aaron Halfaker. 2017. Operationalizing Conflict and Cooperation Between Automated Software
Agents in Wikipedia: A Replication and Expansion of ’Even Good Bots Fight’. Proc. ACM Hum.-Comput. Interact. 1,
CSCW, Article 49 (Dec. 2017), 33 pages. https://doi.org/10.1145/3134684

[20] Supratip Ghose and Jagat Joyti Barua. 2013. Toward the implementation of a topic specific dialogue based natural
language chatbot as an undergraduate advisor. In Informatics, Electronics & Vision (ICIEV), 2013 International Conference
on. IEEE, Washington, DC,USA, 1–5.

[21] Ulrich Gnewuch, Stefan Morana, and Alexander Maedche. 2017. Towards Designing Cooperative and Social Conversa-
tional Agents for Customer Service. In International Conference on Information Systems (ICIS). AIS.

[22] Georgios Gousios, Martin Pinzger, and Arie van Deursen. 2014. An Exploratory Study of the Pull-based Software
Development Model. In Proceedings of the 36th International Conference on Software Engineering (ICSE 2014). ACM,
New York, NY, USA, 345–355. https://doi.org/10.1145/2568225.2568260

[23] Georgios Gousios, Margaret-Anne Storey, and Alberto Bacchelli. 2016. Work Practices and Challenges in Pull-based
Development: The Contributor’s Perspective. In Proceedings of the 38th International Conference on Software Engineering
(ICSE ’16). ACM, New York, NY, USA, 285–296. https://doi.org/10.1145/2884781.2884826

[24] Georgios Gousios, Andy Zaidman, Margaret-Anne Storey, and Arie van Deursen. 2015. Work Practices and Challenges
in Pull-based Development: The Integrator’s Perspective. In Proceedings of the 37th International Conference on Software
Engineering - Volume 1 (ICSE ’15). IEEE Press, Piscataway, NJ, USA, 358–368. http://dl.acm.org/citation.cfm?id=2818754.
2818800

[25] Mohit Jain, Ramachandra Kota, Pratyush Kumar, and Shwetak N. Patel. 2018. Convey: Exploring the Use of a Context
View for Chatbots. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (CHI ’18). ACM,
New York, NY, USA, Article 468, 6 pages. https://doi.org/10.1145/3173574.3174042

[26] David Kavaler, Sasha Sirovica, Vincent Hellendoorn, Raul Aranovich, and Vladimir Filkov. 2017. Perceived Language
Complexity in GitHub Issue Discussions and Their Effect on Issue Resolution. In Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE 2017). IEEE Press, Piscataway, NJ, USA, 72–83.
http://dl.acm.org/citation.cfm?id=3155562.3155576

[27] Alice Kerry, Richard Ellis, and Susan Bull. 2009. Conversational agents in E-Learning. In Applications and Innovations
in Intelligent Systems XVI. Springer, London, UK, 169–182.

[28] Hyekyung Kim, Miguel E Ruiz, and Lorna Peterson. 2007. Usability and effectiveness evaluation of a course-advising
chat bot. Proceedings of the American Society for Information Science and Technology 44, 1 (2007), 1–5.

[29] Barbara A. Kitchenham, Shari Lawrence Pfleeger, Lesley M. Pickard, Peter W. Jones, David C. Hoaglin, Khaled
El Emam, and Jarrett Rosenberg. 2002. Preliminary guidelines for empirical research in software engineering. Software
Engineering, IEEE Transactions on 28, 8 (Aug 2002), 721–734. https://doi.org/10.1109/TSE.2002.1027796

[30] Annabel M Latham, Keeley A Crockett, David AMcLean, Bruce Edmonds, and Karen O’Shea. 2010. Oscar: An intelligent
conversational agent tutor to estimate learning styles. In International Conference on Fuzzy Systems. IEEE, Washington,
DC, USA, 1–8.

