

Training the Future Workforce through Task Curation in an
OSS Ecosystem

Anita Sarma, Rafael Leano
Oregon State University

Corvallis, OR, USA

{anita.sarma, leanor}
@oregonstate.edu

Marco Aurélio Gerosa
Institute of Mathematics and Statistics

University of São Paulo
São Paulo, SP, Brazil

gerosa@ime.usp.br

Igor Steinmacher
Department of Computing

Federal University of Technology –
Paraná – Campo Mourão-PR, Brazil

igorfs@utfpr.edu.br

ABSTRACT

Volunteers to Open Source Software (OSS) projects contribute

not only to help creating software that they use, but also to gain

skills and enrich their expertise and resumes. However, newcom-

ers to OSS face several challenges when joining a project. Particu-

larly, they do not know where to start, or choose tasks that they

can be successful at. Here, we describe our vision towards

BugExchange, a system that curates tasks from OSS projects and

helps train newcomers. While evaluating and executing these

tasks, newcomers can gain an understanding about the project, its

technology, and concepts. There are many challenges in designing

such a system. For example, identifying the information needs of

newcomers, creating task recommendations that match newcom-

ers’ skills and career goals, and providing mentoring and network-

ing support. We plan to leverage our previous work to conceive

and prototype our system, which will include multiple research

lines. BugExchange has the potential to improve newcomer learn-

ing experiences, reduce dropouts, and foster community building.

CCS Concepts

• Software and its engineering ➝ Collaboration in software develop-

ment ➝ open source model

Keywords

Newcomers; onboarding; open source projects; task labeling.

1. INTRODUCTION
Open Source Software (OSS) projects provide a large variety of

systems that are popular and extensively used [9]. Supporting

newcomers to OSS projects is important not only for the survival,

long-term success, and continuity of the open source contribution

model, but also to create a workforce that has hands-on experience

in programming [15]. Many volunteers to OSS projects contribute

to enrich their expertise and resumes [6, 14].

However, as evidenced by previous work, newcomers face

several barriers to place their first contribution to OSS projects

[17, 23]: they need to find the right project to start contributing to,

find open tasks that match their expertise, gather relevant infor-

mation, and get support from project members in order to be

successful in making a contribution. During this multi-step pro-

cess, some newcomers may lose motivation and even give up

contributing, leading to a low retention rate [19]. This low reten-

tion rate is concerning some communities, like Mozilla, Gnome

and Apache, which provide special programs and strategies to

attract, mentor and retain new developers.

Currently, there is no support in helping newcomers identify

tasks (already reported issues, such as bug fixing, new features,

i18n translations) that they can contribute to and learn from their

peers, as they move forward in their path to become contributors.

Further, while many projects are related, it is unknown whether,

and to what extent, developers migrate, and hence, become new-

comers to another project. Our prior work [8] has found that

developers migrate across projects within an ecosystem, but inter-

preters and documenters are the most likely to gain from the

benefit of knowledge that is transferrable across projects.

Our vision is to create a support structure for helping new-

comers familiarize with technical and social aspects of an ecosys-

tem of projects, generating a workforce of contributors who can

transfer knowledge across projects. We envision an approach,

where tasks collected from multiple projects are labeled and

categorized based on the skills required to complete them, which

can then be used to scaffold the learning for newcomers about

specific skills, as well as concepts within a project. Another key

idea is to create support structures of near-peer mentors, such that

newcomers can learn from each other, as well as those individuals

who have recently made the journey.

There are several challenges in this process. First, projects

have tasks of different complexity, and require different skill sets.

The skills, in this context, can be of different types: knowledge

about specific programming constructs (e.g., inheritance, lists),

language constructs (e.g., java annotations, java enums), frame-

works (e.g., Laravel, cmocka, Spring, rails), or project compo-

nents (e.g., a particular view implementation, or a specific proto-

col). For newcomers, it is difficult to assess these skill sets by

themselves [18], while project contributors are short on time to

annotate the tasks. Second, there is not a smooth learning trajecto-

ry comprising of tasks at increasing levels of complexity in a

single project. Moreover, it is possible that there may not be any

"simple" starter tasks available for the completely uninitiated.

