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Abstract Labeling issues with the skills required to complete them can help
contributors to choose tasks in Open Source Software projects. However, manu-
ally labeling issues is time-consuming and error-prone, and current automated
approaches are mostly limited to classifying issues as bugs/non-bugs. We in-
vestigate the feasibility and relevance of automatically labeling issues with
what we call “API-domains,” which are high-level categories of APIs. There-
fore, we posit that the APIs used in the source code affected by an issue can
be a proxy for the type of skills (e.g., DB, security, UI) needed to work on
the issue. We ran a user study (n=74) to assess API-domain labels’ relevancy
to potential contributors, leveraged the issues’ descriptions and the project
history to build prediction models, and validated the predictions with con-
tributors (n=20) of the projects. Our results show that (i) newcomers to the
project consider API-domain labels useful in choosing tasks, (ii) labels can be
predicted with a precision of 84% and a recall of 78.6% on average, (iii) the
results of the predictions reached up to 71.3% in precision and 52.5% in recall
when training with a project and testing in another (transfer learning), and
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(iv) project contributors consider most of the predictions helpful in identifying
needed skills. These findings suggest our approach can be applied in practice
to automatically label issues, assisting developers in finding tasks that better
match their skills.

Keywords API identification · Labelling · Tagging · Skills · Multi-Label
Classification · Mining Software Repositories

1 Introduction

Choosing a task to contribute to in Open Source Software (OSS) projects
can be challenging [1, 2, 3, 4, 5]. Open tasks are publically reported in issue
trackers, but since issues vary in complexity and required skills, contributors
may find it difficult to select an appropriate task to undertake, especially when
the contributors are new in the projects [6, 7, 8, 9]. Adding labels to the issues
(a.k.a. “tasks,” “tickets,” and “bug reports”) is an effective way to help new
contributors choose where to focus their efforts [10]. The labeling strategy
supports a variety of contributors, including newcomers (new contributors),
frequent contributors, and maintainers, as they have similar perceptions of the
importance of this strategy [11]. Developers are newcomers each time they start
a new project, no matter their previous experience. Nevertheless, community
managers and project maintainers find manually labeling issues challenging
and time-consuming [12].

We posit that the underlying APIs (the libraries required and imported
into the source code) can be parsed to indicate skills required to work on
an issue. APIs are defined as “a set of functions and procedures that enable
the creation of applications that access the resources or data of an operating
system, application or other services” [13]. If the contributors know what types
of APIs are used in the code to solve the issue, they could choose tasks that
better match their skills or involve skills they want to learn. We leverage the
idea that APIs encapsulate modules with specific purposes (e.g., cryptography,
database access, logging) and abstract the details from the implementation.
In this study, we focus on API-domain labels: high-level labels designating
categories of APIs such as “UI,” “Security,” and “Test,” which may relate to
skills needed to work on the issues.

This paper extends our prior work [14], in which we conducted a case study
with a single project to investigate the feasibility of automatically labeling
issues with API-domain labels. After running the first predictions with the
case study, we observed that the number of dataset rows dropped significantly
because of the lack of information about linked issues and PRs. With this in
mind and to improve generalization, we looked for feasible ways to increase
the datasets when a project is seriously affected by the dataset size after
discarding issues not linked with a PR. In addition, it is sometimes impossible
to access the source due to confidentiality in industry projects. Pursuing this
reasoning, we sought ways to keep predicting the API-domain labels even when
no training data is available by transferring the learning. Therefore, we believe



Tag that issue: Applying API-domain labels in issue tracking systems 3

the API-domain labels should be even more helpful if they can be applied in
many open-source projects or industry projects despite their source code’s
dataset size or availability. We extend the work by (1) expanding our study
to five projects with diverse programming languages, vocabularies (natural
languages), and issue track systems (ITS), (2) adding the BERT technique to
our approach, (3) extending the qualitative analysis, (4) exploring the ability
to transfer learning across projects, and (5) evaluating the API-domain labels
with developers who solved the issues.

We answer the following research questions:

RQ.1: How relevant are the API-domain labels to new contributors?
RQ.2: To what extent can we automatically attribute API-domain labels
to issues?
RQ.2.1: To what extent can we automatically attribute API-domain la-
bels to issues using data from the project?
RQ.2.2: To what extent can we automatically attribute API-domain la-
bels to issues using data from other projects?
RQ.2.3: To what extent can we automatically attribute API-domain la-
bels to issues using transfer learning?
RQ.3: How well do the API-domain labels match the skills needed to
solve an issue?

This paper studies the relevance of this labeling strategy to new contribu-
tors (RQ.1). We created models and evaluated their performance. Usually, ma-
chine learning approaches train and test data with the same project (RQ.2.1).
However, when the existing data is not enough to create a prediction model
with the expected performance, one may consider enlarging the dataset to
include other projects (RQ.2.2). In addition, with the total absence of histor-
ical data for training in a target project, one can use a pre-trained dataset in
the same domain (source project) to run predictions in the target project [15]
(RQ.2.3). Therefore, we also conducted transfer learning studies. Finally, the
developers’ opinions about the predictions were studied to determine whether
the API-domain labels adequately indicate skills and help newcomers choose
their tasks (RQ.3).

Our contribution includes (1) how newcomers see the relevance of the API-
domain labels; (2) a new semi-automated API classification process; (3) a
mechanism to predict skills needed for projects coded in diverse programming
languages (C, C#, and Java), with issues in Portuguese and English; and (4)
the validation of the API-domain labels with developers.

2 Related Work

Organizing issues involve some labeling efforts. Labeling is important for de-
scribing features and making it easier and faster to understand and search
through software artifacts [11]. However, manually labeling software artifacts
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can be difficult and time-consuming. Thus, some approaches have been pro-
posed for automatically labeling software projects [16] and dependencies [17].
While these approaches demonstrate the possibility of labeling software arti-
facts, they work at a higher level of classifying the whole project. In contrast,
our approach classifies minor software artifacts (i.e., issues and APIs).

Approaches have also been proposed for labeling other software artifacts,
such as questions from Stack Overflow [18, 19, 20]. Xia et al. [18] recommend
tags for questions based on the similarity with previous questions. Those ap-
proaches are restricted to using only the existing tags and do not work with
issue-tracking systems or APIs. Uddin and Khomh [20] and Lin et al. [19] label
opinions from users about APIs. Despite their focus on APIs, their goal is to
support the developers’ decisions to adopt a new API. In this work, we have
the opposite goal. Given that a project already has APIs in different domains,
our goal is to enable developers to find tasks that include APIs with which
they are more familiar.

While many approaches are designed to label issues, most of them only try
to distinguish bug reports from non-bug reports [21, 22, 23, 24, 25, 26]. Few
approaches can classify according to other labels [27, 28, 29]. Among them,
Izadi et al. [28] and Wang et al. [29] use the text classification algorithm BERT
[30] for multiple labels, which we also use. Despite their ability to classify into
distinct labels, such approaches only use pre-existing labels for classification.
Instead of using predefined labels extracted from the existing issues or provided
by default on GitHub, our approach define labels based on API domains. This
kind of labeling helps to guide new contributors toward what to contribute
[31, 10], which can be a daunting task without guidance [2].

With a similar goal to support new contributors, social coding platforms
like GitHub1 encourage projects to label issues2 that are easy for new contrib-
utors, which is done by several communities (e.g., LibreOffice,3 KDE,4, and
Mozilla5). However, community managers argue that labeling issues manually
is difficult and time-consuming [12]. For that reason, Huang et al. [32] proposes
an approach for labeling good first issues. While this approach indicates easy
issues for new contributors, it is as limited in the outcome as the approaches
that only classify issues as bugs. In contrast, by labeling issues with domains of
the APIs, our approach can support new contributors of different skill levels.

3 Method Overview

This section presents an overview of how we answered the research questions.
RQ.1: How relevant are the API-domain labels to new contributors? In

this RQ (Section 4), we evaluate the manually curated labels with potential

1 http://bit.ly/NewToOSS
2 In this study, the words “tasks” and “issues” are used interchangeably.
3 https://wiki.documentfoundation.org/Development/EasyHacks
4 https://community.kde.org/KDE/Junior_Jobs
5 https://wiki.mozilla.org/Good_first_bug

http://bit.ly/NewToOSS
https://wiki.documentfoundation.org/Development/EasyHacks
https://community.kde.org/KDE/Junior_Jobs
https://wiki.mozilla.org/Good_first_bug
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Fig. 1 Research method overview

new contributors. We divided the participants into two groups. After mimick-
ing the project’s issues pages for 22 issues, we added API-domain labels to the
issues for the treatment group and kept the page as-is for the control group.
We asked the participants to select issues to which to contribute and fill out
a survey about their selection process (Figure 1 - RQ1).

RQ.2: To what extent can we automatically attribute API-domain labels
to issues? In this RQ (Section 5), we investigate the feasibility of predicting
API-domain labels. We mined software repositories to collect issues, their as-
sociated pull requests, and the APIs used in the source code. Subsequently,
we manually classified the APIs into API domains to build machine learning
classifiers (Figure 1 - RQ2). To answer the sub-questions, we predicted the
API-domain labels using each project dataset separately (RQ.2.1), a dataset
with all projects merged (RQ.2.2), and different source and target datasets
(RQ.2.3).

RQ.3: How well do the API-domain labels match the skills needed to solve
the issue? Finally, In this RQ (Section 6), we asked contributors to provide
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feedback on the usefulness of the labels that we predicted in identifying skills
needed to complete the issue (Figure 1 - RQ3).

To foster reproducibility, we provide publicly available supplementary ma-
terial6 containing the raw data, the Jupyter notebook scripts, and the anonymized
survey data.

4 Relevance of the Labels to New Contributors (RQ1)

4.1 Method

To explore the relevancy of the API-domain labels from an outsider’s perspec-
tive, we conducted an experiment with 74 participants. We selected the JabRef
project, hosted in GitHub, as the subject of the experiment. Two authors of
this paper have already contributed to and have in-depth knowledge of the
project. Having this knowledge helped us interpret the feedback and results.
We created two versions of the JabRef issues page (with and without API-
domain labels) and divided our participants into two groups (between-subjects
design). We asked participants to choose and rank three issues to which they
would like to contribute and answer a follow-up questionnaire about what in-
formation supported their decision. The artifacts used in this phase are part
of the replication package.

4.1.1 Participants

We used convenience sampling by recruiting participants from both industry
and academia. We reached out to instructors and IT managers of our personal
and professional networks and asked them to help in inviting participants.
From industry, we recruited participants from one medium-sized IT startup
hosted in Brazil and the IT department of a large and global company. We
recruited students from multiple universities, including undergraduate and
graduate computer science students from one university in the US and two
others in Brazil as well as graduate data science students from a university
in Brazil, since they are also potential contributors to the JabRef project.
Table 1 presents the participants’ demographics. We offered an Amazon Gift
card (US$ 25.00) to incentivize participation.

We categorized the participants’ development tenure into novice and ex-
perienced coders, splitting our sample in half—below and above the average
“years as professional developer”. We also segmented the participants between
industry practitioners and students. Participants are identified by a sequential
number (column “Participant”).

The participants were randomly split into two groups: Control and Treat-
ment. Out of the 120 participants that started the questionnaire, 74 (61.7%)
finished all the steps; we only consider these participants in our analysis. We

6 https://doi.org/10.5281/zenodo.6869246

https://doi.org/10.5281/zenodo.6869246
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Table 1 Demographics Subgroups for the Experiment’s Participants

Population Quantity Percentage Tenure Quantity Percentage
Industry 41 55.5 % Expert 19 25.7 %
Student 33 44.5 % Novice 55 74.3 %

ended up with 33 and 41 participants in the Control and Treatment groups,
respectively.

4.1.2 Experiment Planning

We selected 22 existing JabRef issues and built mock GitHub pages for Control
and Treatment groups. The issues were selected from the most recent ones,
trying to maintain similar distributions of the number of API-domain labels
predicted per issue and the counts of predicted API-domain labels. The control
group mockup page had only the original labels from the JabRef issues, and
the treatment group mockup page presented the original labels in addition to
API-domain labels. These pages are available in the replication package. We
used a preliminary version of our prediction model to generate the API-domain
labels [14].

