
Almost There: A Study onQuasi-Contributors in Open Source
Software Projects

Igor Steinmacher
Federal University of Technology, Paraná

Campo Mourão, PR
Northern Arizona University

Flagstaff, AZ
igorfs@utfpr.edu.br

Gustavo Pinto
Federal University of Pará

Belém, PA
gpinto@ufpa.br

Igor Scaliante Wiese
Federal University of Technology, Paraná

Campo Mourão, PR
igor@utfpr.edu.br

Marco A. Gerosa
Northern Arizona University

Flagstaff, AZ
marco.gerosa@nau.edu

ABSTRACT
Recent studies suggest that well-known OSS projects struggle to
find the needed workforce to continue evolving—in part because
external developers fail to overcome their first contribution barriers.
In this paper, we investigate how and why quasi-contributors (exter-
nal developers who did not succeed in getting their contributions
accepted to an OSS project) fail. To achieve our goal, we collected
data from 21 popular, non-trivial GitHub projects, identified quasi-
contributors, and analyzed their pull-requests. In addition, we con-
ducted surveys with quasi-contributors, and projects’ integrators, to
understand their perceptions about nonacceptance.We found 10,099
quasi-contributors — about 70% of the total actual contributors —
that submitted 12,367 nonaccepted pull-requests. In five projects,
we found more quasi-contributors than actual contributors. About
one-third of the developers who took our survey disagreed with
the nonacceptance, and around 30% declared the nonacceptance
demotivated or prevented them from placing another pull-request.
The main reasons for pull-request nonacceptance from the quasi-
contributors’ perspectivewere “superseded/duplicated pull-request”
and “mismatch between developer’s and team’s vision/opinion.” A
manual analysis of a representative sample of 263 pull-requests
corroborated with this finding. We also found reasons related to
the relationship with the community and lack of experience or
commitment from the quasi-contributors. This empirical study is
particularly relevant to those interested in fostering developers’
participation and retention in OSS communities.

CCS CONCEPTS
• Software and its engineering → Open source model; •
Human-centered computing → Collaborative and social com-
puting;

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE, 2018, Sweden
© 2018 Copyright held by the owner/author(s).
ACM ISBN . . . $00.00
https://doi.org/

KEYWORDS
pull-requests, quasi-contributors, newcomers, open source software
ACM Reference Format:
Igor Steinmacher, Gustavo Pinto, Igor Scaliante Wiese, and Marco A. Gerosa.
2018. Almost There: A Study on Quasi-Contributors in Open Source Soft-
ware Projects. In Proceedings of International Conference on Software Engi-
neering, Sweden, 2018 (ICSE), 11 pages.
https://doi.org/

1 INTRODUCTION
Many developers, newcomers to a project, send contributions which
are not incorporated into the source code and give up trying.
Such “getting contributions accepted” barrier is frequently reported
as a major reason raised by newcomers that dropped out of the
projects [29, 30]. Sustaining work skills and knowledge in large,
complex projects is a formidable undertaking yet crucial for the
maintenance of long-lived OSS projects [6]. However, the number
of developers willing to compromise to this often non-paid activity
is not large. As a result, 64% of well-known, nontrivial, and popu-
lar OSS projects rely on 1–2 contributors to manage most of their
tasks [1]. Drop off from contributors is one of the main problems
that OSS projects face [3, 15].

Little is known about these quasi-contributors, i.e., developers
who have only nonaccepted contributions to a given OSS project.
The literature focus on factors that affect the likelihood to ac-
cept a contribution [10, 14, 16, 21, 25, 33, 34] or how long it may
take [36], analyzing indistinctly non-accepted contributions from
actual1 and quasi-contributors. In this study, we focus only on the
quasi-contributors side.

We analyze projects that follow the pull-request model, since
it is believed to offer a low barrier to entry for potential contrib-
utors [39, 40] and has been defined as the default model in well-
known social coding websites, such as GitHub and GitLab [11].
According to McDonald and Goggins [18], the pull-request model
leads to greater participation and more opportunities for review
and feedback from the community, as well as greater visibility for
potential contributors.
1We use the term “actual” to refer to contributors that have at least one accepted
pull-request in the project.

https://doi.org/
https://doi.org/

ICSE, 2018, Sweden Igor Steinmacher, Gustavo Pinto, Igor Scaliante Wiese, and Marco A. Gerosa