Third, a key way to learn about a project is through mentors [4].

However, newcomers are often shy of asking for help from core

contributors [17], who in turn are busy, and do not have the time

to mentor. Most newcomers are simply pointed to the project

documentation and mailing list. Finally, it is an open question,

whether contributors in one project can transfer their knowledge

to another project in an ecosystem.

In summary, our envisioned system, BugExchange, will help

newcomers onboard a new project, train a workforce that can

participate in open source development, and facilitate support

structures such that newcomers and contributors can learn from

each other. Expanding our approach to encompass multiple pro-

jects in an ecosystem will help contributors create a richer portfo-

lio, as well as help projects increase diversity and cross-

pollination of ideas. We will realize our approach (BugExchange)

by building on our prior work – FLOSScoach [16], a web portal

that supports the first contributions of newcomers to OSS projects,

and a study [11] in which we evaluated how well newcomers

identify the skills required to complete a task in an OSS project.

2. BACKGROUND
When newcomers join an OSS project, they face many barriers

that hinder their first contribution, leading in many cases to their

dropping out [17]. Researchers have tried to understand the barri-

ers that influence the retention of newcomers. Zhou and Mockus

[24] identified newcomers who are more likely to remain in the

project, so as to offer active support to them to enable them to

become long-term contributors. Jensen et al. [7] analyzed whether

emails sent by newcomers are quickly answered, whether gender

and nationality influence the kind of answer received, and whether

the reception of newcomers is different among users’ and devel-

opers’ lists. Park and Jensen [12] showed that visualization tools

support the first steps of newcomers in an OSS project, helping

them to find information more quickly.

Steinmacher et al. [17] proposed a model to help identify and

better understand the barriers faced by newcomers. One of the

most recurrent and relevant barriers was finding a task to start

with. In an in-depth, follow-up study [18], they found that new-

comers need additional information about the tasks or need sup-

port from the community to decide a task that is suitable for them.

Other studies have also found that identifying an appropriate task

is a key problem, since new developers have difficulty in finding

bugs or features that are of interest, match their skill sets, are not

duplicates, and are important to the community [21]. Similarly,

Park and Jensen [12] reported that information about tasks that

can be performed by newcomers is important.

There are few research works that have proposed approaches

to deal with this problem. Čubranić et al. [2] presented a tool that

recommends source code, emails messages, and bug reports to

support newcomers. Another tool, Tesseract [21], enabled new-

comers to identify similar bugs through synonym-based search.

Although these tools can help newcomers by increasing their

knowledge about the tasks and their complexity, there is still not

enough support in helping newcomers identify appropriate tasks

as they move forward in their path to become contributors.

3. VISION
Our approach involves: (1) mining open source project reposito-

ries to identify OSS ecosystems, and collect open tasks, (2) lever-

aging the (crowd) work produced by newcomers and contributors

for cataloging tasks with the required skills to complete a task, (3)

performing source code analysis to categorize tasks based on their

complexities, and (4) using community building and incentive

structures to create and foster a community of near-peer mentors.

More specifically, BugExchange (see Fig. 1) is a socio-technical

approach that:

• Creates a clearing house of “open” tasks from multiple projects

within a specific ecosystem – projects that have similar goals

and share technical dependencies – providing a set of tasks that

newcomers at different levels can attempt. To do so, we will

collect different types of information (e.g., issues, work items,

source code, code metrics, development processes) from open

source projects (Fig. 1(a)), which will be cross-linked into a uni-

fied, integrated repository (Fig. 1(b)).

• Catalogs the skills required to complete a task, such that new-

comers, as well as, contributors can assess whether they have

the requisite skills to complete a task. We will explore different

techniques, including an approach where newcomers label the

skills that they perceive as required to perform the task (Fig.