4.1.3 Questionnaire Data Collection

The questionnaire included the following questions/instructions:

– Select the three issues that you would like to work on.
– Select the information (region) from the issue page that helped you decide

which issues to select (Fig: 2).
– Why is the information you selected relevant? (open-ended question)
– Select the labels you considered relevant for choosing the three issues.
– What kind of label would you like to see in the issues? (open-ended ques-

tion)

The questionnaire also asked about participants’ experience level, experi-
ence as an OSS contributor, and expertise level in the technologies used in
JabRef.

Figure 2 shows an example of an issue details page and an issue entry on
an issue list page. After selecting the issues to contribute, the participant was
presented with this page to select what information region was relevant to
their issue selection.

4.1.4 Questionnaire Data Analysis

We split the analysis into two sets of questions.
Regions and Labels Choices Analysis. We first compared treatment

and control groups’ results to understand participants’ perceptions about what
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Fig. 2 Questionnaire question about the relevance of the page regions for task selection

information regions they considered important and the relevancy of the API-
domain labels. We used violin plots to visually compare the distributions and
measured the effect size using the Cliff’s Delta test.

Then, we analyzed the data, aggregating participants according to their
demographic information and resulting in the subgroups presented in Table 1.
We calculated the odds ratio to check how likely it would be to receive sim-
ilar responses from both groups. We used a 2x2 contingency table for each
comparison—for instance, industry practitioners vs. students and experienced
vs. novice coders. We used the following formula to calculate the odds ra-
tio [33]:



Tag that issue: Applying API-domain labels in issue tracking systems 9

OddsRatio(OR) = (a/c)
(b/d)

An odds ratio > 1 means that the first subgroup is more likely to report a
type of label, while an odds ratio less than 1 means that the second group has
greater chances (OR) [34].

Open Questions Analysis. To understand the rationale behind the label
choices, we qualitatively analyzed the answers to the open questions (“Why
was the information you selected relevant?” and “What kind of label would
you like to see in the issues?”). We selected representative quotes to illustrate
the participants’ perceptions of the labels’ relevancy.

We qualitatively analyzed the answers by inductively applying open coding
in groups, where we identified the participant’s reason for considering the
provided information as relevant and what information the participant would
like to be provided. We built post-formed codes as the analysis progressed
and associated them with respective parts of the transcribed text to code the
information relevance according to the participants’ perspectives.

Researchers met weekly to discuss the coding. We discussed the codes and
categorization until reaching a consensus about the meaning of and relation-
ships among the codes. The outcome was a set of high-level categories as
cataloged in our codebook7.

4.2 Results

Information used when selecting a task. Understanding the type of in-
formation that participants used in their decision to select an issue can help
projects better organize such information on their issue pages. Figure 3 shows
the different regions that participants found useful. In the control group, the
top two regions of interest included the title of the issue (78.8%) and the body
(75.8%), followed by the labels (54.5%). This suggests that the labels used by
the project were only marginally useful, and participants had to review the
issue details. In contrast, in the treatment group, the top three regions of inter-
est by priority were: title, label, and body 97.6%, 82.9%, 70.7%, respectively).
This shows that participants in the Treatment group found the labels more
useful than those in the control group: 82.9% usage in the treatment group
compared to 54.5% in the control group. Comparing the body and the label
regions in both groups, we found that participants from the treatment group
selected 1.6x more label regions than the control group (p<0.05).

Our qualitative analysis reveals that the labels help in selecting issues. For
instance, P2 mentioned: “labels were useful to know the problem area and after
reading the title of the issues, it was the first thing taken into consideration,
even before opening to check the details”. Participants found the labels to be
useful in identifying the specific topic of the issue, as P4 stated: “[labels are]
hints about what areas have a connection with the problem occurring”.

7 https://doi.org/10.5281/zenodo.6869246

https://doi.org/10.5281/zenodo.6869246
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Fig. 3 The region counts (normalized) of the issue’s information page selected as most
relevant by participants from treatment and control groups.

Role of the labels. We also investigated which type of labels helped the
participants in their decision-making. We divided the labels available to our
participants into three groups based on the type of information.

– Issue type (already existing in the project): This included information
about the type of the task: bug, enhancement, feature, good first issue,
and GSoC (Google Summer of Code).

– Code component (already existing in the project): This included informa-
tion about the specific code components of JabRef: entry, groups, exter-
nal.files, main table, fetcher, entry.editor, preferences, import, keywords

– API-domain (new labels): the labels generated by our classifier (IO, UI,
network, security, etc.). These labels were available only to the treatment
group.

Table 2 Label distributions among the control and treatment groups

Type of Label Control Percentage Treatment Percentage
Issue Type 145 56.4 % 168 36.8 %
Components 112 43.6 % 94 20.6 %
API Domain - - 195 42.7 %
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Table 3 Answers from different demographic subgroups regarding the API labels (API/-
Component/Issue Type)

Subgroup Comparison API % Comp or Type %
Industry API/Comp 56.0 44.0
Students API/Comp 40.0 60.0

Exp. Coders API/Comp 50.9 49.1
Novice Coders API/Comp 41.5 58.5

Industry API/issue Type 45.5 55.5
Students API/issue Type 30.6 69.4

Exp. Coders API/issue Type 43.5 56.5
Novice Coders API/issue Type 30.9 69.1

Table 2 compares the labels that participants considered relevant (Sec-
tion 4.1.3) across the treatment and control groups distributed across these
label types. In the control group, the most selected labels (56.4%) relate to the
type of issue (e.g., Bug or Enhancement). In the treatment group, however,
this number drops to 36.8%, with API-domain labels as the majority (42.7%),
followed by code component labels (20.6%). This difference in distributions
alludes to the usefulness of the API-domain labels.

To better understand the usefulness of the API-domain labels as compared
to the other types of labels, we further investigated the label choices among
the treatment group participants. Figure 4 presents two violin plots compar-
ing (a) API-domain labels against code component labels and (b) API-domain
labels against the type of issue. Wider sections of the violin plot represent a
higher probability of observations taking a given value, the thinner sections
correspond to a lower probability. The plots show that API-domain labels are
more frequently chosen (median is 5 labels) as compared to code component
labels (median is 2 labels), with a large effect size (|d| = 0.52). However, the
distribution of the issue type and API-domain labels are similar as confirmed
by negligible effect size (|d| = 0.1). These results indicate that while the type
of issue (bug fix, enhancement, suitable for a newcomer) is important, un-
derstanding the technical (API) requirements of solving the task is equally
important for developers deciding which task to select.

Finally, we analyzed whether the demographic subgroups held different
perceptions about the API-domain labels (Table 3). When comparing in-
dustry vs. students, we found participants from industry selected 1.9x (p-
value=0.001) more API-domain labels than students when we controlled by
component labels. We found the same odds when we controlled by issue type
(p-value=0.0007). When we compared experienced vs. novice coders, we did
not find statistical significance (p=0.11) when controlling by component labels.
However, we found that experienced coders selected 1.7x more API-domain la-
bels than novice coders (p-value=0.01) when we controlled by the type of the
issue.

The odds ratio analysis suggests that API-domain labels are more likely
to be perceived as relevant by practitioners and experienced developers than
by students and novice coders.
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The way contributors analyzed the issues. We used the question-
naire’s open-ended question to evaluate how subjects used the information to
decide whether the task was appropriate to them (Section 4.1.4).

Our qualitative analysis revealed a set of 22 categories of information re-
ported as relevant by contributors when they decide on a task to which to
contribute. We organized the 22 categories of information based on an ex-
isting model from literature, the 5W2H framework, as we explain below and
illustrate in Figure 5. The 5W2H framework (5-Wh and 2-How questions) is
often used for clarifying a problem, issue, error, or nonconformity, or to facil-
itate implementing effective actions. The framework was initially applied to
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the automotive and other manufacturing industries [35] and later to quality
management [36] and software engineering [37].
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Fig. 5 The information reported by contributors as relevant to choosing a task. We mapped
the categories of our participants’ definitions (rounded squares) to the 5W2H framework [37],
which organizes information for decision-making across seven questions.

Who will solve the issue? This category contains information about the
forces influencing people to choose to work on an issue. Contributors mentioned
what can influence one’s decision to select the issue. A newcomer can become
attracted to select the issue when “filtering labels to search issues that [they]
would like to contribute the most” (P34) and reading the title (P18) to see if
it “includes something that is not too wordy and if it uses words [they] could
easily understand” (P21). When opening the issue, participants also reported
the body and the comments were relevant to “gain interest on the issue”
(P4) , as a “detailed body and helpful comments from experienced people in the
project is extremely helpful to make the newcomer feeling safe to try the
issue” (P6). The contributors’ confidence to decide about an issue can increase
when they match their experience level with the indication of difficulty to
solve the issue (P8, P4) which could be shown in a label such as “easy, medium,
hard” (P4) , “good first issue” (P6), or “good challenging issue” (P7). Besides
their experience, contributors can use the required skills to work on the
issue to judge “if they have the [necessary] skill to help” (P31) or “whether
or not [are] capable of finding a solution” (P32). The required technical skills
mentioned by participants included the programming language of the code
(P21, P27, P33), the architecture layer - front-end, back-end, interface (P27,
P3, P2), APIs (P41, P42), database (P33), frameworks, and libraries (P20).
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Why is that an issue? is a category that justifies the issue as an issue.
Participants mentioned the reasoning for an issue to exist could raise interest
in new contributors, such as knowing the goal to solve and “what is the
purpose of the issue” (P44), and the benefits of solving or “why solving it
will help users” (P45). Additionally, the expected behavior of the software
can help to clarify why the reported issue is an issue in comparison to the
normal behavior of the software. Hence, the expected behavior represents a
“critical information to decide what is happening in the system and what is
expected” (P61). Indeed, one participant reported: “I would only contribute
something that I know how it works” (P22).

When was the issue solved, or when will it be solved? introduces time-
related information and constraints regarding the issue. Participants reported
they would like to know the deadline to solve the issue or the “urgency”
(P13). Participants suggested that the priority appear in a label (P17) and
be defined according to the impact that the issue has on businesses or users
(P15). Another issue related to time is the “status to check the issue’s state”
(P33), which can be open, closed, or ongoing, allowing contributors to
use a filter in the issues’ page. Since they “don’t look at closed issues much, [...]
the open flag grabs [their] attention” (P43). When a contributor is currently
working on a solution, they should have their names assigned to the issue and
include a comment with the description of an ongoing solution that
should “demonstrate the issue’s status” (P35).

What is the issue? relates to the description of the issue itself. Participants
raised the importance of clear issues’ description, including both a summa-
rized “idea of what the issue is about” (P28) and a comprehensive explanation
“to help understand what is the problem” (P45) about. When an issue provides
both levels of details, it “tells about the problem, first in a general term and
later giving [them] details about it” (P12). The issue’s type in labels “demon-
strate [...] how [the issue] is classified” (P35). The participants suggested the
issue should have “labels that inform precisely which type of issue is” (P40):
bug (P41), a new feature (P42), performance (P42), enhancement (P42), and
security. One participant (P43) emphasized that “‘all issues should have a type
so [they] can see if [their] skill set is useful” (P43).

Where is the issue? references the localization of the issue in the code or
project, guiding contributors to a start point or “where to start looking at
in the code/library to investigate the problem” (P4). The local in code or
the code block, method, or class which is causing the issue, and connected
areas. This information would “give some hints about what areas have a con-
nection with the problem occurring” (P4) and “code snippet to provide context
for wherein the program this issue was happening” (P18).

How to solve the issue? brings practical directions to guide solving the
issue. Awareness of “ previous attempts to solve [an issue]” (P30) helps
contributors with “valuable information about what has already been done and
properly documented” (P42). Contributors who are deciding about an issue
can read “ [solving] challenges” (P35) to avoid wasting time on previous
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attempts and focus their effort on new paths to achieve the solution. When
working on the issue, having steps to reproduce the error (P45) on a
controlled environment also help to solve the issue. Participants also mentioned
they would like to see “linked issues and comments to help understand the
scenario” (P33), and steps to debug to “decipher what the problems really
is” (P41).