We investigate how common are quasi-contributors (and quasi-
contributions) in OSS projects that adopt the pull-request model
(RQ1), what are the reasons for nonacceptance (RQ2), and how
quasi-contributors perceive the nonacceptance (RQ3). To achieve
these goals, we collected and analyzed data from 21 active, nontriv-
ial, and popular OSS projects, and we conducted two surveys: one
with 355 quasi-contributors; and another with 21 project integrators
(i.e., developers who are in charge of accepting contributions [12]).
By analyzing this data, we make the following contributions: (i)
we bring the attention to one relevant yet neglected OSS devel-
oper, the quasi-contributor; (ii) we provide evidence that quasi-
contributors are rather common in popular OSS projects — they are
about 70% of the number of actual-contributors; (iii) we elucidate
19 reasons regarding nonacceptance through a survey with quasi-
contributors; (iv) we corroborate these findings by cross-validating
the results with an additional survey with 21 projects’ integrators,
and with a manual inspection of a representative sample of 263
quasi-contributions; and (v) we show that nonacceptance might
incur in demotivation, potentially preventing further contributions.

2 RELATEDWORK
Pull-based development is an emerging paradigm for distributed
software development that has been attracting open and closed
source projects, which are migrating their code to this environ-
ment [4, 10]. According to Gousios et al. [10] in pull-based develop-
ment, the work is distributed between a team, which submits, often
occasionally [22], changes to be considered for merging, and a core
team, which oversees the merging process, provides feedback, con-
ducts tests, requests changes, and finally accepts the contributions.

Previous studies on onboarding to OSS (e.g., [5, 7, 35, 41]) have
a survivability bias, focusing on who succeed or were retained.
Quasi-contributors show interest in participating and, with proper
support, could become casual or regular contributors. Indeed, OSS
communities are strongly interested in casual contributors: “casual
contributors create real value for the Mozilla” (Mozilla Community
Wiki [19]); “most of the code is written by casual contributors” (Article
about Node.js [13]). Looking only from the perspective of who
survived the onboarding process may not necessarily cover the
specific barriers and perceptions of these almost forgotten potential
contributors. Our results can orient OSS communities on where to
focus, newcomers on what to expect, and researchers on where to
conduct subsequent studies.

Previous research has studied pull-based development; for ex-
ample, Gousios et al. [10] found that the decision to merge a pull-
request is related to recently modified the code. They also found
that 53% of non-merged pull-requests are unmerged for reasons
related to the distributed nature of pull-based development, and
only 13% of the pull-requests are unmerged for technical reasons.
They report that the decision to merge a pull-request is mainly
influenced by whether the pull-request includes recently modified
code and that the time to merge is influenced by the developer’s pre-
vious track record, the size of the project and its test coverage, and
the project’s openness to external contributions. Padhye et al. [21]
complement this list, reporting that bug fixes are more likely to be
merged into the main projects than feature enhancements. While

these studies analyzed the reasons behind contribution nonaccep-
tance, in this paper, we complement this literature by focusing on
contributors whose pull-requests were not accepted.

Tsay et al. [34] focused on understanding the relationship be-
tween socio-technical aspects and the likelihood for pull-request
acceptance, reporting that the social connection between the sub-
mitter and project manager matters when the core team member
is evaluating the pull-request. Furthermore, highly discussed pull-
requests were much less likely to be accepted; however, the submit-
ter’s prior interaction in the project moderated this effect. Tao et
al. [33] also found that bad timing of patch submission and a lack of
communication with team members can lead to a negative review.

Gousios et al. also surveyed developers who merge pull-requests,
the so-called integrators [12], and developers who were trying
to submit a pull-request [9], called contributors. From the inte-
grator’s perspective, the authors reported social challenges that
needed to be addressed, for example, how to motivate contributors
to keep working on the project and how to explain the reasons for
nonacceptance without discouraging them. From the contributor’s
perspective, they found that it is important to reduce response time,
maintain awareness, and improve communication. They also found
that integrators decide to accept a contribution after analyzing
source code quality, code style, documentation, granularity, and
adherence to project conventions. Hellendoorn et al. [14] also con-
firm that code style is an important aspect. A second signal that
the integrators examine is whether the proposed pull-request is in
line with the project’s goals and target [12], which may be difficult
for a newcomer to ascertain. On the other hand, integrators report
that there is no difference in treatment of pull-requests from the
core team versus those from the community and that they postpone
the decision to merge in the case of technical factors. Rigby and
Storey [25] also observed this postponing effect.