1(c)) [11]. These starter tasks can allow a newcomer to familiar-

ize with the project, its documentation and structure. We will

also investigate how the crowd work compares to automated

approaches (topic modeling) when identifying programming

topics in tasks.

• Classifies tasks at different levels of complexity, such that

contributors to a project can judge whether they have the com-

petency to implement a task at a given complexity level (Fig.

1(d)). We will explore different approaches to calculating com-

plexity metrics (e.g., cyclomatic complexity, centrality of a file,

lines of code, or program structure).

• Recommends tasks to developers by matching their expertise

and the skill level required to complete a task. We will explore

different approaches, where we allow a newcomer to specify a

skill that they want to learn or follow the development trajectory

of a contributor in a project. We will also leverage developers’

expertise recommendation approaches (e.g. [22]) to assess de-

velopers skills, to match newcomers and tasks.

• Provides a network of near-peer mentors, who are either at the

same skill competency level or at a level above, who can sup-

port and learn from each other (Fig. 1(e)). Having near-peer

mentors help in two ways. First, the questions and problems that

newcomers face might be items that the near-peer mentors have

recently experienced, and, therefore can provide guidance on.

Second, it might help the near-peer mentor showcase their moti-

vation and passion in becoming part of the community.

4. OPPORTUNITIES AND CHALLENGES
There are several challenges and research opportunities in creating

a socio-technical approach, such as BugExchange, where auto-

mated techniques and humans operate side-by-side; these include:

Identifying required skills for a task: One of the key issues

faced by newcomers is the (technical) learning curve. Newcomers

have to understand the task requirements and the project itself to

determine whether they can implement a task. While some issue

trackers tag priorities or the type of an issue, none include the

skills required to complete the task. It is an open question whether

automated techniques, such as topic modeling, can identify re-

quired skills, or whether humans (or experts) are needed.

Determining task complexity: Simply identifying the skills

may not be enough, as some tasks are more complex than others.

For example, tasks that involve multiple files or files that are core

to the system are harder to implement. Therefore, we need to

compute complexity metrics for tasks, such that tasks can be

categorized into varying difficulty levels. Many different mecha-

nisms of computing complexity exist, we need to identify the

approaches that are light-weight and work best in our context.

Identifying information needs and providing the documenta-

tion necessary to accomplish a task: A large part of the barriers

that we identified in our previous work [17] could be mitigated by

providing the appropriate documentation to the newcomers. While

the recent rise of social media use by software developers has led

to a plethora of documentation being available online for virtually

any software product [20], this documentation is often poorly

structured, and spread across the API official documentation,

(a)

(b)

(c)

(d) (e)

Figure 1. BugExchange Workflow.

blogs, forums, mailing lists, and other social media sites [13]. An

open challenge is how to map the characteristics of a task to in-

formation needs, and then to automate the identification, extrac-

tion, summarization, and presentation of relevant documentation.

We are already investigating an extended FLOSScoach that lever-

ages existing and novel natural language processing techniques to

automatically parse documentation. An additional challenge will

be to map tasks to information needs, and them to documentation

available internally and externally to the project.

Recommending tasks: Once we identify the skills required for

a task and its complexity, we can match that with the expertise of

a (newcomer) contributor. For the completely uninitiated, a starter

task can be labeling the skills required for an open issue (task).

This will require newcomers to read the issues, project documen-

tation, the source code and its structure, helping them become

familiar with the project. An open challenge is how to evaluate the

quality of the labels (work) produced by the newcomers.

Once the system includes tasks that are labeled and the past

history of contributors, it can recommend appropriate tasks to

contributors. For example, one option is to provide tasks that

require higher competence of a particular skill. Another option is

to provide task recommendations based on a path followed by

other developers. While, such scaffolding in task recommenda-

tions can help retain newcomers, it is challenging to execute.