[31] Carlene Lebeuf, Margaret-Anne Storey, and Alexey Zagalsky. 2018. Software Bots. IEEE Software 35, 1 (2018), 18–23.
[32] Carlene Lebeuf, Margaret-Anne D. Storey, and Alexey Zagalsky. 2017. How Software Developers Mitigate Collaboration

Friction with Chatbots. CoRR abs/1702.07011 (2017). arXiv:1702.07011 http://arxiv.org/abs/1702.07011
[33] Minha Lee, Lily Frank, Femke Beute, Yvonne de Kort, and Wijnand IJsselsteijn. 2017. Bots mind the social-technical

gap. In Proceedings of 15th European Conference on Computer-Supported Cooperative Work-Exploratory Papers. EUSSET),
35–54. https://hdl.handle.net/20.500.12015/2929

[34] Bin Lin, Alexey Zagalsky, Margaret;Anne Storey, and Alexander Serebrenik. 2016. Why Developers Are Slacking Off:
Understanding How Software Teams Use Slack. In Proceedings of the 19th ACM Conference on Computer Supported
Cooperative Work and Social Computing Companion (CSCW ’16 Companion). ACM, New York, NY, USA, 333–336.

Proceedings of the ACM on Human-Computer Interaction, Vol. 2, No. CSCW, Article 182. Publication date: November 2018.

https://doi.org/10.1016/j.jss.2018.05.065
https://doi.org/10.1145/3001896
https://doi.org/10.1145/3001896
https://doi.org/10.1016/j.chb.2017.05.045
https://doi.org/10.1145/2441955.2441970
https://doi.org/10.1145/3134684
https://doi.org/10.1145/2568225.2568260
https://doi.org/10.1145/2884781.2884826
http://dl.acm.org/citation.cfm?id=2818754.2818800
http://dl.acm.org/citation.cfm?id=2818754.2818800
https://doi.org/10.1145/3173574.3174042
http://dl.acm.org/citation.cfm?id=3155562.3155576
https://doi.org/10.1109/TSE.2002.1027796
http://arxiv.org/abs/1702.07011
http://arxiv.org/abs/1702.07011
https://hdl.handle.net/20.500.12015/2929

The Power of Bots: Understanding Bots in OSS Projects 182:17

https://doi.org/10.1145/2818052.2869117
[35] Daniel Mäurer and Karsten Weihe. 2015. Benjamin Franklin’s decision method is acceptable and helpful with a

conversational agent. In Intelligent Interactive Multimedia Systems and Services. Springer, Cham, Switzerland, 109–120.
[36] Mohammed Slim Ben Mimoun, Ingrid Poncin, and Marion Garnier. 2017. Animated conversational agents and e-

consumer productivity: The roles of agents and individual characteristics. Information & Management 54, 5 (2017),
545–559.

[37] Samim Mirhosseini and Chris Parnin. 2017. Can Automated Pull Requests Encourage Software Developers to Upgrade
Out-of-date Dependencies?. In Proceedings of the 32nd IEEE/ACM International Conference on Automated Software
Engineering (ASE 2017). IEEE Press, Piscataway, NJ, USA, 84–94. http://dl.acm.org/citation.cfm?id=3155562.3155577

[38] Kazuaki Nakamura, Koh Kakusho, Tetsuo Shoji, and Michihiko Minoh. 2012. Investigation of a Method to Esti-
mate Learners’ Interest Level for Agent-based Conversational e-Learning. In International Conference on Information
Processing and Management of Uncertainty in Knowledge-Based Systems. Springer, Berlin, Heidelberg, 425–433.

[39] Elahe Paikari and André van der Hoek. 2018. A Framework for Understanding Chatbots and Their Future. In Proceedings
of the 11th International Workshop on Cooperative and Human Aspects of Software Engineering (CHASE ’18). ACM, New
York, NY, USA, 13–16. https://doi.org/10.1145/3195836.3195859

[40] Juanan Pereira. 2016. Leveraging Chatbots to Improve Self-guided Learning Through Conversational Quizzes. In
Proceedings of the Fourth International Conference on Technological Ecosystems for Enhancing Multiculturality (TEEM
’16). ACM, New York, NY, USA, 911–918. https://doi.org/10.1145/3012430.3012625

[41] Sara Pérez-Soler, Esther Guerra, Juan de Lara, and Francisco Jurado. 2017. The Rise of the (Modelling) Bots: Towards
Assisted Modelling via Social Networks. In Proceedings of the 32nd IEEE/ACM International Conference on Automated
Software Engineering (ASE 2017). IEEE Press, Piscataway, NJ, USA, 723–728. http://dl.acm.org/citation.cfm?id=3155562.
3155652