Rahman and Roy [23] compared successful and unsuccessful
pull-requests made to GitHub projects. The authors report that a
few technical problems recur in the pull-requests; when they are not
properly solved, the pull-requests are not accepted. They also found
differences in the acceptance ratio when they compare projects
grouped by programming languages and domains. Additionally, the
authors show that the failure rate of pull-requests rapidly increases
when a large number of forks are created and that the number
and experience level of developers involved in a project affect the
success and failure rates of pull-requests. Finally, Yu et al. [39]
used a regression model on data extracted from GitHub projects
and found that several factors influence the pull-request latency,
including pull-request size, project age, team size, and delay to the
first human response. Soares et al. [28] also found similar results
using association rules.

Our paper differs from previous research in that we focused on
understanding “quasi-contributors” and their non-accepted contri-
butions, understanding how often quasi-contributors try to become
contributors, and why they fail. Our study is particularly relevant
because newcomers face many challenges when they attempt to
make their first contribution [31], and understanding the problems
related to “quasi-contributors” can help researchers and practi-
tioners think about new guidelines and tools to retain developers
attempting to contribute to software projects.

Almost There: A Study onQuasi-Contributors in Open Source Software Projects ICSE, 2018, Sweden

3 METHOD
The overreaching goal of this study is to gain an in-depth under-
standing of quasi-contributors. We designed the following three
research questions to guide our research:

RQ1. How common are quasi-contributors and quasi-
contributions?

This research question investigates how common quasi-
contributors (and quasi-contributions) are in our set of selected
projects. This is an important direction that deserves investigation
because, if several quasi-contributions have attempted multiple con-
tributions and encountered nonacceptance each time, this might in-
dicate that the OSS project is unfriendly to external contributors [4]
or that its coding standard is too hard to meet. To answer this ques-
tion, after identifying our target projects, we semi-automatically
studied their commit logs and pull-requests. To complement our
overview of quasi-contributions, for each analyzed project, we sta-
tistically studied the differences between unmerged and merged
pull-requests, by analyzing the number of comments made on the
pull-request, review comments (made on the commits), commits,
changed files, and line of codes added and deleted.

RQ2.Why were the quasi-contributions not accepted?

To answer this question and the next, we conducted two surveys
(details in Section 3.3) aimed at understanding the reasons for and
perceptions about nonacceptance. We received, respectively, 335
and 21 answers to our surveys, which were quantitatively and
qualitatively analyzed. We also studied a representative sample of
263 quasi-contributions, to cross-validate the survey results with
the results from the repositories.

RQ3. How do quasi-contributors perceive nonacceptance?

Since open source software is mainly driven by a community of
volunteers, motivation is crucial to keep developers contributing.
In our final research question, we analyzed our survey to under-
stand (1) whether quasi-contributors agree with the decision to
not merge their contributions; (2) whether nonacceptance incurs in
demotivation to further contribute; and (3) whether the feedback
received from the community was constructive.

3.1 Selecting Open Source Projects
We selected 21 of the most popular (in terms of stars) OSS projects
hosted on GitHub (excluding non-software projects, such as text-
books or bookmarks). However, when analyzing the most popular
projects, we found that most of them were written in JavaScript. To
foster diversity in our dataset [20], we hand-picked 5 additional OSS
projects written in other programming languages and previously
studied in another context [4].

Table 1 lists the selected projects and describes quantitative data
(in terms of lines of code, number of commits, number of pull-
requests, and number of contributors) about them. The selected
projects are relevant because, at the time of data collection (March,
2017), they were:

Active Along their life-cycle, they received more than 20K pull-
requests submitted by more than 14K contributors. On average,
the projects received their first pull-request five years before our
analysis. The projects in our data set received 15 pull-requests per
month on average (min=3; max=56).
Popular On GitHub, the number of stars is a proxy for popular-
ity [2]. The average number of stars is 24K (min=2.2K; max=107.K).
The median number of forks is 10.1K (min=2.4K; max=81K).
Non-Trivial They have, on average, 7 years of historical records.
Most of them are written in more than one programming language.
They have an average of 318k lines of code (3rd quartile: 420k).
Diverse The domain of our selected projects include web-mvc
frameworks (e.g., django and rails), web toolkits (e.g., jquery
and bootstrap), data science frameworks (e.g., tensorflow and
scikit-learn), content management systems (e.g., joomla!),
databases (e.g., mongo and redis), among others.
Frequently-Studied Some of the selected projects have been the
target of several software engineering studies, such as rails [4, 22],
django [1, 24], d3 [2, 24], and bootstrap [1, 2].