Creating recommendations requires not only knowing the back-

ground of contributors, but also taking into account aspects such

as developers’ motivation and availability, and the availability of

a large number of closed and open, labeled tasks in the project.

Forming and sustaining peer mentor networks: Communica-

tion and mentoring are key in onboarding newcomers to a project.

However, experts are busy with very limited time. Therefore, to

be successful, BugExchange has to provide incentives to the

project, and/or the contributors to be mentors. We conjecture that

connecting newcomers to near-peer mentors – developers who

have recently onboarded – is more beneficial since newcomers

can learn about the challenges and processes from someone who

has recently gone through the process, as pointed out by Glassman

et al. [5]. A challenge is to identify the near-peer mentors, people

who have joined the project in a certain time frame or reached a

certain milestone (e.g., gotten the first Pull Request accepted).

Another challenge, is providing meaningful incentives to mentors,

for example, recognition or achievement points in the community.

Transferring knowledge across projects in an OSS ecosys-

tem. Having (available) tasks from multiple projects that share the

same technical platform, infrastructure, or build on the stack can

serve dual purposes. First, it will provide a steady set of tasks at

different levels of complexity. Second, it will allow newcomers to

learn from one project and apply to another. Moreover, it will also

allow the creation of a more diverse set of peer-mentor networks.

However, the challenge lies in: (1) identifying the projects that

constitute an ecosystem (e.g., projects to which developers con-

tribute in parallel, or projects that share technical dependencies or

form part of a stack); and (2) the feasibility of learning from

performing tasks in one project and applying that knowledge to

another project, within the same ecosystem.

Using labeled tasks to identify microtasks to be

crowdsourced: Our approach may be extended to a crowd devel-

opment model. One of the challenges of crowdsourcing software

development is to break the tasks (or identify) microtasks. Mi-

crotasks are described by LaToza et al. [10] as short, self-

descriptive and modular tasks, that allow immediate contributions,

without deep knowledge of the project. Since our approach can

help identify easy issues, it can be used to point to microtasks that

can be crowdsourced. The main challenges here are the proper

identification of microtasks and the ability to create coordination

and incentive models for the crowd workers.

5. BugExchange

5.1 Preliminary Work
We have already started our work on two fronts. The first is to see

if project newcomers can label the skills required for a task, and

the second is the development of the infrastructure on which our

ideas will be built.

5.1.1 Task Labeling
Typically, OSS developers need to find task that they can imple-

ment. That is, they have to go through a list of available tasks and

determine which one is the most suited for them [3]. However,

their lack of experience in the project is often a hurdle [17].

We performed a study to investigate how well newcomers to

a project could label the tasks with the skills required to complete

the task. To do so, we employed nine crowd workers from ODesk

to analyze a task’s context (description, discussion, and source

code), and propose the skills they believed were relevant to solve

the task. The crowd workers had some Java experience, but were

inexperienced (like newcomers) to the project. We found that it is

possible to obtain most of the relevant skills by using a voting

mechanism to filter the output from multiple workers [11]. Our

results show that participants took about 30 minutes to perform

the labeling, which included reviewing the task and its associated

codebase. The minimum number of workers required (per task) to

get the best results was four. By using an agreement threshold of

25%, we obtained a 0.67 recall (missing few relevant skills) and

0.76 precision (adding few extraneous skills).

5.1.2 FLOSScoach
Based on the barriers model proposed in our previous study [17],

we built FLOSScoach, a portal to support the first steps of new-

comers to OSS projects [16]. The portal has been structured to

reflect the categories identified in the barriers model. Each catego-

ry was mapped onto a portal section that contains information and

strategies aimed at supporting newcomers in overcoming the

identified barriers. In the portal, newcomers find information on

the skills needed to contribute to a project, a step-by-step contri-

bution flow, the location of features (such as source code reposito-

ry, issue tracker and mailing list), and tips on how to interact with

the community and how to submit a patch.