[42] Gustavo Pinto, Igor Steinmacher, and Marco A. Gerosa. 2016. More Common Than You Think: An In-depth Study of
Casual Contributors. In 2016 IEEE 23rd International Conference on Software Analysis, Evolution, and Reengineering
(SANER), Vol. 1. IEEE Computer Society, Los Alamitos, CA, USA, 112–123. https://doi.org/10.1109/SANER.2016.68

[43] Luca Ponzanelli, Alberto Bacchelli, and Michele Lanza. 2013. Seahawk: Stack Overflow in the IDE. In Proceedings
of the 2013 International Conference on Software Engineering (ICSE ’13). IEEE Press, Piscataway, NJ, USA, 1295–1298.
http://dl.acm.org/citation.cfm?id=2486788.2486988

[44] MohammadMasudur Rahman, Chanchal K. Roy, and Jason A. Collins. 2016. CoRReCT: Code Reviewer Recommendation
in GitHub Based on Cross-project and Technology Experience. In 38th International Conference on Software Engineering
Companion (ICSE ’16). ACM, New York, NY, USA, 222–231. https://doi.org/10.1145/2889160.2889244

[45] Claudia Roda, Albert Angehrn, Thierry Nabeth, and Liana Razmerita. 2003. Using conversational agents to support
the adoption of knowledge sharing practices. Interacting with Computers 15, 1 (2003), 57–89.

[46] Jeanine Romano, Jeffrey D. Kromrey, Jesse Coraggio, and Jeff Skowronek. 2006. Appropriate statistics for ordinal level
data: Should we really be using t-test and Cohen’s d for evaluating group differences on the NSSE and other surveys?.
In Annual Meeting of the Florida Association of Institutional Research. 1–3.

[47] Saiph Savage, Andres Monroy-Hernandez, and Tobias Höllerer. 2016. Botivist: Calling volunteers to action using
online bots. In Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work & Social Computing.
ACM, New York, NY, USA, 813–822.

[48] Edward Smith, Robert Loftin, Emerson Murphy-Hill, Christian Bird, and Thomas Zimmermann. 2013. Improving
developer participation rates in surveys. In 6th International Workshop on Cooperative and Human Aspects of Software
Engineering (CHASE). IEEE Computer Science, Los Alamitos, CA, USA, 89–92.

[49] Nick Statt. 2016. Why Google’s fancy new AI assistant is just called ’Google’. Retrieved March 21, 2017 from
https://www.theverge.com/2016/5/20/11721278/google-ai-assistant-name-vs-alexa-siri. The Verge. Archived from the
original on March 21, 2017.

[50] Igor Steinmacher, Tayana Conte, Marco Aurélio Gerosa, and David F. Redmiles. 2015. Social Barriers Faced by
Newcomers Placing Their First Contribution in Open Source Software Projects. In 18th ACM Conference on Computer
Supported Cooperative Work & Social Computing (CSCW ’15). ACM, New York, NY, USA, 1–13.

[51] Igor Steinmacher, Tayana Uchoa Conte, Christoph Treude, and Marco Aurélio Gerosa. 2016. Overcoming Open Source
Project Entry Barriers with a Portal for Newcomers. In Proceedings of the 38th International Conference on Software
Engineering (ICSE ’16). ACM, New York, NY, USA, 273–284. https://doi.org/10.1145/2884781.2884806

[52] Igor Steinmacher, Gustavo Pinto, Igor Scaliante Wiese, and Marco A. Gerosa. 2018. Almost There: A Study on
Quasi-contributors in Open Source Software Projects. In Proceedings of the 40th International Conference on Software
Engineering (ICSE ’18). ACM, New York, NY, USA, 256–266. https://doi.org/10.1145/3180155.3180208

[53] Igor Steinmacher, Marco Aurélio Graciotto Silva, Marco Aurélio Gerosa, and David F. Redmiles. 2015. A systematic
literature review on the barriers faced by newcomers to open source software projects. Information and Software
Technology 59 (March 2015), 67–85. https://doi.org/10.1016/j.infsof.2014.11.001

Proceedings of the ACM on Human-Computer Interaction, Vol. 2, No. CSCW, Article 182. Publication date: November 2018.

https://doi.org/10.1145/2818052.2869117
http://dl.acm.org/citation.cfm?id=3155562.3155577
https://doi.org/10.1145/3195836.3195859
https://doi.org/10.1145/3012430.3012625
http://dl.acm.org/citation.cfm?id=3155562.3155652
http://dl.acm.org/citation.cfm?id=3155562.3155652
https://doi.org/10.1109/SANER.2016.68
http://dl.acm.org/citation.cfm?id=2486788.2486988
https://doi.org/10.1145/2889160.2889244
https://doi.org/10.1145/2884781.2884806
https://doi.org/10.1145/3180155.3180208
https://doi.org/10.1016/j.infsof.2014.11.001

182:18 Wessel et al.