Table 1: Quantitative data about our selected projects. Lines
of Code (LoC) comprises blank and non-blank lines, and this
metric was collected from openhub.net. Project spring is an
acronym for spring-framework.

Pr
oj
ec
ts

M
ai
n
PL

#
Lo

C

#
C
om

m
it
s

#
PR

#
C
on

tr
ib
ut
or
s

angular TypeScript 472k 7K 5,649 1,582
bitcoin C++ 166k 13K 6,776 428

bootstrap JavaScript 48.5K 15K 7,203 844
caffe C++ 73.9k 4K 1,620 233
d3 JavaScript 41.5K 4K 1,050 119

django Python 236K 24K 8,097 1,379
docker Go 194K 31K 16,690 1,642
flask Python 9.6K 2K 991 381

jenkins JavaScript 108K 24K 2,694 455
joomla! PHP 368K 28K 10,127 535
jquery JavaScript 45.4K 6K 2,222 260

kubernetes Go 142K 45K 24,893 1,113
laravel PHP 75.2K 5K 2,533 394
mongo C++ 114K 37K 1,121 281
opencv C++ 161K 20K 6,065 696
rails Ruby 245K 60K 17,872 3,258
react JavaScript 104K 8K 4,815 956
redis C 142K 6K 973 220

scikit-learn Python 191K 21K 4,317 818
spring Java 648K 14K 1,205 201

tensorflow C++ 738K 15K 3,015 716

3.2 Identifying Quasi-Contributors
After curating our selection of OSS projects, we aimed to iden-
tify the quasi-contributors. We consider quasi-contributors those
newcomers to a project who submitted pull-request(s), but had no
“accepted contribution” to that specific project. We consider an ac-
cepted contribution any changes that passed the pull-request cycle
and, therefore, were merged to the project code base.

Pull-requests can either be open or closed, and merged or un-
merged. In a first step, we selected pull-requests that were both

ICSE, 2018, Sweden Igor Steinmacher, Gustavo Pinto, Igor Scaliante Wiese, and Marco A. Gerosa

closed and unmerged, since this indicates that the code review cycle
was complete (pull-request closed) and the contribution was not
accepted (pull-request unmerged). Then, for each one of the closed
and unmerged pull-requests, we analyzed whether the contribu-
tor that proposed the pull-request under investigation had already
provided any other pull-requests. When conducting this analysis,
we observed that some contributors provided a significant num-
ber of old pull-requests (e.g., before 2012) that were not classified
as merged. Digging into these old pull-requests revealed that, al-
though they appeared as not merged, some of the commits under
the pull-requests were indeed merged — but through the Command
Line Interface (CLI). This happened because GitHub started offer-
ing merging facilities through its web interface later 20112. Before
that, integrators had to merge pull-requests through git facilities.
Therefore, to exclude these false-positive unmerged pull-requests,
we restricted our search for pull-requests created after July 1st, 2011.
We download our pull-request dataset on February 20th, 2017.

Moreover, we investigated whether the contributor commits had
been directly merged to the main code base (i.e., without using
the merge button on GitHub). To do so, we locally performed a
git log using Secure Hash Algorithms (SHA) identifier for every
commit that was part of the previously identified pull-requests. The
git log facility searches for any commit mapped to the given
SHA code. If we found a commit using that SHA, we removed the
developer, as well as his/her pull-requests, from our list. However,
after conducting this process, some survey respondents still men-
tioned that their pull-requests (that our procedure categorized as
unmerged) were indeed merged. As they reported, projects such
as angular.js and django have specific merging procedures and,
therefore, do not leverage GitHub merge facilities. As one respon-
dent mentioned: “My pull-request wasn’t merged because my commit
was rebased and fast-forward merged into the project’s master branch.
Some repositories only merge changes in this way, in order to avoid
merging commits. AngularJS and Django are examples, as you can
see in their commits history.” Consequently, we conducted another
final filtering step to remove rebased commits. To do so, we queried
the GitHub API using the name of the project and the usernames in
our list to check whether any of the usernames in our list authored
a commit under the name of another committer with a different
SHA. This process also discards commits that were performed to
the main codebase without pull-requests.

At the end of this process, we identified a total of 10,099 quasi-
contributors who attempted to contribute a total of 12,367 pull-
requests scattered across 78,381 commits. For the manual analysis,
we sampled 263 pull-requests, which provides us a confidence level
of 95% with a ±6% confidence interval.