Our preliminary study has shown that FLOSScoach helps

newcomers, by guiding them in their first steps, and increasing

their confidence in their ability to contribute to a project [16].

When we compared students' performance with and without

FLOSScoach, we found a significant drop in terms of self-efficacy

among students in the control group (not using FLOSScoach),

while the self-efficacy of students using the tool remained at a

high level. In addition, by analyzing diaries written during the

contribution process, we found evidence that FLOSScoach made

newcomers feel oriented and more comfortable with the process,

while those who did not have access to FLOSScoach, repeatedly

reported uncertainty and doubt on how to proceed.

5.2 Evaluation Plans
The aforementioned challenges will unfold in several research

lines. Each one will have its individual evaluation plan. However,

it is important to evaluate how they fit together. Given the breadth

of our approach, there are several research questions that need

answers: How effective are newcomers in labeling the required

skills of a task? How accurate are the task complexity measure-

ments? Are the identified information needs enough for a new-

comer to accomplish a task? Does the provided documentation

support task resolution? Are task recommendations appropriate to

the newcomer skills, motivations, and availability? Do the hints

and mentoring provided by the peers help newcomers in their

progress? What are newcomers learning while accomplishing

tasks and progressing through the different levels of difficulty?

How do they move across different levels of complexity of tasks?

How much knowledge is being transferred across projects?

To evaluate such a complex scenario in which learning, mo-

tivation, and inter-related activities play a role, it is necessary to

conduct a series of long-term, in-depth studies to evaluate how

newcomers follow our approach.

We plan to implement the approach into FLOSScoach. Simi-

larly to our prior work [16], we will evaluate the proposed ap-

proach with software engineering students from multiple universi-

ties, where they have to contribute to OSS as part of their course-

work. These students are exemplar newcomers, as they are new to

the OSS ecosystem, to the specific project, and to software devel-

opment in general. We will use diary studies to monitor the stu-

dents’ progress and to collect their impressions and tool usage.

The students will be required to log their task activities, any issues

they encountered, and everything else they did while working on

the tasks in a shared document. This kind of study enables access

to everyday behavior in a relatively unobtrusive manner, which

affords access to the experience’s immediacy, and also provides

accounts of phenomena over time. While students will be free to

work on a project of their choice and at a time in their own discre-

tion, we will ensure that the project selection is restricted within a

pre-determined ecosystem.

We will complement the diary studies with specific ques-

tionnaires, such as pre- and post-study self-efficacy and Technol-

ogy Acceptance Model (TAM). Self-efficacy is a measure of the

confidence in the participants’ perceived ability to perform a task,

which can impact one’s actual ability to complete a task [1]. TAM

is a model that assesses user perceptions about a technology’s

usefulness, usability, and future use. We will also interview in-

structors, project members, and run controlled user studies. Addi-

tionally, we will deploy our approach in multiple projects and

observe its use in the “wild”. We will conduct surveys and inter-

views of newcomers in these projects to get feedback.

6. CONCLUSION
Open Source Software (OSS) projects have become prominent

and support a large number of today’s society activities, becoming

an important economic driving force. Supporting newcomers to

the OSS projects is crucial for this whole ecosystem. Newcomers

do not know how to start or choose inappropriate tasks and end up

giving up [18]. We claim that if we can adequately support the

curation of tasks as a newcomer activity, many benefits will fol-

low: newcomers will gain understanding about the project and the

technologies and concepts involved, projects will have issue

trackers more organized, and newcomers will have more infor-

mation to support their decision on where to start. However, many

challenges are involved, such as providing adequate means to

newcomers evaluate the tasks, processing documentation and

source code, creating recommendation systems to aid the process,

proposing collective validation strategies for the information

provided, etc. Different research lines are necessary to overcome

these challenges. We will leverage our previous work, aggregating

the results of the individual research lines, testing how well we are

supporting newcomers, and the projects in their sustainability. We

conjecture that BugExchange may reduce newcomer dropouts and

foster more casual contributors [14] into the projects.