[54] Igor Steinmacher, Christoph Treude, and Marco Gerosa. 2018. Let me in: Guidelines for the Successful Onboarding of
Newcomers to Open Source Projects. IEEE Software Early Access (2018), 1–1. https://doi.org/10.1109/MS.2018.110162131

[55] Margaret-Anne Storey and Alexey Zagalsky. 2016. Disrupting Developer Productivity One Bot at a Time. In Proceedings
of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering (FSE 2016). ACM, New
York, NY, USA, 928–931. https://doi.org/10.1145/2950290.2983989

[56] Silvia Tamayo-Moreno and Diana Pérez-Marín. 2017. Designing and Evaluating Pedagogic Conversational Agents to
Teach Children. World Academy of Science, Engineering and Technology, International Journal of Social, Behavioral,
Educational, Economic, Business and Industrial Engineering 11, 3 (2017), 491–496.

[57] Stergios Tegos and Stavros Demetriadis. 2017. Conversational agents improve peer learning through building on prior
knowledge. Educational Technology & Society 20, 1 (2017), 99–111.

[58] N T Thomas. 2016. An e-business chatbot using AIML and LSA. In Advances in Computing, Communications and
Informatics (ICACCI), 2016 International Conference on. IEEE, Piscataway, NJ, 2740–2742.

[59] Christoph Treude and Martin P. Robillard. 2016. Augmenting API Documentation with Insights from Stack Overflow.
In Proceedings of the 38th International Conference on Software Engineering (ICSE ’16). ACM, New York, NY, USA,
392–403. https://doi.org/10.1145/2884781.2884800

[60] Jason Tsay, Laura Dabbish, and James Herbsleb. 2014. Influence of Social and Technical Factors for Evaluating
Contribution in GitHub. In Proceedings of the 36th International Conference on Software Engineering (ICSE 2014). ACM,
New York, NY, USA, 356–366. https://doi.org/10.1145/2568225.2568315

[61] Jason Tsay, Laura Dabbish, and James Herbsleb. 2014. Let’s Talk About It: Evaluating Contributions Through Discussion
in GitHub. In Proceedings of the 22Nd ACM SIGSOFT International Symposium on Foundations of Software Engineering
(FSE 2014). ACM, New York, NY, USA, 144–154. https://doi.org/10.1145/2635868.2635882

[62] Alan M Turing. 1950. Computing machinery and intelligence. Mind 59, 236 (1950), 433–460.
[63] Simon Urli, Zhongxing Yu, Lionel Seinturier, and Martin Monperrus. 2018. How to Design a Program Repair Bot?:

Insights from the Repairnator Project. In Proceedings of the 40th International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP ’18). ACM, New York, NY, USA, 95–104. https://doi.org/10.1145/3183519.
3183540

[64] Francisco A. M. Valério, Tatiane G. Guimarães, Raquel O. Prates, and Heloisa Candello. 2017. Here’s What I Can Do:
Chatbots’ Strategies to Convey Their Features to Users. In Proceedings of the XVI Brazilian Symposium on Human
Factors in Computing Systems (IHC 2017). ACM, New York, NY, USA, Article 28, 10 pages. https://doi.org/10.1145/
3160504.3160544

[65] Alessandro Vinciarelli, Anna Esposito, Elisabeth André, Francesca Bonin, Mohamed Chetouani, Jeffrey F Cohn, Marco
Cristani, Ferdinand Fuhrmann, Elmer Gilmartin, Zakia Hammal, et al. 2015. Open challenges in modelling, analysis
and synthesis of human behaviour in human–human and human–machine interactions. Cognitive Computation 7, 4
(2015), 397–413.

[66] Jianguo Wang and Anita Sarma. 2011. Which bug should I fix: helping new developers onboard a new project. In 4th
International Workshop on Cooperative and Human Aspects of Software Engineering (CHASE ’11). ACM, New York, NY,
USA, 76–79.

[67] Daniel Wilks. 2011. Statistical Methods in the Atmospheric Sciences. Academic Press.
[68] Norman Winarsky, Bill Mark, and Henry Kressel. 2012. The Development of Siri and the SRI Venture Creation Process.