3.3 Understanding Quasi-Contributors
We conducted two surveys to better understand quasi-contributors’
motivations, benefits, and the problems they face. In our first survey,
our target population comprised 5,138 quasi-contributors whomade
a valid e-mail address publicly available. Our second survey was
delivered to 282 integrators with valid email addresses.

2https://github.com/blog/843-the-merge-button

The surveys were based on the recommendations of Kitchen-
ham et al. [17]. We also employed principles for increasing sur-
vey participation [27], such as sending personalized invitations,
allowing participants to remain completely anonymous, and ask-
ing closed and direct questions. Participation was voluntary and
the estimated time to complete each survey was 5-10 minutes. We
obtained 335 responses (6.5% response rate) in our first survey and
21 (7.44% response rate) in our second survey. Our first survey had
ten questions:
Q1. How often do you contribute to Free/Open Source Software

projects? Choices: {Daily, Weekly, Monthly, etc.}
Q2. Are you used to make contributions to different OSS

projects? Choices: {Yes, No}
Q3. Have we correctly identified you as someone who attempted

to contribute but did not succeed? If not, why?
Q4. What motivated you to make the pull-request(s) we identi-

fied?
Q5. Why your pull-request was not merged?
Q6. Do you agree with your pull-request being Unmerged? If

not, why?
Q7. Did the unmerged pull-request prevent or demotivate you

to provide more pull-requests? Choices: {Yes, No}
Q8. Were the comments from the project owners constructive?

If not, why not?
Q9. How frequently do you submit a pull-request to different

Projects? Choices: {Daily, Weekly, Monthly, etc.}
Q10. How often are your pull-requests unmerged (regardless of

the project)? Choices: {I don’t remember, None, A small part,
Half, Most}

When analyzing the quantitative data from the survey, we ob-
served that 79.1% of our respondents frequently make contributions
to OSS, and 59.1% of them contribute to different projects at least
bi-monthly. Interestingly, a non-negligible amount of developers
(32.4%) disagreed with the nonacceptance of their pull-request. We
also found that 44 developers (13.1%) informed us that we did not
correctly identify them as quasi-contributors. We provide discus-
sions about this fact in Section 7.
Q1. What is the acceptance rate of pull-requests in your project

(regardless if contributed from external or internal mem-
bers)? Choices: {10%, ..., 90%, I don’t know}

Q2. In your opinion, what are the challenges related to pull-
requests nonacceptance?

Q3. What are the common reasons for pull-request nonaccep-
tance? Would you point some pull-request that exemplify
any of the reasons?

Q4. Does your project welcome contributions from external de-
velopers (e.g., developers that are not active contributors)?
If yes, how?

Q5. How does your project guide developers towards having
their contributions accepted?

Q6. Are you aware of any pull-request that was not accepted due
to personal or social reasons? If so, why.

In this second survey, 52.3% of the integrators thought that their
projects accept 70%+ of the submitted pull-requests (33.3% had no
idea). Still, 100% of the integrators said that they are willing to
receive changes from external contributors, and they do so by (1)

Almost There: A Study onQuasi-Contributors in Open Source Software Projects ICSE, 2018, Sweden

being as kind as possible, (2) introducing how-to contribute guide,
and (3) welcoming pull-requests from external members (which
is not always the case of OSS projects [4]). Only one integrator
mentioned that PRs are not accepted “if conduct violations.”

3.4 Analyzing Data
We conducted different forms of data analysis. First, we examined
the distributions of the quasi-contributions and quasi-contributors
to answer our first research question (RQ1). For statistics, we used
the non-parametric Mann-Whitney-Wilcoxon (MWW) test [37] to
test whether there were differences among metrics (e.g., number
of comments, commits, lines added and deleted, changed files, and
review comments) collected from pull-requests merged and un-
merged. We also used Cliff’s Delta statistic, a nonparametric effect
size measure that quantifies the amount of difference between these
groups of observations beyond p-value interpretation. According
to Romano et al. [26], the magnitude of delta d is assessed using
the following thresholds: d <0.147 “negligible,” d <0.33 “small,” d
<0.474 “medium,” otherwise “large.”

In the second analysis, we followed open coding and axial coding
procedures [32] to qualitatively analyze open-ended questions from
our surveys and pull-requests discussions (RQ2). Three researchers
analyzed together all the qualitative data. We, firstly, analyzed
the answers from quasi-contributors. Afterwards, we analyzed the
answers from integrators and pull-requests discussions to cross-
validate and enrich the results.