7. REFERENCES
[1] Bandura, A. 1986. Social foundations of thought and action:

a social cognitive theory. Prentice-Hall.

[2] Cubranic, D. et al. 2005. Hipikat: a project memory for

software development. IEEE Transactions on Software En-

gineering. 31, 6 (Jun. 2005), 446–465.

[3] Ducheneaut, N. 2005. Socialization in an Open Source

Software Community: A Socio-Technical Analysis. Com-

puter Supported Cooperative Work. 14, 4, 323–368.

[4] Fagerholm, F. et al. 2014. Onboarding in Open Source

Projects. IEEE Software. 31, 6 (Nov. 2014), 54–61.

[5] Glassman, E.L. et al. 2016. Learnersourcing Personalized

Hints. 19th ACM CSCW, 1626–1636.

[6] Hars, A. and Ou, S. 2001. Working for free? Motivations of

participating in open source projects. HICSS 2001, 1–9.

[7] Jensen, C. et al. 2011. Joining Free/Open Source Software

Communities: An Analysis of Newbies’ First Interactions

on Project Mailing Lists. HICSS 2011, 1–10.

[8] Jergensen, C. et al. 2011. The Onion Patch: Migration in

Open Source Ecosystems. ESEC/FSE 2011, 70–80.

[9] Krogh, G. von and Hippel, E. von 2003. Editorial: Special

issue on open source software development. Research Poli-

cy. 32, 7 (Jul. 2003), 1149–1157.

[10] LaToza, T.D. et al. 2013. Crowd development. CHASE

2013, 85–88.

[11] Leaño, R. et al. 2016. Labeling relevant skills in tasks: can

the crowd help? IEEE VL/HCC 2016.

[12] Park, Y. and Jensen, C. 2009. Beyond pretty pictures: Ex-

amining the benefits of code visualization for open source

newcomers. 5th IEEE VISSOFT, 3-10.

[13] Parnin, C. and Treude, C. 2011. Measuring API Documenta-

tion on the Web. 2nd International Workshop on Web 2.0

for Software Engineering, 25–30.

[14] Pinto, G. et al. 2016. More Common Than You Think: An

In-Depth Study of Casual Contributors. SANER 2016.

[15] Qureshi, I. and Fang, Y. 2011. Socialization in Open Source

Software Projects: A Growth Mixture Modeling Approach.

Organizational Research Methods. 14, 1, 208–238.

[16] Steinmacher, I. et al. 2016. Overcoming Open Source Pro-

ject Entry Barriers with a Portal for Newcomers. ICSE

2016.

[17] Steinmacher, I. et al. 2015. Social Barriers Faced by New-

comers Placing Their First Contribution in Open Source

Software Projects. 18th ACM CSCW 2015, 1–13.

[18] Steinmacher, I. et al. 2015. Understanding and Supporting

the Choice of an Appropriate Task to Start With In Open

Source Software Communities. HICSS 2015, 1–10.

[19] Steinmacher, I. et al. 2013. Why do newcomers abandon

open source software projects? CHASE 2013, 25–32.

[20] Storey, M.-A. et al. 2010. The Impact of Social Media on

Software Engineering Practices and Tools. FSE/SDP Work-

shop on Future of Software Engineering Research, 359–364.

[21] Wang, J. and Sarma, A. 2011. Which bug should I fix:

helping new developers onboard a new project. CHASE

2011, 76–79.

[22] Zhou, M. and Mockus, A. 2010. Developer fluency: Achiev-

ing true mastery in software projects. FSE 2010, 137–146.

[23] Zhou, M. and Mockus, A. 2011. Does the initial environ-

ment impact the future of developers. ICSE 2011, 271–280.

[24] Zhou, M. and Mockus, A. 2015. Who Will Stay in the

FLOSS Community? Modelling Participant’s Initial Behav-

iour. IEEE Tran on Soft Eng. 41, 1, 82–99