Technical Report. SRI International, Menlo Park, USA.
[69] Vincent Wolff-Marting, Christoph Hannebauer, and Volker Gruhn. 2013. Patterns for tearing down contribution

barriers to FLOSS projects. In 12th International Conference on Intelligent Software Methodologies, Tools and Techniques
(SoMeT ’13). IEEE, Piscataway, NJ, USA, 9–14. https://doi.org/10.1109/SoMeT.2013.6645669

[70] Bin Xu, Tina Chien-Wen Yuan, Susan R. Fussell, and Dan Cosley. 2014. SoBot: Facilitating Conversation Using
Social Media Data and a Social Agent. In Proceedings of the Companion Publication of the 17th ACM Conference on
Computer Supported Cooperative Work & Social Computing (CSCW Companion ’14). ACM, New York, NY, USA,
41–44. https://doi.org/10.1145/2556420.2556789

[71] Yue Yu, Huaimin Wang, Vladimir Filkov, Premkumar Devanbu, and Bogdan Vasilescu. 2015. Wait for It: Determinants
of Pull Request Evaluation Latency on GitHub. In Proceedings of the 12th Working Conference on Mining Software
Repositories (MSR ’15). IEEE Press, Piscataway, NJ, USA, 367–371. http://dl.acm.org/citation.cfm?id=2820518.2820564

[72] Yue Yu, Huaimin Wang, Gang Yin, and Tao Wang. 2016. Reviewer recommendation for pull-requests in GitHub:
What can we learn from code review and bug assignment? Information and Software Technology 74 (2016), 204 – 218.
https://doi.org/10.1016/j.infsof.2016.01.004

[73] Alexey Zagalsky, Ohad Barzilay, and Amiram Yehudai. 2012. Example Overflow: Using Social Media for Code Recom-
mendation. In Proceedings of the Third International Workshop on Recommendation Systems for Software Engineering
(RSSE ’12). IEEE Press, Piscataway, NJ, USA, 38–42. http://dl.acm.org/citation.cfm?id=2666719.2666728

Proceedings of the ACM on Human-Computer Interaction, Vol. 2, No. CSCW, Article 182. Publication date: November 2018.

https://doi.org/10.1109/MS.2018.110162131
https://doi.org/10.1145/2950290.2983989
https://doi.org/10.1145/2884781.2884800
https://doi.org/10.1145/2568225.2568315
https://doi.org/10.1145/2635868.2635882
https://doi.org/10.1145/3183519.3183540
https://doi.org/10.1145/3183519.3183540
https://doi.org/10.1145/3160504.3160544
https://doi.org/10.1145/3160504.3160544
https://doi.org/10.1109/SoMeT.2013.6645669
https://doi.org/10.1145/2556420.2556789
http://dl.acm.org/citation.cfm?id=2820518.2820564
https://doi.org/10.1016/j.infsof.2016.01.004
http://dl.acm.org/citation.cfm?id=2666719.2666728

The Power of Bots: Understanding Bots in OSS Projects 182:19

[74] Jie Zou, Ling Xu, Mengning Yang, Meng Yan, Dan Yang, and Xiaohong Zhang. 2016. Duplication Detection for Software
Bug Reports based on Topic Model. In 9th International Conference on Service Science (ICSS 2016). IEEE Computer
Society, Piscataway, NJ, USA, 60–65. https://doi.org/10.1109/ICSS.2016.16

[75] Victor W Zue and James R Glass. 2000. Conversational interfaces: Advances and challenges. Proc. IEEE 88, 8 (2000),
1166–1180.

Proceedings of the ACM on Human-Computer Interaction, Vol. 2, No. CSCW, Article 182. Publication date: November 2018.

https://doi.org/10.1109/ICSS.2016.16

	Abstract
	1 Introduction
	2 Background
	3 Method
	3.1 Selecting OSS Projects
	3.2 Understanding the developers' perspective
	3.3 Data analysis

	4 Results
	4.1 RQ1. How common are bots in GitHub projects?
	4.2 RQ2. How do the characteristics of pull requests compare before and after the bot adoption?
	4.3 RQ3. How do contributors and integrators perceive the relevance of bot support during the pull request process?

	5 Discussion
	6 Threats to Validity
	7 Conclusion
	References