How big is the issue? is information that can provide visibility of the
required effort for “[a contributor] to work on alone until [they] solve it”
(P7). If the issue does not have this information, the developer tries to “grasp
what’s the idea of the issue, to better measure how long it would take to solve
it” (P19).

Finally, the question “What region has this information?” identifies the
regions where the participants found the information in this study. Title ap-
peared 7 times, body 8, comments 13, labels 5, status 2, code snippet 3, and
linked issue 2.

5W2H outcomes: the analysis confirmed the relevance of the title, body,
comments, and labels and helped to create a taxonomy of what contributors
analyze when deciding whether they want to contribute to an issue. The qual-
itative code we built for this open-ended question may be explored in future
work to create ways to show the contributor such information using templates,
labels, bots, or other UI objects.

Preferred types of labels. Towards the evaluation of the labels contrib-
utors want to see in issues pages, 42 participants (out of 74) answered the open
question Q2 (“What kind of label do you want to see in the issues?”). The
type, priority to solve, and programming language “in which the code
was written in” (P21) were the three most mentioned, followed by difficulty
level, technology, and API. Some participants suggested different seman-
tics for the label Type: bug (P3, P41), improvement (P3), performance (P35,
P42), new feature (P42), or security (P36). Other participants also suggested
different semantics for difficulty level: “good first issue” (P6), “good chal-
lenging issue” (P7), or “easy, medium, hard” (P4). The semantics for each
label can be explored in future work. We present the 11 categories of sug-
gested labels that we qualitatively coded from the participants’ answers in
Table 4.

Participants prefer to see labels on priority, type, programming language,
complexity, technology, and APIs more than architecture, status, GitHub
info, database, and framework. GitHub info is general information about the
project repository (e.g., “ranking about the most commented” (P10P0) and
“branches” (P22I0)).
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Table 4 Labels desired by participants to select the issue

Group Desired Labels Participants who Mentioned
Management Type P41, P35, P42, P3, P36, P37, P38, P39, P43, P40

Management Priority P12, P13, P19, P20, P14, P15, P16, P29, P17, P18

Technical
Programming
language

P34, P33, P21, P22, P27, P23, P24, P22, P26

Management
Difficulty
level

P4, P5, P6, P7, P9, P8

Technical Technology P30, P34, P33, P32, P20, P31

Technical API P41, P42, P3, P1, P20

Technical
Architecture
layer

P2, P3, P27, P18

Management Status P28, P9, P29
Management GitHub info P10, P19
Technical Database P33
Technical Framework P20

RQ.1 Summary. Our findings suggest that labels are relevant for select-
ing an issue to work on. API-domain labels increased the perception of
the labels’ relevancy. API-domain labels are especially relevant for indus-
try and experienced coders. API is one of the issue labels users want to
see. 5W2H analysis has confirmed the relevance of labels and can guide
contributors on how to write an issue.

5 Label Predictions (RQ2)

Even with the relevance of the API-domain labels, we investigated how to
predict them automatically.

5.1 Method

To predict the API-domain labels, we employed a multi-label classification
approach. This approach is divided into three phases: phase 1 - mining the
repositories; phase 2 - parsing the source code and semi-automatically catego-
rizing the APIs with experts; and phase 3 - building the corpus and running the
classifiers (Figure 1). Additionally, we explored the influence of issue elements
(i.e., title, body, and comments) and machine learning setup (i.e., n-grams and
different algorithms) on the predictions.

In our preliminary work [14], we conducted an exploratory experiment on a
single project (JabRef). In the current study, we include four new projects. We
selected projects to increase the diversity of domains, programming languages,
and human languages (vocabularies). We sought a mix of popular open-source
(OSS) and closed-source currently active projects with a large number of issues
and pull requests. As we aimed to run surveys within the project communities,
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Table 5 Project Details. R - Number of Releases. C - Number of Contributors

Project R C Stars Forks
Closed

Pulls
Issues Domain OSS

JabRef 42 337 15.7K 1.8K 2.7K 4.1K
Articles
manager

Y

Audacity 25 154 6.9K 17.1K 1.1K 0.6K
Audio
editor

Y

PowerToys 50 262 65.5K 3.7K 3.3K 9.9K
Utilities
for Windows

Y

RTTS 121 40 N.A. N.A. N.A. N.A.
Telecommu-
nication
product

N

Cronos 123 – N.A. N.A. N.A. N.A.
Time
Tracker

N

we contacted maintainers/managers of candidate projects in advance to ex-
plain our goals and seek support in reaching contributors for the user studies.
Table 5 presents the selected projects and their characteristics.

The study can be divided into two branches of prediction: TF-IDF and
BERT. The TF-IDF predictions followed the previous study [14], employing
five algorithms (Random Forest Decision Tree Logistic Regression, MLP Clas-
sifier, and MLkNN) but were extended to more projects, ITSs, programming
languages, and vocabularies (natural languages). The BERT predictions op-
erate the same extensions but are restricted to English vocabulary. Unlike
the TF-IDF, BERT determines the meanings of words in a corpus based on
their context within a sentence. We compared BERT to the previous TF-IDF
classification pipeline within the context of the issue labeling problem.

5.1.1 Phase 1 - Mining Software Repositories

We started by gathering data from the repositories to train a machine learning
model to predict the API labels. To achieve this goal, we mined closed issues
and merged pull requests. Table 6 summarizes the projects’ characteristics and
demographics. We collected a total of 22,231 issues and 4,674 pull requests
(PR) from all projects, considering all project data until November 2021. For
the OSS projects, we used the GitHub REST API v3 to collect data such as
title, body, comments, and closure date. We also collected the name of the files
changed in the PR and the commit message associated with each commit. The
industry projects used Gerrit (RTTS - Real-Time Telecom Software) and Jira
+ MTT - Minds At Work Time Tracker (Cronos). From RTTS, we extracted
two CSVs files: one containing the “issues” (troubles in RTTS) and the second
containing the commits. The Cronos project uses a combination of Jira to track
the open issues and the software MTT, an in-house solution, to manage the
revisions and allocation time. We extracted a CSV file from Jira and a TXT
from MTT.

Next, to train the model, we kept only the data from issues linked with
merged and closed pull requests, since we needed to map issue data to source
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Table 6 Projects Mined and Issue Tracker Systems

Project
Prog
Lang

Issue
Tracker/
Vocab-
ulary

Extraction
Method

Issues/
PR

Linked
Issues
& PR

Source
Code
Files

Distinct
APIs

JabRef Java
GitHub
EN

GitHub
API V3

4,471
1,966

1,914 1,690 1,944

Audacity C++
GitHub
EN

GitHub
API V3

1,440
310

341 624 1,478

PowerToys C#
GitHub
EN

GitHub
API V3

12,571
853

1,011 794 264

RTTS Java
Gerrit
EN

Export
CSV

2,836
470

470 9,779 8,645

Cronos Java
Jira/MTT
BR

Export
CSV/TXT

913
1075

206 220 441

Total
22,231
4,674

3,942 13,107 12,772

code APIs. To find the links between pull requests and issues in open source
projects, we searched for the symbol #issue_number in the pull request title
and body and checked the URL associated with each link. We also filtered
out issues linked to pull requests without at least one source code file (e.g.,
those associated only with documentation files) since they do not provide the
model with content related to any API. Similarly, we linked projects hosted by
Gerrit and Jira/MTT, using the trouble ID and key fields (Gerrit), and for the
project managed with Jira/MTT, we linked using the change ID and revision
fields. The TXT file from MTT needed to be parsed to look for the revision
field. We discarded entries without source code or linked data. In total, 734
entries were discarded.

5.1.2 Phase 2 - API classification

Phase 2 encompasses API extraction and expert classification.

API extraction. To identify the APIs used in the source code affected
by each pull request, we built a parser to process all source files from the
projects. In total, 12,772 library declaration statements from 13,107 source
files were mapped to 185,159 possible relationships between files and APIs.
The parser looked for specific commands, i.e., import (Java), using (C#),
and include (C++). The parser identified all classes, including the complete
namespace from each import/using/include statement. We considered only the
most frequent language per project.

Then, we filtered out APIs not found in the latest version of the source
code (JabRef 5.3, Audacity 3.1.0, and PowerToys 0.49.1; RTTS and Cronos
are industry projects, and we used the last provided version) to avoid recom-
mending APIs in source code that were no longer used in the project. The
filtering process is automatic. When processing a closed pull request, the files
attached have their filenames compared with those stored in a database by
the parser. When the file name is not found in the database, the pull request
is discarded from the training set.
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Our final dataset comprises 22,231 issues, 4,674 pull requests, 13,107 files,
and 12,772 distinct APIs (Table 6).

Table 7 Labels Definition

Label Generated Definition

Application (App)
Third-party apps or plugins for specific use attached to
the System

Application Performance
Manager (APM)

Monitors performance or benchmark

Big Data
APIs that deal with storing large amount of data, with
variety of formats

Cloud APIs for software and services that run on the Internet
Computer Graphics (CG) Manipulating visual content
Data Structure Data structures patterns (e.g., collections, lists, trees)
Databases (DB) Databases or metadata
Software Development and
IT Operations (DevOps)

Libraries for version control, continuous integration and
continuous delivery

Error Handling Response and recovery procedures from error conditions
Event Handling Answers to events like listeners
Geographic Information
System (GIS)

Geographically referenced information

Input-Output (IO) Read, write data
Interpreter Compiler or interpreter features

Internationalization (i18n)
Integrate and infuse international, intercultural, and
global dimensions

Logic
Frameworks, Patterns like Commands, Controls or
architecture-oriented classes

Language (Lang) Internal language features and conversions
Logging Log registry for the app
Machine Learning (ML) ML support like build a model based on training data

Microservices/Services
Independently deployable smaller services. Interface
between two different applications so that they can
communicate with each other

Multimedia Representation of information with text, audio, video
Multi-Thread (Thread) Support for concurrent execution
Natural Language
Processing (NLP)

Process and analyze natural language data.

Network Web protocols, sockets, RMI APIs
Operating System (OS) APIs to access and manage a computer’s resources

Parser
Breaks down data into recognized pieces for further
analysis.

Search API for web searching
Security Crypto and secure protocols
Setup Internal app configurations
User Interface (UI) Defines forms, screens, visual controls
Utility (Util) Third-party libraries for general use
Test Test automation

Expert Classification. Three software engineering experts (senior devel-
opers), including one of the authors of this article, proposed the labels based
on their experience in software development, considering possible categories
generic enough to suit a wide range of APIs present in software projects. For
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example, the proposed domains contain UI, IO, Cloud, Error handling, etc.
After four rounds of discussions, the experts reached a consensus, and 31 API
domains were defined (Table 7).

API1
API2
API3
...

Split
Tokens

API
namespaces

calculate 
NLP

similarity

API-
Domains

Experts
Evaluate

List of
Namespaces

X
API-

Domains

Experts 
Pick one
Domain

Not 
Approved

approved

Fig. 6 Process for evaluating APIs by experts

After defining the 31 API domains, we started to classify the APIs semi-
automatically (Figure 6). The intuition behind the API classification method
is that libraries’ namespaces often reveal architectural information and, con-
sequently, their categories or API domains [38, 39]. To identify the possible
API domains for each API, we split all the API namespaces into tokens. For
instance the API “com.oracle.xml.util.XMLUtil” was split in “com”, “oracle”,
“xml”, “util”, and “XMLUtil”. Next, we eliminated the business domain name
extensions (e.g., “org”, “com”), country code top-level domain (“au”, “uk”,
etc.), and the project and company names (“microsoft”, “google”, “facebook”,
etc.). In the example, we kept the first token “xml”, second token “util”, and
full namespace “com.oracle.xml.util.XMLUtil.”

For each token, we identified how similar it is to the 31 proposed API
domains using an NLP similarity function. The intention is to suggest to the
experts potential fits for the APIs. We used the NLP Python package spacy
[40]. Spacy is a multi-use NLP package and can retrieve the semantic similarity
of words using word2vec. We set up the spacy package with the largest trained
model available (large full vector package, en core web lg, which includes 685k
unique vectors).

To assist the expert evaluation and reduce the search scope, we aggregated
the tokens found in namespaces. For instance, to evaluate the APIs for the
Cronos project, the experts received a list with 32 “first tokens” and a list
with 73 “second tokens” automatically aggregated using SQL commands for
each token. Finally, the experts analyzed the complete list (tokens + similarity
suggestions) to pick one suggestion or decide using their experience. The whole
process is illustrated in Figure 6 and exemplified below. Table 8 shows the
number of APIs evaluated by the experts in two rounds after the aggregations.
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Therefore, instead of classifying the 441 APIs found in Cronos source code,
they checked the NLP suggestions in the list of first and second tokens.

Table 8 Number of APIs classified per project

Project
Total
APIs

APIs
submited
to experts
1st token

APIs
submited
to experts
2nd token

APIs %
1st round

APIs %
1st + 2nd
round

Audacity 1,478 562 106 38.0% 45.1%
PowerToys 264 37 20 14.0% 21.6%

Rmca 8,645 10 95 1.7% 2.3%
Cronos 441 32 73 7.2% 23.8%
JabRef 1,692 137 45 8.0% 10.8%

Total / avg 12,520 869 339 6.9% 9.64%

The process employed three experts (one author and two senior developers)
and a card-sorting approach to manually accept or reject the suggestions for
each token in the list. Each expert picked up one of the suggestions or chose
a better API domain based on their experience. The experts could also check
the list of full namespaces if they did not agree with the NLP suggestions.
For example, considering the namespace “com.oracle.xml.util.XMLUtil:” for
the first token, “xml”, the similarity function suggested possible API-domain
labels and a similarity value: Input and Output: 0.7, Error Handling: 0.69,
Parser: 0.57. For the token “util”, it suggested: Utility: 0.9, Data Structure:
0.49. Therefore, the namespace “com.oracle.xml.util.XMLUtil” was classified
as “Utility.” The majority of the APIs were classified using the first or second
token. In a few cases (< 10%), the experts had to classify the full names-
pace. After classifying all the tokens, the experts conducted a second round to
achieve consensus (∼16 hours for all projects).

The project in Portuguese followed the same expert classification process
employed in English projects. Indeed, the libraries declared in the Cronos
project source code are written using English words and therefore did not
harm the NLP categorization.

We used these 31 categories (API-domains labels) for the 22,231 issues
previously collected based on the presence of the corresponding APIs in the
changed files. We used this annotated set to build our training and test sets
for the multi-label classification models.

5.1.3 Phase 3 - Building the Multi-label Classifiers

Since solving an issue may require multiple types of APIs, we applied a multi-
label classification approach, which has been used in software engineering for
purposes such as classifying questions in Stack Overflow (e.g., [18]) and de-
tecting types of failures (e.g., [41]) and code smells (e.g., [42]). To build the
classifiers, we first needed to build the corpus and then run and evaluate the
classifiers.
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Corpus construction. The corpus construction comprised pre-processing,
cleaning, diagnostics, and splitting into training and test datasets.

Pre-processing: We built two distinct models—one that uses TF-IDF [43]
and another that uses BERT [44]. These corpora include the issue title, body,
and comment texts of the selected issues.

Next, similar to other studies [43, 45, 46], we applied TF-IDF, which is a
technique for quantifying word importance in documents by assigning a weight
to each word. After applying TF-IDF, we obtained a vector of TF-IDF scores
for each issue’s word. The vector length is the number of terms used to calculate
the TF-IDF, and each term received the TF-IDF score. These TF-IDF scores
are then passed to one of the selected classifiers (e.g., RandomForest) to label
each issue. Each label receives a binary value (0 or 1), indicating whether the
corresponding API domain is present in the issue.

For BERT, we created two separate CSV files: an input binary with expert
API-domain labels paired with the issue corpus, as well as a list of the possible
labels for the specific project. BERT directly labels the issue with the corpus
text and labels list without the need for an additional classifier.

We also evaluated the classifier’s performance by combining in one dataset
all the projects that use English vocabulary. Therefore, we also had to build a
new composed ID (ID + project name) for all projects to guarantee uniqueness.
For this experiment, after we created the new IDs, we merged the binaries of
the project, including the classes missing for each project (RTTS does not have
a Computer Graphics label, for example). We compared various algorithms to
identify the best setup.

Cleaning: To build our classification models using TF-IDF, we converted
each word in the corpus to lowercase and removed URLs, source code, numbers,
and punctuation. We also removed stop-words and stemmed the words using
the Python nltk package. We filtered out the issue and pull request templates8

since their repetitive structure introduced noise and were not consistently used
among the issues.

We follow the work of Izadi et al. [47] to process data for BERT. We tested
BERT with a cleaned and uncleaned corpus. This was checked by comparing
the F-measure, precision, and recall results from training with cleaned and
uncleaned corpora. We ran three training trials with a 10-fold ShuffleSplit CV
and determined that the unclean corpus consistently delivered higher metrics
than any cleaning method (stemming, removing stopwords, etc.) The result is
in line with Izadi et al. [47] who showed that an unclean input corpus best
maintained the context of words needed for BERT to determine their meaning
and significance.

Diagnostics: Multi-label datasets are usually described by label cardinal-
ity and label density [48]. Label cardinality is the average number of labels
per sample. Label density is the number of labels per sample divided by the
total number of labels, averaged over the samples. For our dataset, the label
cardinality is 8.19 and the density is 0.26. These values consider the 22,231

8 http://bit.ly/NewToOSS

http://bit.ly/NewToOSS
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distinct issues and API-domain labels obtained after the previous section’s
pre-processing steps. Since our density can be considered high, the multi-label
learning process or inference ability is not compromised [49].

Training/Test Sets: We split the data into training and test sets using the
ShuffleSplit method [48], which is a model selection technique that emulates
cross-validation for multi-label classifiers. For example, in the JabRef project,
we had 1,914 linked issues, and since one PR could be linked with more than
one issue, we kept 1,648 entries that we randomly split into a training set
with 80% (1,318), 70% (1,154), and 60% (989) of the issues and a test set
with the remaining 20% (330 issues), 30% (494), and 40% (659). We ran each
experiment ten times, using ten different training and test sets to match 10-fold
cross-validation. To improve the balance of the data set, we ran the SMOTE
algorithm for the multi-label approach [50].

Classifiers. To create the classification models, we chose six classifiers
that work with the multi-label approach and implemented different strategies
to create learning models: Decision Tree, Random Forest (ensemble classi-
fier), MLPC Classifier (neural network multilayer perceptron), MLkNN (multi-
label lazy learning approach based on the traditional K-nearest neighbor algo-
rithm) [51, 48], Logistic Regression, and BERT. We ran the first five classifiers
using the Python sklearn package and tested several parameters. For the Ran-
domForestClassifier, the best classifier, we kept the following parameters: cri-
terion = ‘entropy’, max depth = 50, min samples leaf = 1, min samples split
=3, n estimators = 50.

The BERT model was built using the open-source python package, Fast-
Bert [52], which builds on the Transformers [53] library for Pytorch. Before
training the model, the optimal learning rate was computed using a lamb
optimizer [54]. Finally, the model fit over 11 epochs and validated every epoch.
This training and validation occurred for every fold in the ShuffleSplit 10-fold
cross-validation. The BERT model was trained on an NVIDIA Tesla V100
GPU that is contained within a computing cluster. The choice of hardware is
not critical so long as the target GPU has sufficient VRAM to train the BERT
model.

Classifiers Evaluation: To evaluate the classifiers, we employed the follow-
ing metrics (also calculated using the scikit-learn package):

– Hamming loss measures the fraction of wrong labels to the total number
of labels.

– Precision measures the proportion between the number of correctly pre-
dicted labels and the total number of predicted labels.

– Recall corresponds to the percentage of correctly predicted labels among
all relevant labels.

– F-measure calculates the harmonic mean of precision and recall. F-measure
is a weighted measure of how many relevant labels are predicted and how
many of the predicted labels are relevant.
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Precision =
TP

TP + FP
(i)

Recall =
TP

TP + FN
(ii)

FMeasure =
2TP

2TP + FP + FN
(iii)

The classic formulas to compute precision (i), recall (ii), and F-measure (iii)
based on TP, TN, FP, and FN (true positives, true negatives, false positives,
and false negatives) traditionally address single-label problems. An instance
is considered correct or incorrect in single-label problems, while an instance
may be partially correct in a multi-label evaluation; i.e., only a subset of the
classes is correct for some instances. To address the multi-label classification
problem, the literature [55] suggests adapting the aforementioned metrics as
follows.

The metrics for each label can be calculated using different averaging
strategies, as described in the following formulas. Let TPl, FPl, TNl, and
FNl be the number of true positives, false positives, true negatives, and false
negatives returned by a binary evaluation effort B(TP, TN,FP, FN) such as
the binary relevance transformation for a label l [56] and q is the number of
labels. The macro averaging [55] is the arithmetic mean of all the per-label
metrics, while micro averaging [55] is the global average metric obtained by
summing TP, FN, and FP. The averages are computed and used to calculate
the precision, recall, and F-measure (i, ii, iii). Santos et al. [14] used micro
averaging to calculate the predictions’ metrics. Thus, we kept it to compare
with the previous study. The micro average favors the most populated classes
[57].

Bmacro =
1

q

q∑
l=1

B(TPl, FPl, TNl, FNl) (iv)

Bmicro = B

(
q∑

l=1

TPl,

q∑
l=1

FPl,

q∑
l=1

TNl,

q∑
l=1

FNl

)
(v)

Transfer Learning. Next, we investigate the behavior of the metrics when
we use different sets to train and test the model. We combined four projects
using English vocabulary using three projects for training and one for testing.
For instance, we trained a dataset with JabRef, PowerToys, and Audacity to
test using the RTTS project. Next, we substituted the test dataset with one
in the training set until completing all possible combinations.
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Data Analysis. We used the aforementioned evaluation metrics, and the
confusion matrix logged after each model’s execution to evaluate the classifiers.
We used the Mann-Whitney U test to compare the classifier metrics, followed
by Cliff’s delta effect size test. The Cliff’s delta magnitude was assessed using
the thresholds provided by Romano et al. [58], i.e. |d|<0.147 “negligible”,
|d|<0.33 “small”, |d|<0.474 “medium”, otherwise “large”. We considered p-
value < 0.05 as the limit to determine a statistical difference.

For the remainder of our analysis, we filtered out the API labels with
no occurrence. “Cloud” and “Machine Learning” did not appear in any is-
sues/PR mined and, therefore, had no predictions. We also filtered out la-
bels that appeared in more than 90% of rows when running models for each
project. Those could bias our predictions, since the classifier could always sug-
gest them. For PowerToys, for example, the labels “NLP”, “Network”, “DB”,
“Error Handling”, “Language”, “DevOps”, “IO”, “ML”, “Security”, “Cloud”,
“Event Handling”, “CG”, “Multimedia”, “Thread”, “Big Data” and “GIS”
had no occurrences and therefore were removed. The label “Util” was also
removed because it surpassed the labels threshold (presented more than 90%
of the rows in the dataset). The “Util” label was the most present with 699
occurrences, followed by the 501 occurrences of “App” and 498 of “UI”. The
less representative set had “Test” (6), “Logging” (6), and “i18n” (4). Power-
Toys is a set of utility tools for Microsoft Windows. The high frequency of
“Util” labels is expected.

The predictions using the dataset with all projects considerably changed
our distribution of labels. The most frequent Labels were “UI” with 762 oc-
currences, followed by “Util” with 726 and “Logic” with 575. The less frequent
labels were: “NLP” (45), “CG” (16), and “GIS” (10). Despite some labels be-
ing popular and having been used for tagging many APIs by the experts, the
lack of pull requests submitted that touched source codes with those APIs may
explain their rareness. The lack of linked issues and pull requests that mention
those labels can also cause the absence in the dataset. Finally, training all the
datasets together helped to spread the labels’ frequency, for instance: “Util”
and “Logic” labels were dropped when training the JabRef project because
they reached the threshold of 90% of label predictions. When training using
the dataset with all projects combined, those labels prevailed, staying below
the 90% threshold, and were used to tag the issues (Figure 7).

Finally, we checked the distribution of the number of labels per issue (Fig-
ure 8). We found 110 issues with six labels, 106 issues with three labels, 104
issues with seven labels, and 102 issues with eight labels. Only 4.1% (=40)
of issues have one label, which confirms a multi-label classification problem
(Figure 8).
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5.2 Results

RQ.2.1: To what extent can we automatically attribute API-domain labels
to issues using data from the project?

To predict the API-domains labels, we started by testing a simple corpus:
only the issue title as input and the Random Forest (RF) algorithm, since it
is insensitive to parameter settings [59] and has shown to yield good predic-
tion results in software engineering studies [60, 61, 62, 63]. Then, we evaluated
the corpus configuration alternatives, varying the input information: only ti-
tle (T), only body (B), title and body (T+B), and title, body, and
comments (T+B+C) comparing the average of all projects. To compare the
different corpus configuration, we kept the Random Forest algorithm and used
the Mann-Whitney U test with the Cliff’s-delta effect size.

We also tested alternative configurations using n-grams. For each step,
the best configuration was kept. Then, we used different machine learning
algorithms and compared them to a dummy (random) classifier.

As Figure 9 and Table 17 (Appendix A) show, when we tested different
inputs and compared them to Title only, all alternative settings provided
better results with TF-IDF. We observed improvements in terms of precision,
recall, and F-measure from the previous study [14]. When using body, we
reached a precision of 84%, recall of 78.6%, and F-Measure of 81.1%. In con-
trast, while BERT had worse results, the model with the Title outperformed
the other BERT models with 61.6% precision.

Table 9 Cliff’s Delta for F-Measure and Precision: comparison of corpus model alternatives
for TF-IDF and BERT. Title(T), Body(B) and Comments (C).

TF-IDF/BERT Corpus Cliff’s delta
Comparison F-measure Precision

TF-IDF T versus B -0.005 negligible -0.15 small***
TF-IDF T versus T+B -0.10 negligible*** -0.12 negligible***
TF-IDF T versus T+B+C -0.03 negligible*** -0.01 negligible
TF-IDF B versus T+B 0.10 negligible*** 0.02 negligible
TF-IDF B versus T+B+C -0.02 negligible 0.14 negligible***
TF-IDF T+B versus T+B+C 0.07 negligible*** 0.11 negligible***
BERT T versus B 0.07 negligible 0.11 negligible
BERT T versus T+B 0.13 negligible 0.03 negligible
BERT T versus T+B+C 0.03 negligible 0.09 negligible
BERT B versus T+B 0.10 negligible -0.04 negligible
BERT B versus T+B+C -0.006 negligible 0.08 negligible
BERT T+B versus T+B+C -0.09 negligible -0.01 negligible
* p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001

For TF-IDF, we found statistical differences comparing the results using
title only and all the three other corpus configurations: F-measure (p-value
≤ 0.001 when comparing with title+body or title+body+comments,



28 Fabio Santos et al

T TF-IDF B TF-IDF T+B TF-IDF T+B+C TF-IDF T BERT B BERT T+B BERT T+B+C BERT
Classifier Corpus

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Pe

rfo
rm

an
ce

Evaluation Metrics
Precision
Recall
Fmeasure_Score

Fig. 9 Comparison between the corpus models inputted to TF-IDF and BERT. T=Title,
B=Body, C=Comments

Mann-Whitney U test) and precision (p-value ≤ 0.001 when comparing with
body or title+body, Mann-Whitney U test), both with negligible effect size
when comparing the precision from title and body. The corpus configured
with body performed better than all others in terms of precision, followed
closer by the one set up with title+body, which performed better in re-
call and F-measure. However, the results suggest that using only the body
would provide good enough outcomes since there was a negligible effect size
compared to the other two configurations—using title and/or comments in
addition to the body—achieving similar results with less effort. Table 9 shows
the Cliff’s-delta comparison between each pair of corpus configurations, and
Figure 9 shows the box plots confirming the similar results carried out by the
three diverse setups. For BERT, all the models had the same distribution in
precision and F-measure.

Next, we investigated the use of bigrams, trigrams, and quadrigrams, com-
paring the results to the use of unigrams. We used the corpus with only the
issue body for this analysis, since this configuration was chosen in the previ-
ous step. Table 18 (Appendix A) and Figure 10 present how the algorithms
perform for each n-gram configuration. While the unigram configuration has a
slightly better F-measure, the quadrigram has slightly better precision. How-
ever, their differences in the precision have a negligible effect size, and their
differences in F-measure have a small effect size. Additionally, the unigram
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uses less computational effort and memory [64]. Hence, we kept the unigram
as the best option.

Table 10 Cliff’s Delta for F-Measure and precision: Comparison between n-grams models

n-Grams Cliff’s delta
Comparison F-measure Precision
1 versus 2 0.09 negligible*** -0.02 negligible**
1 versus 3 0.11 negligible*** -0.01 negligible
1 versus 4 0.15 small*** -0.06 negligible
2 versus 3 0.02 negligible 0.01 negligible***
2 versus 4 0.06 negligible*** -0.04 negligible**
3 versus 4 0.04 negligible** -0.05 negligible***
* p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001
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Fig. 10 Performance comparison between the machine learning algorithms

To investigate the influence of the machine learning (ML) classifier, we
compared several options using the body with unigrams as a corpus. The
options included: Random Forest (RF), Neural Network Multilayer Perceptron
(MLPC), Decision Tree (DT), LR, MlKNN, BERT, and a Dummy Classifier
with strategy “uniform.” Dummy or random classifiers are often used as a
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Table 11 Cliff’s Delta for F-Measure and precision: Comparison between machine learning
algorithms

Algorithms Cliff’s delta
Comparison F-measure Precision
RF versus LR 0.27 small*** 0.06 negligible*
RF versus MLPC 0.02 negligible 0.009 negligible
RF versus DT 0.06 negligible* 0.09 negligible***
RF versus MlkNN 0.28 small*** 0.13 negligible***
RF versus BERT 1.0 large*** 1.0 large***
LR versus MLPC -0.21 small*** -0.07 negligible*
LR versus DT -0.15 small*** -0.15 small***
LR versus MlkNN 0.07 negligible* 0.08 negligible*
LR versus BERT 1.0 large*** 1.0 large***
MPLC versus DT 0.03 negligible -0.08 negligible***
MPLC vs. MlkNN 0.24 small*** 0.13 negligible***
MLPC versus BERT 1.0 large*** 1.0 large***
MlkNN versus DT -0.19 small*** -0.20 small***
MlkNN versus BERT*** 1.0 large 1.0 large***
DT versus BERT*** 1.0 large 1.0 large***
RF versus Dummy 1.0 large*** 0.50 large***
* p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001

baseline [65, 66]. We used the implementation from the Python package scikit-
learn9. Figure 10 and Table 19 (Appendix A) show the comparison among the
algorithms, and Table 11 presents the pair-wise statistical results comparing
F-measure and precision using Cliff’s delta.

Random Forest (RF) was the best model when compared to Decision
Tree (DT), Logistic Regression (LR), Neural Network Multilayer Perceptron
(MLPC), MlKNN algorithms, and BERT. Random Forest outperformed these
five algorithms with negligible/small effect sizes considering F-measure and
precision. Compared to BERT and the Dummy Classifier, the effect size was
large. The observed difference among some algorithms are fairly small and
therefore might vary according to project corpus properties.

The results showed the classifier is suitable for predicting labels in projects
written in different programming languages (C++, C#, and Java), with issues
with vocabulary in English and Portuguese.

RQ.2.1 Summary. It is possible to individually predict the API-domain
labels for each project with a precision of 0.864, recall of 0.786, and F-
measure of 0.811 using the Random Forest algorithm, body as the corpus,
and unigrams.

RQ.2.2: To what extent can we automatically attribute API-domain la-
bels to issues using data from other projects?

Next, we merged the datasets that use English vocabulary (RTTS, JabRef,
Audacity, and PowerToys), predicting the API-domain labels for all the projects.

9 https://scikit-learn.org/

https://scikit-learn.org/
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Fig. 11 Performance comparison between machine learning algorithms using the dataset
with all projects - Vocabulary: EN

Removing the project with Portuguese vocabulary was necessary since the
BERT model was trained with English vocabulary. The predictions were car-
ried out with body as the corpus (and unigrams for the TF-IDF). Figure 11
shows the performance obtained with diverse algorithms. RF still had the best
precision while the MLPC had the best F-measure; BERT had better preci-
sion than MLkNN and better recall than Logistic Regression. BERT was less
impacted by the loss of metrics when predicting the API-domain labels with
the all-projects combined dataset (Table 20 - Appendix A).

RQ.2.2 Summary. Predicting using a dataset with all English-language
projects combined decreased the precision by 9.15% using Random Forest
and increased the precision using BERT by 20.63%.

RQ.2.3: To what extent can we automatically attribute API-domain la-
bels to issues using transfer learning?

Finally, Table 12 shows the results for all combinations tested with transfer
learning. The results had a significant range in precision and recall varying
from 0.713 to 0.296 in precision predicting RTTS and PowerToys, respectively,
and from 0.525 to 0.175 in recall predicting Audacity and RTTS, respectively.
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Table 12 Overall performance from models created to evaluate the transfer learning.

Training Test P R F
RTTS, Audacity, PowerToys JabRef 0.305 0.294 0.299
JabRef, Audacity, PowerToys RTTS 0.713 0.175 0.281
JabRef, RTTS, PowerToys Audacity 0.688 0.284 0.402
JabRef, RTTS, Audacity PowerToys 0.296 0.525 0.379
JabRef, Audacity, PowerToys RTTS* 0.718 0.272 0.394
* RTTS - labels most important to the users (Section 6.2)

Additionally, we ran a transfer learning experiment targeting the RTTS
project labels evaluated by developers (Section 6.2). We dropped all labels with
fewer than three evaluations and up to 50% of “Not Important” evaluations
(see Figure 12). Therefore, in the RTTS project, the labels that persisted are:
“Network”, “Logging”, “Setup”, “Micro/services”, and “UI”. Since Audacity,
JabRef, and PowerToys projects were not evaluated by developers (Section 6),
they were not included in this experiment. We observed a small increase in
precision (0.713 to 0.718) and a significant increase in recall (9.7% - 0.175 to
0.272) and F-measure (11.3% - 0.281 to 0.394) - Table 12.

RQ.2.3 Summary. Transferring learning with diverse configurations
considering source and target projects decreased the metrics from 15.12%
to 64.74% and the recall from 33.21% to 77.74%, depending on the sources
and target project. Evaluating the transfer learning concerning only the
API-domain labels evaluated as important by the developer who solved
the issues improved the recall by 9.7% and F-measure by 11.3%.

6 RQ3 - Evaluating the API-domain labels with developers

Considering human input is very relevant in machine learning studies, we
labeled some issues and presented them to developers that solved the same
issues previously to receive feedback about how useful the API-domain labels
could be if available at the time they worked on the issues.

6.1 Method

To answer RQ3, we use the Random Forest algorithm, issue description body
as the corpus, and unigrams (the best configuration we found in RQ.2) to
generate labels for the issues.

6.1.1 Labels generation

We predicted labels for 91 issues (PowerToys = 21, Audacity = 18, Cronos =
24, and RTTS = 28). The predictions covered all the 29 proposed API-domain
labels (Cloud and ML do not have samples in our projects). We selected the
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most recently closed issues from the projects to get better chances of finding
the developer who fixed the issues and they recall the problem solved. However,
some issues had to be discarded when the contributor who solved them was
not working for the enterprise anymore or when the OSS contributors did
not answer our contact (Section 6.1.2). The use of the most recent issues and
the availability of the participants created an unbalanced set of labels for
evaluation and we use our best effort to include the most representative set of
API-domain labels possible in the empirical experiment.

6.1.2 Contributors assessment

In this step, we recruited 20 participants (PowerToys (1), Cronos (13), and
RTTS (6)). To recruit participants from those projects we sent emails to main-
tainers from PowerToys and Audacity and contacted development managers
from Cronos and RTTS. We asked participants from those projects to evalu-
ate if the labels represent the skills needed to solve the issues and could help
newcomers or experienced developers who want to choose an issue. All of the
participants were experts in their project and were asked to evaluate the issues
to which they contributed in the past. Indeed, the number of issues evaluated
by participants varied according to their past contributions. Each issue was
evaluated by only one participant. The participants received a gift card as a
token of appreciation for their participation.

We asked the following questions:

– How important do you consider having these labels on the issue to help
new contributors identify the skills needed to solve them? (Evaluate each
label) (Likert: Very Important, Important, Moderately Important, Slightly
Important, Not Important)

– Why?
– What labels are missing?

6.1.3 Analysis

Based on the data gathered in the contributors’ assessment, we performed
a quantitative analysis to assess the generated labels. To analyze the open
questions in which the contributors could explain their opinions about the
labels generated, we employed open coding and axial coding procedures [67].

6.2 Results

From the 91 issues predicted, we received 29.67% feedback (26 issues and 16
different API-domain labels). We did not receive feedback from the Audacity
contributors. PowerToys had only one contributor who evaluated only three
issues encompassing only four labels. Due to insufficient data, we removed this
project from the results.
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Fig. 12 Labels assessment by project

Cronos. A total of 13 contributors assessed the generated labels. Based on
the results (Figure 12), the contributors described 5 labels (i.e., DevOps, UI,
DB, Lang, and Security) as very important or important and APM, Setup,
NLP, and IO labels unimportant. DevOps, UI, DB, and Lang were highly
rated as important, with many “Very important” and “Important” evalua-
tions. Not all the participants justified their response, but among the reasons
those contributors mentioned that “It was a simple UI issue.” (P15) indicating
the success of the “UI” prediction. Another developer mentioned “This issue
also required database, logic and lang skills.” (P6). This issue was tagged with
“UI” and “DevOps” (evaluated as “Very important”) but the developer missed
some skills. Related to the missing labels, some contributors mentioned that
“The issue is related to a restriction. It requires UI skills and DevOps skills
(not included in the predictions. [...]But it also requires other skills.” (P18).
Another contributor also missed some labels and mentioned “This issue also
required database, logic, and language skills.” (P06).

RTTS. Concerning the RTTS project, five contributors assessed the labels
generated for the issues they had solved; in this scenario, we have contributors
evaluating from 1 to 3 issues each. Our findings (Figure 12) highlight that
the following labels were classified by contributors as important to very im-
portant: Services, UI, Logging, Setup, Network, and Data Structure. Among
the reasons contributors highlighted, we can observe the positive feedback as
mentioned in: “I can totally agree with the labels for this, as to find the problem
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and apply the solution all the skills are necessary.” (P20). Moreover, contrib-
utors classified the following labels as not important or slightly important:
Lang, Parser, DevOps, UI, and Data Structure. Some contributors mentioned
that: “I partially agree, some of the labels could give an initial point of view
to the reported issue, but some are not related, like Language, Data structure
and Setup” (P2). Some contributors reported missing some labels according
to what was mentioned: “Logging skills would be necessary to troubleshoot the
issue and get the relevant information from the application, while service skills
(knowledge about how service discovery and the service registry in the system
works) would be necessary to find that the service version of the requested ser-
vice didn’t match what was registered. As for Network, it could have been useful
to be able to determine that this issue was not caused by some error/faulty re-
sponse from the requested service, but in this case, the log stated explicitly that
the requested service did not exist. I don’t find that the other labels/skills apply
to this issue.” (P04).

RQ.3. Summary. Our findings suggest the labels would be useful to help
identify the skills needed to solve them. The efficiency of labels generated
differs by project, for Cronos we had 61.9% of the labels evaluated in the
range from slightly to Very important and 64.4% in the RTTS project in
the same range.

7 Discussion

This section discusses our results and future work.

Do developers have a well-defined preference about labels? The
feedback shared by study participants in Section 4 showed us the importance
of the different types of labels to ease the issue selection process. However,
the developers expressed preferences about different types of labels, and some
preferences are ambiguous. For instance, P32 indicated “The technology used”
when we asked what kind of labels they want to see in the issues. The tech-
nology could refer to a “programming language,” or an “API.” While both
classifications could be used, we would prefer to define the technology as API
because it is more specific than a programming language or even a framework
that can encompass many libraries. A similar situation emerged with “prior-
ity” (P12). The “priority” could be restricted only to “low” or “high,” or could
it include other aspects like the “impact on operations”, as suggested by P15.

We can group the kind of labels in technology (technology, API, program-
ming language, database, framework, and architecture layer) and management
(type, priority, status, difficulty level, GitHub info). Management labels are
more often used in issue trackers. In this work, we propose to add to the is-
sues a kind of technological label, the API-domain labels, which we claim are
a proxy for the skills needed to solve an issue. Nonetheless, one should avoid
overloading the issue trackers with too many labels. Future research can inves-
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tigate the right balance of offering labels without creating a visual overhead
for the contributor.

Are API-domain labels relevant? Our findings show that participants
considered API-domain labels relevant in selecting issues. More specifically,
newcomers to the projects considered API-domain labels more relevant than
other general labels that describe the components and slightly more favored
than management labels describing the type of issue. This suggests that a
higher-level understanding of the API domain is more relevant than deeper
information about the specific component in the project.

When controlling for issue type and component, API-domain labels were
considered more relevant for experienced coders than novices (or students).
This suggests that novices may need more help than “just” the technology for
which they need skills. Our results also show that novices could be helped if
the issues provide additional details about the complexity levels, how much
knowledge about the particular APIs is needed, the required/recommended
academic courses needed for the skill level, estimated time to completion,
contact for help, etc.

Although each contributor is a newcomer when they move to a new project,
previous experience counts when the new project shares technology with the
previous projects. As opposed to experienced newcomers, who may transfer
knowledge from previous projects and jump directly to the issue solution,
novice newcomers spend more time understanding the project structure, the
underlying technology, and how to set up the environment [11] which might
suggest why practitioners from the industry and experienced participants se-
lected more API-domain labels than students and novices. Perhaps the API
granularity is deeper than what the novices are looking for. Future research
may consider the appropriate technical information to assist novice newcom-
ers.

In addition to API-domain labels, what issue characteristics are
relevant to identify skills in issues? In addition to labels, new contrib-
utors mentioned the title, body, and comments as sources of information
to identify the necessary skills to work on the issues. Such elements can be
structured with issue templates or written in an ad-hoc manner. Santos et al.
[11] asked maintainers to suggest community strategies to help newcomers find
a suitable issue. Among the identified strategies, maintainers suggested 15 di-
verse ways of labeling the issues (e.g., labeling with skills, knowledge area,
programming languages, libraries, and others) and several ways of organizing
the issues, which include creating templates.

While these other issue elements may indicate the skills and other char-
acteristics of the issues that are not on the labels, some issues – and existing
templates – are incomplete, lacking important information for contributors.
The 5W2H analysis we applied in this paper can help us to holistically under-
stand what should be written in issues by covering the seven dimensions of
information - who, why, when, what, where, how to solve and how big is the
issue. Future work can use the 5W2H questions to inspect the completeness of
existing templates in terms of covering the seven dimensions of information.
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Despite the importance of issue templates, we removed template sentences
in an effort to clean repeated text to be ingested by the data processing
pipeline. For example, one template sentence is “Steps to reproduce.” Since
this fixed text appears in many issues (regardless of their categories) and the
templates had changed over time, we decided to remove it before processing the
issue corpus. This removal only affects the trained model, and we still should
use the results of the 5W2H analysis to create a human-oriented template able
to point new contributors to information relevant to them.

What are the effects of the corpus characteristics on the labels’
classifications? Observing the reported results (TF-IDF) for different cor-
pora used as input, we noticed that the model created using only the issue
body performed similarly to the models using the issue title, body, and com-
ments, and better than the model using only the title. By inspecting the re-
sults, we noticed that by adding more words to create the model, the matrix
of features becomes sparse and does not improve the classifier’s performance.

We also found co-occurrence among labels. For instance, “Test”, “Logging”,
and “i18n” appeared often together (Figure 13). This is due to the strong
relationship found in the source files. By searching the references for these API-
domain categories in the source code, we found “Test” in 4,579 source code
files, compared to “Logging” in 903. The label “i18n” appeared in only 73 files.
On the other hand, the API-domain labels for “CG” and “Security” usually do
not co-occur. “CG” only appeared in five java files, while “Security” appeared
in only 47 files. Future research can investigate co-occurrence techniques to
predict co-changes in software artifacts (e.g., [68]) in this context.

Figure 13 exhibits the labels’ co-occurrence for the dataset containing all
the projects. A co-occurrence matrix presents the number of times each la-
bel appears in the same context as each possible other label. Examining the
aforementioned co-occurrence data, we can determine some expectations and
induce some predictions. For example, the “DB” label (Database) occurred
with more frequency alongside “Network” and “Thread.” So, it is possible to
guess when an issue has both labels, and we likely can suggest a “Database”
label, even when the machine learning algorithm could not predict it. A possi-
ble future work can combine the machine learning algorithm proposed in this
work with frequent itemset mining techniques, such as apriori [69].

What are the difficulties in labeling accurately? We suspect that the
high occurrence of “UI”, “Util”, and “Logic” labels (> 500 issues) compared
with the low occurrence of “i18n”, “Interpreter”, “GIS”, and “NLP” (< 57
issues) may influence the precision and F-measure values. We tested the clas-
sifier with only the top 5 most prevalent API-domain labels and observed no
statistically significant differences. One possible explanation is that the trans-
formation method used to create the classifier was Binary Relevance, which
creates a single classifier for each label and overlooks possible co-occurrence.

The dataset is unbalanced due to the characteristics of the projects. Since
JabRef, for instance, is a desktop application, the API-domain label “UI” ap-
pears more frequently. Table 13 shows the confusion matrix for the dataset
containing all projects (for individual projects, see the appendix). This im-
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Fig. 13 Heat Map - Label correlation in the dataset with all projects combined. The darker,
the more correlation exists between the labels.
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pacts the prediction of the minor labels even with the SMOTE algorithm,
which improves the occurrences of rare labels. Some labels only appear in a
few projects. Therefore, even when they are common in a specific project when
training and testing with all projects, they may become rare. The recommen-
dation of labels with poor results should be avoided because of the risk of
indicating a wrong skill to the contributor.

Table 13 Confusion matrix data and performance from the selected model with all projects

API-domain TN FP FN TP Precision Recall
APM 125 4 44 8 0.66 0.15
App 80 22 19 60 0.73 0.75

Big Data 152 0 29 0 0 0
Data Structure 78 24 6 73 0.75 0.92

DB 163 2 11 5 0.71 0.31
DevOps 113 26 0 42 0.61 1

Error Handling 97 32 5 47 0.59 0.90
Event Handling 162 1 8 10 0.9 0.55

GIS 178 2 0 1 0.33 1
Interpreter 173 2 3 3 0.6 0.5

IO 141 8 5 27 0.77 0.84
i18n 166 7 5 3 0.3 0.375
Lang 112 36 0 33 0.47 1

Logging 174 1 4 2 0.66 0.33
Logic 68 9 2 102 0.91 0.98

Micro/services 151 1 23 6 0.85 0.2
Network 175 0 6 0 0 0

NLP 164 0 17 0 0 0
OS 119 9 8 45 0.83 0.84

Parser 101 28 3 49 0.63 0.94
Search 134 9 15 23 0.71 0.6

Security 151 0 30 0 0 0
Setup 38 56 9 78 0.58 0.89
Test 166 0 15 0 0 0
UI 10 33 3 135 0.8 0.97

Util 84 4 16 77 0.95 0.82
Total 3275 316 286 829

Despite the lack of accuracy in predicting the rare labels, we were able
to predict those with more than 200 occurrences (all projects together) with
reasonable precision (0.84) and/or recall (0.78). We argue the project’s nature
contributes to the number of issues related to their domain. For example,
since the Audacity project is an audio editor and recorder, a high occurrence
of “UI”, “IO”, and “Multimedia” labels is expected. We argue that Audacity’s
nature contributes to the number of issues related to the labels above. Labels
with few samples suffered from low or unstable metrics. “DB”, for example,
varied from 0.09 to 0.9 in recall on predictions depending on the text/train
split.

Improving the performance of BERT. In addition to the number of
occurrences of a label, the BERT metrics can be improved by increasing the
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training set size. Wang et al. [29] and their exploration of several trained deep
learning models for GitHub labeling provide important insights into poten-
tial performance increases with BERT. The authors showed that the BERT
model performed better than the other language models for large datasets
with at least 5,000 issues, achieving the highest accuracy, precision, recall,
and F-measure scores. However, for small datasets with less than 5,000 is-
sues, CNN outperformed BERT as the best model overall. This suggests that
BERT depends on the size of the training set of corpus data. Therefore, the
performance of BERT when labeling GitHub issues will improve with an in-
creased dataset size for the targeted open-source project. When the project
datasets were merged (Table 11), the BERT metrics decreased the difference
from about 26% to 6% in precision compared to the other classifiers.

What is the impact of the expert classification? Experts can also
help increase the classification metrics for all models. We could observe the
C++ project achieved the best F-measure compared with the Java and C#
projects (0.84, 0.82, and 0.80, respectively, with small to large effect sizes).
Although we evaluated only one C++ project, the results might suggest after
examining Table 8 that the number of APIs evaluated by the experts impacts
the metrics we will obtain. On the other hand, manual evaluation of a high
number of APIs may make generalization unfeasible. The classification carried
out by the experts in the C++ project comprised a higher percentage of APIs
analyzed. This might be caused by the language characteristics: the libraries’
names parsed from the C++ source code had limited information about their
use. Thus, classification was more time-consuming. Indeed, the C++ project
demanded more effort from the experts to classify it. Ultimately, it became a
more detailed classification with better prediction metrics.

While experts’ analyses are time-consuming, some outlier projects require
much less effort than others. For instance, experts analyzed fewer than 3% of
the APIs in RTTS. Since this project imports popular libraries, reuses many
libraries across the entire source code and is modular, the expert’s work was
easier. A possible relationship between popular APIs, modularization, and
expert evaluation should be explored in future work. Another possible future
work should identify what programming language characteristics impact the
expert classification.

To what extent does the proposed method generalize? The semi-
automatic classification process decreased the effort carried out by the experts
to define the expertise of the APIs. Despite there being considerable effort
remaining, as the dataset increases, the rate of new APIs to classify should
decrease since projects reuse an average of 35-53% of core APIs. Third-party
libraries account for 8-32% and 45% on average (Core + third-party). The use
of popular open-source APIs could lead to an impressive 85% of shared APIs
between projects [70]. Farther, the project sizes grow much more quickly than
the size of uniquely-used API entities [70].

Thus, the demand for expert evaluation should decrease significantly when
the number of mined libraries reaches a critical mass (for each programming
language), and even new projects may use previous expert evaluations. This
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might impact the method when applied to industry projects, which may use
a variety of unique non-free APIs. However, API sharing may happen inside
companies or business units, repeating the phenomenon of the libraries’ critical
mass. Nevertheless, we did not observe this effect, and we could predict labels
for an OSS project using data from an industry project.

To what extent does the model perform transfer learning? Transfer
learning is crucial when projects lack data for training (cold start) or the
time or infrastructure to develop their own models. This can be particularly
problematic in the industry since the data can have restricted access due to
security precautions or to comply with procedures or laws. In this situation,
the ability to use a pre-trained model is necessary. Using pre-trained models
to predict from new data is also desirable because it is faster and cheaper than
retraining a model every time a new source project is added to the dataset [15,
71]. The projects may also benefit from the complementary data from another
project when the project dataset is too small for training a predictive model.

The transfer learning experiments found a decrease in precision and recall.
The metrics definition: Precision = TP

TP+FP and Recall = TP
TP+FN indicates

the number of False Negatives (FN) and False Positives (FP) that should im-
pact the results. For example, in training and testing individual projects, the
RTTS project had a small number of PFs and FNs compared to the trans-
fer learning experiment when RTTS was a target project (Tables 14 and 15).
When targeting the RTTS project, the high number of FNs significantly de-
creased the recall metric. On the other hand, targeting PowerToys, the number
of FPs negatively impacted the precision (Tables 15, 22, and 12). The projects
only shared a small number of labels (5 in 31) and are imbalanced among
the datasets. For example, “Setup” is popular in the RTTS project and rare
in JabRef, suggesting the conditional probability distribution of the sources
and targets differ. These characteristics might determine which projects match
and, therefore, be used to decide the transfer learning source or target. Fu-
ture work should investigate whether the domain, platform (Web, Desktop,
Mobile), architecture, or other project property derives a good match. Fur-
thermore, investigating proxy techniques, such as the one proposed by Nam
et al. [15], to minimize the data distribution difference between target and
source projects to predict software engineering defects can be applied to pre-
dictions of domain labels of API. Results for the JabRef (Table 25) and Au-
dacity (Table 26) projects using transfer learning are available in Appendix
A. We can observe the high number of FP and FN comparing the Audacity
transfer learning results in Table 26 and the results of training and testing the
Audacity dataset alone (Table 23). Similarly, we can observe the same pattern
in the JabRef results in Tables 21 and 25.

How did the contributors rate the labels generated for the issues
they solved?

Overall, participants evaluated the generated labels with positive feedback.
The labels classified as important or very important across all the projects
were: DevOps (10), DB (5), Services (4), UI (14), Lang (5), Security (1), and
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Table 14 Confusion matrix and performance. Project RTTS trained/tested alone

API-domain TN FP FN TP Precision Recall F-measure
APM 112 4 2 24 0.85 0.92 0.88

Big Data 134 1 2 5 0.83 0.71 0.76
Data Structure 25 36 3 78 0.68 0.96 0.80

DB 84 4 19 35 0.89 0.64 0.75
DevOps 60 17 13 52 0.75 0.80 0.77

Error Handling 126 5 4 7 0.58 0.63 0.60
Event Handling 129 0 2 11 1 0.84 0.91

i18n 121 6 7 8 0.57 0.53 0.55
Lang 28 29 11 74 0.71 0.87 0.78

Logging 47 24 18 53 0.68 0.74 0.71
Microservices 1 12 0 129 0.91 1 0.95

Network 65 20 21 36 0.64 0.63 0.63
Parser 69 17 14 42 0.71 0.75 0.73

Security 129 0 8 5 1 0.38 0.55
Setup 66 10 33 33 0.76 0.50 0.60

UI 4 15 0 123 0.89 1 0.94
Total 1200 200 157 715

Table 15 Confusion matrix and performance: Project RTTS - transfer learning.

API-domain TN FP FN TP Precision Recall F-measure
APM 197 0 38 0 0 0 0

Data Structure 100 0 135 0 0 0 0
DB 145 0 90 0 0 0 0

Error Handling 223 0 12 0 0 0 0
Event Handling 212 0 23 0 0 0 0

Lang 114 0 121 0 0 0 0
IO 44 21 131 39 0.65 0.22 0.33

i18n 214 0 21 0 0 0 0
Logging 102 22 91 20 0.47 0.18 0.26
Logic 13 17 146 59 0.77 0.28 0.41

Microservices 28 0 206 1 1 0.004 0.009
Network 129 0 106 0 0 0 0
Parser 156 0 79 0 0 0 0
Setup 115 14 98 8 0.36 0.07 0.12

Thread 175 0 60 0 0 0 0
UI 3 38 26 168 0.81 0.86 0.84

Total 1970 112 1383 295

Logging (3). Moreover, the labels that were classified as not important were:
APM (8), Setup (7), Data Structure (6) and UI (9), and Security (2).

In the RTTS project, all four best-evaluated labels (Services, Logging,
Setup, and Network) had precision above 0.75, and two of the four worst-
evaluated ones (Data Structure, UI, DevOps, and Lang) had precision ≤ 0.7.
A threshold could determine whether a label must be reported.

Participants from Cronos projects mentioned they would like to see the
label “Data Structure” for the evaluated issues. This occurred because we
removed the label Data Structure once it was generated for 90% of the issues
selected in the Cronos project. One possibility for that case would be to include
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Table 16 Confusion matrix and performance: Project PowerToys - transfer learning.

API-domain TN FP FN TP Precision Recall F-measure
APM 264 1 88 0 0 0 0
App 315 9 28 1 0.66 0.76 0.71

Data Structure 344 3 6 0 0.03 0.40 0.06
i18n 209 134 4 6 0 0 0

Interpreter 342 1 10 0 0 0 0
Logging 153 196 0 4 0.007 0.25 0.01

Logic 173 27 100 53 0.01 1 0.02
Microservices 0 348 0 5 0.25 0.49 0.33

Parser 6 105 10 232 0.07 0.13 0.09
Setup 351 0 2 0 0.50 0.07 0.13
Test 174 82 56 41 0.006 0.66 0.01
UI 105 245 1 2 0.68 0.92 0.78

in the description of the project that it is strongly based on data structures
and that the reported issues likely would involve this knowledge.

In addition, participants reported some labels could provide a clue for
looking for the bug’s root cause or determining the work needed to address a
new feature request. For Example: “...some of the labels could give an initial
point of view to the reported issue” (P2) or “Network: While network tag wasn’t
that necessary for this particular case, the issue could have been caused by a
communication error between the services in which case they would have been”
(P4). On the other hand, some participants preferred not to see more general
labels, like Data Structure or Logging, since they are present in many issues:
“Data Structure is literally everywhere, there wouldn’t be any program without
them” (P1), while others missed the Data Structure label (not present in the
predicted list because it reached the 90% threshold) and suggested including
it (P14, P16, and P17). Future work can determine how to address developer
preferences regarding the inclusion of general labels.

The generalization of the method proposed in this paper assisted us in
embracing more projects. Nevertheless, it also brought problems. We proposed
generic labels able to fit a wide range of project types. This might explain the
comments about the generic labels. “...It was a backward compatibility issue
with user-defined configuration data, so with a generous interpretation Setup
was accurate, but I would have preferred Information Model or Domain Model
had it existed” (P1). Analyzing the participant’s suggestion for a “Validation”
label, we recollect to the point where the NLP similarity suggested possible
API domains for the library related to the issue and the experts’ choice. We
found the selected API domain was “Logic” since no “Validation” API-domain
label was available. If the experts came from the project, perhaps the API-
domain label “Validation” could be present and thus meet the participant’s
needs.

Future work can explore more API-domain labels to expand and propose
more options to fit additional projects. Customizing labels for the project may
generate more precise directions about the skills needed but will require more
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expert work time. On the other hand, generalization expands the method to a
huge range of projects and can decrease the meaning level of the API domains.

What are the practical implications for different stakeholders?
New contributors. API-domain labels can help open-source contributors,

enabling them to review the skills needed to work on the issues upfront. This
is especially useful for new contributors and casual contributors [72, 73], who
have no previous experience with the project terminology.

Project maintainers. Automatic API-domain labeling can help maintainers
distribute team effort to address project tasks based on required expertise.
Project maintainers can also identify which type of APIs generate more issues.
Our results show that we can predict the most prominent API domains—in
this case “Util” and “Logic”— with precision up to 95% and 91%, respectively
(see Table 13).

Platform/Forge Managers. Participants often selected title, body, and
labels to look for information when choosing an issue to which to contribute.
Our results can be used to propose better layouts for the issue list and detail
pages, prioritizing them against other information regions (2). In the issue
detail page on GitHub, for instance, the label information appears outside of
the main contributor focus, on the right side of the screen.

Templates to guide GitHub users in filling out the issues’ body to create
patterns can be useful in not only making the information space consistent
across issues, but also helping automated classifiers that use the information
to predict API labels. For instance, some of the wrong predictions in our study
could be caused by titles and bodies with little useful information from which
to generate labels.

Researchers. The scientific community can extend the proposed approach
to other languages and projects, including those with more data and different
algorithms. Our approach can also be used to improve tools that recommend
tasks matched to new contributors’ skills and career goals (e.g., [74]).

Educators. Educators who assign contributions to OSS as part of their
coursework [75] can also benefit from our approach. Labeling issues in OSS
projects can help them select examples or tasks for their classes, bringing a
practical perspective to the learning environment.

8 Threats to Validity

The threats to validity are divided into “internal,” “construct,” and “external.”
Internal Validity. One of the threats to the validity of this study is the

API domain categorization. We acknowledge the threat that different individ-
uals can create different categorizations, which may introduce some bias in our
results. To mitigate this problem, three individuals, including two senior devel-
opers and a contributor to the JabRef project, created the API-domain labels
categories aiming to generalize to any type of project. In the future, we can
improve this classification process with a collaborative approach (e.g., [76, 77]).
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Although participants with different profiles participated in the JabRef
user study, the sample cannot represent the entire population, and the results
can be biased. The study randomly assigned a group to each participant. How-
ever, some participants did not finish the questionnaire, and the groups ended
up lacking balance. Also, the way we created subgroups can introduce bias
in the analysis. The practitioners’ classification as industry and students were
done based on the location of the recruitment, and some students could also
be industry practitioners and vice-versa. However, the results of this analysis
were corroborated by aggregation according to experience level.

Construct Validity. Another concern is the number of issues in our
dataset and the link between issues and pull requests. To include an issue/key/-
tracking ID in the dataset, we linked it to its solution submitted via pull request
(or “revision” and “trouble id”). By linking them, we could identify the APIs
used to create the labels and define our ground truth (check Section 5.1.1).
This study does not identify issues merged without PR information. We man-
ually inspected a random sample of issues (or “keys” and “tracking ids”) to
check whether the data was correctly collected and reflected what was shown
on the ITS interface. Two authors manually examined 100 tasks randomly
picked up from the projects, comparing the collected data with the GitHub
interface. All records were consistent, and all of the issues in this validation set
were correctly linked to their pull requests. When the linked data had more
than one correspondence, we concatenated all data using the appropriated
corpus entry (title, body, comments, description, and summary). Some of the
linked data occasionally had repeated text, and can overfit our model. Future
versions may improve the data cleaning step. Unlike the other projects, Cronos
had multiple linked data through the following columns: “pai” and “ramo,”
“linked issue” and “key,” and “key” and “ramo.” This creates a recursive sit-
uation where we may link each update with many “keys” in different ways.
We preferred to keep it simple, using only the linked data that was similar to
the other projects: “key” and “ramo.”

In prediction models, overfitting occurs when a prediction model exhibits
random error or noise instead of an underlying relationship. During the model
training phase, the algorithm used information not included in the test set. To
mitigate this problem, we also used a shuffle method to randomize the training
and test samples.

Further, we acknowledge that we did not investigate whether the labels
helped the users find the most appropriate tasks. It was not part of the user
study to evaluate how effective the API labels were in finding a match with
user skills. Our focus was on understanding the relevance that the API-domain
labels have on the participants’ decisions. Besides, we did not evaluate how
false positive labels would impact task selection or ranking. However, we be-
lieve the impact is minimal since in the three most selected issues, out of 11
recommendations in the JabRef project, only one label was a false positive.
In addition, when we asked the participants to pick issues with the API la-
bels + project labels (treatment group) or project labels (control group), we
might introduce some bias. Indeed, evaluating the difference of relevance per-
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ception introduced by the appearance of the new (API-domain) labels should
have some influence brought by the poor performance of the project’s labels,
masking the difference in the measurement experiment. Investigating the ef-
fectiveness of API labels by an experiment matching contributors and tasks
skills and identifying the problems caused by misclassification are potential
avenues for future work. The empirical experiment to pick an issue and ask
the relevant regions for that choice may introduce a bias since the participant
only selected an issue and did not solve the issue.

When classifying the issues and linked pull requests, we compared the files
changed with the parsed source code files at the last version of the projects. If
the updated source file is not present anymore, the pull request is discarded.

External Validity. Generalization is also a limitation of this study. The
outcomes could differ for other projects, programming languages ecosystems,
or even issues written in a different language. To address this limitation, we
extended the previous study [14] in that direction, mining different projects,
including three programming languages, and two natural languages (or vocab-
ularies). Nevertheless, this study showed how a multi-label classification ap-
proach could be useful for predicting API-domain labels and how relevant such
a label can be to new contributors. Moreover, the API-domain labels that we
identified can generalize to other projects that use the same APIs across mul-
tiple project domains (Desktop and Web applications). Many projects adopt
a typical architecture (MVC) and frameworks (JavaFX, JUnit, etc.), which
makes them similar to many other projects. As described by Qiu et al. [70],
projects adopt common APIs, accounting for up to 53% of the APIs used.
Moreover, our data can be used as a training set for automated API-domain
label generation in other projects.

9 Conclusion

We investigated whether API-domain labels are used by newcomers to select
an issue and what information newcomers use to decide what issue to con-
tribute. We found that industry practitioners and experienced coders prefer
API-domain labels more often than students and novice coders. Participants
prefer API-domain labels over component labels already used in the project.
Users would like to see labels with information about issue type, priority, pro-
gramming language, complexity, technology, and API and pick an issue based
on title, body, comments, and labels.

We also investigate to what extent we can predict API-domain labels. We
mined data from 22,231 issues from five projects and predicted 31 API-domain
labels. Training and testing the projects separately, TF-IDF with the Random
Forest algorithm (RF), and unigrams obtained a precision of 84% and over-
came BERT (precision of 62%). Data from the issue body offered the best
results. However, when predicting the API-domain labels for all projects to-
gether, RF precision decreased to 78%, and BERT increased to 72%, suggesting
the positive sensibility of the BERT technique when applied to larger datasets.
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Transferring learning from diverse sources and targets resulted in a decrease
in evaluation metrics with an extensive range of values regarding precision and
recall. Future work should investigate ways to determine when or how to apply
transfer learning to API-domain labels among projects.

Finally, developers agreed that up to 64.4% of the API-domain labels are
important to identify the skills and therefore should help to solve the issues if
they are available.

This study is a step toward helping new contributors match their API
skills with each task and better identify an appropriate task to start their
onboarding process into an OSS project.
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A Appendix

Additional data from RQ2 results. Some data were presented with box plots in section
5.2. The redundant data (and more detailed) about the experiments are available here in
tables.

Table 17 Overall performance from models created to evaluate the corpus. Hla*

Model Corpus Precision Recall F-measure Hla
TD-IDF Title (T) 0.830 0.794 0.809 0.117
TD-IDF Body (B) 0.840 0.786 0.811 0.116
TD-IDF T, B 0.839 0.799 0.817 0.113
TD-IDF T, B, Comments 0.831 0.796 0.812 0.116
BERT Title (T) 0.616 0.592 0.596 0.277
BERT Body (B) 0.599 0.598 0.591 0.27
BERT T, B 0.595 0.559 0.568 0.269
BERT T, B, Comments 0.597 0.587 0.582 0.266

* Hla - Hamming Loss

Table 18 Overall performance from models created to evaluate the number of grams. Hla*

Model Precision Recall F-measure Hla*
unigrams (1,1) 0.841 0.829 0.834 0.115
bigrams (2,2) 0.844 0.809 0.825 0.119
trigrams (3,3) 0.841 0.809 0.822 0.123

quadrigrams (4,4) 0.845 0.798 0.819 0.125
* Hla - Hamming Loss

Table 19 Overall performance from models created to evaluate the algorithms. Hla*

Model Hla Precision Recall F-measure
DecisionTree 0.105 0.861 0.837 0.847

Dummy 0.202 0.749 0.658 0.698
LogisticRegression 0.120 0.858 0.792 0.822

MLPClassifier 0.107 0.853 0.846 0.848
MLkNN 0.126 0.837 0.801 0.816

RandomForest 0.107 0.864 0.836 0.849
BERT 0.277 0.601 0.574 0.578

* Hla - Hamming Loss

We also include the confusion matrix for all projects trained and tested alone (Tables 21–
26). The confusion matrix for the RTTS project is in Table 14 on Section 7.
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Table 20 Overall performance from models created using the dataset with all projects
merged to evaluate the algorithms

Model Hla* Precision Recall F-measure
DecisionTree 0.157 0.768 0.576 0.654

LogisticRegression 0.167 0.779 0.504 0.611
MLPClassifier 0.154 0.766 0.595 0.666

MLkNN 0.179 0.709 0.555 0.617
RandomForest 0.153 0.785 0.573 0.659

BERT 0.219 0.725 0.511 0.593
* Hla - Hamming Loss

Table 21 Overall performance from the selected model - JabRef project

API-domain TN FP FN TP Precision Recall
Network 13 6 8 19 0.76 0.70

DB 43 1 0 2 0.67 1
Interpreter 12 9 5 20 0.69 0.8

Logging 0 7 0 39 0.85 1
Data Structure 45 0 0 1 1 1

i18n 40 0 5 1 1 0.17
Setup 33 3 1 9 0.75 0.9

Microservices 42 0 4 0 0 0
Test 41 0 3 2 1 0.4
IO 0 6 0 40 0.87 1
UI 4 2 0 40 0.95 1

App 41 1 2 2 0.67 1

Table 22 Overall performance from the selected model - Powertoys project

API-domain TN FP FN TP Precision Recall
APM 72 3 11 7 0.70 0.39

Interpreter 91 0 1 1 1 0.50
Logging 92 1 0 0 0 0

Data Structure 90 1 0 2 0.67 1
i18n 92 0 1 0 0 0

Setup 47 6 11 29 0.83 0.72
Logic 87 1 0 5 0.83 1

Microservices 70 1 15 7 0.88 0.32
Test 91 1 0 1 0.50 1

Search 41 6 8 38 0.86 0.83
UI 25 15 1 52 0.78 0.98

Parser 87 1 2 3 0.75 0.60
App 22 12 0 59 0.83 1
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Table 23 Overall performance from the selected model - Audacity project

API-domain TN FP FN TP Precision Recall
Util 38 3 2 13 0.81 0.87

APM 50 1 2 3 0.75 0.60
Network 54 0 0 2 1.00 1.00

DB 49 1 2 4 0.80 0.67
Error Handling 37 3 2 14 0.82 0.88

Logging 52 0 1 3 1.00 0.75
Thread 46 1 0 9 0.90 1.00
Lang 54 0 0 2 1.00 1.00

Data Structure 15 8 2 31 0.79 0.94
i18n 48 2 0 6 0.75 1.00

Setup 13 5 2 36 0.88 0.95
Logic 3 0 0 53 1.00 1.00

IO 10 3 6 37 0.93 0.86
UI 6 2 0 48 0.96 1.00

Parser 51 1 0 4 0.80 1.00
Event Handling 28 6 1 21 0.78 0.95

App 29 4 4 19 0.83 0.83
GIS 50 1 2 3 0.75 0.60

Multimedia 15 4 5 32 0.89 0.86
CG 50 0 1 5 1.00 0.83

Table 24 Overall performance from the selected model - MTT project

API-domain TN FP FN TP Precision Recall
NLP 34 0 9 9 1.00 0.50
APM 9 0 0 43 1.00 1.00
DB 37 0 4 11 1.00 0.73

Lang 10 1 2 39 0.97 0.95
DevOps 0 5 0 47 0.90 1.00
Setup 18 6 8 20 0.77 0.71

IO 43 0 4 5 1.00 0.56
UI 0 2 0 50 0.96 1.00

Security 9 4 2 37 0.90 0.95

Table 25 Confusion matrix and performance: Project JabRef - transfer learning.

API-domain TN FP FN TP Precision Recall
Network 65 7 43 3 0.30 0.07

DB 107 8 3 0 0 0
Interpreter 71 0 47 0 0 0

Logging 45 3 63 7 0.70 0.10
Data Structure 98 16 4 0 0 0

i18n 103 0 15 0 0 0
Setup 43 72 0 3 0.04 1

Microservices 77 24 12 5 0.17 0.29
Test 77 13 23 5 0.28 0.18
IO 33 0 67 18 1.00 0.21
UI 2 35 13 68 0.66 0.84

App 9 90 0 19 0.17 1
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Table 26 Confusion matrix and performance: Project Audacity - transfer learning.

API-domain TN FP FN TP Precision Recall
APM 127 1 9 0 0 0

Network 132 1 4 0 0 0
DB 117 0 20 0 0 0

Error Handling 105 0 32 0 0 0
Logging 88 41 7 1 0.02 0.13
Thread 122 0 15 0 0 0
Lang 133 0 4 0 0 0

Data Structure 37 0 100 0 0 0
i18n 118 0 19 0 0 0

Setup 28 1 94 14 0.93 0.13
Logic 5 10 60 62 0.86 0.51

IO 31 8 65 33 0.80 0.34
UI 0 18 9 110 0.86 0.92

Parser 126 1 10 0 0 0
Event Handling 68 0 69 0 0 0

App 58 33 12 34 0.51 0.74
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