The analysis of the open-ended questions of our quasi-
contributors survey was conducted in three steps. In the first step,
three researchers analyzed two sets of 20 answers, with the goal of
better defining and discussing the codes applied. Each cycle was
followed by a discussion, to reach consensus for the categoriza-
tion of each item. In the second step, each researcher analyzed
the rest of the answers independently, followed once again by a
discussion, until reaching consensus for the categorization of each
item. In the third step, the researchers analyzed the categories aim-
ing to refine the classification and group related codes in more
significant, higher level categories. In addition, we quantitatively
analyzed closed-ended questions (RQ3) to understand developers’
perceptions about nonacceptance.

To complement RQ2, we analyzed the discussions of pull-
requests from our sample and integrators’ answers to the survey.We
made use of the previously identified categories to check whether
the quasi-contributors perceptions would be confirmed. These two
sets of data had also been analyzed by three researchers indepen-
dently, followed by consensus discussions. In the results section,
we highlight the main themes that emerged along with quotes ex-
tracted from the pull-requests and open questions from our survey.
We chose quotes and cases based on their representativeness.

4 RESULTS
In this section, we report the results of our study grouped by each
research question.

4.1 RQ1. How common are quasi-contributors
and quasi-contributions?

We found a total of 10,099 unique quasi-contributors who have
performed a total of 12,367 unmerged pull-requests. By comparison,
the projects in our sample have a total of 14,623 actual contrib-
utors, who performed a total of 126,913 pull-requests. Figure 1
compares the number of quasi-contributors and actual contributors
per project.

Quasi
Actual

Quasi−Contributors and Actual Contributors

Projects

#
 o

f
c
o

n
tr

ib
u

to
rs

0
1

0
0

0
2

0
0

0
3

0
0

0
4

0
0

0

a b c d e f g h i j k l m n o p q r s t u

Figure 1: The number of quasi-contributors and actual con-
tributors. From left to right, the projects are: a. angular.js,
b. bitcoin, c. bootstrap, d. caffe, e. d3, f. django, g. docker, h.
flask, i. jenkins, j. joomla!, k. jquery, l. laravel, m. mongo,
n. opencv, o. rails, p. react, q. redis, r. scikit-learn, s.
spring-framework, t. tensorflow, u. kubernetes.

As noted in Figure 1, three projects presented more than 1,000
quasi-contributors (angular.js, bootstrap, rails), whereas five
projects have more than 1,000 actual contributors (angular.js,
django, docker, rails, and kubernetes).

In 5 out of the 21 analyzed projects, we found more quasi-
contributors than actual contributors. In some cases, the number
of quasi-contributors is significantly higher: for instance, project
bootstrap (c) has 2.3× more quasi-contributors than actual ones
(it has 1,962 quasi-contributors and 844 contributors). Project d3
has 235 quasi-contributors and 119 actual contributors — 2.0×more
quasi-contributors than actual ones. On average, there are 480.9
quasi-contributors per project (3rd quartile: 593.0, standard de-
viation: 459.0), and 730.4 actual contributors (3rd quartile: 844.0,
standard deviation: 706.7).

of attempts

#
 o

f
c
o
n
tr

ib
u
to

rs

2 4 6 8 10 12

0
2
0
0
0

6
0
0
0

1
0
0
0
0

Figure 2: Quasi-
contributors distribution

The identified quasi-
contributors submitted 12,367
unmerged contributions. On
average, a quasi-contributor
tried 1.22 times (3rd quartile:
1.00, standard deviation: 0.65).
The histogram (Fig. 2) presents
the overall distribution of the
pull-requests unmerged. This figure shows that 8,552 quasi-
contributors performed a single attempt, i.e., 84.68% of our
dataset of quasi-contributors were at least interested in becoming
casual-contributors [22]. Moreover, Figure 3 shows the distribution
of the 15% of quasi-contributors that have performed two or more
attempts. As this figure shows, project joomla! presented the
greatest ratio of attempts per user: 1.52. That is, in this project,

ICSE, 2018, Sweden Igor Steinmacher, Gustavo Pinto, Igor Scaliante Wiese, and Marco A. Gerosa

95 quasi-contributors (27.61%) have performed two or more
attempts. On the other hand, project flask had fewer attempts per
quasi-contributors: only 6.6% tried more than once.

0

10

20

30

0 5 10 15 20

projects

tw
ic

e_
or

_m
or

e

Figure 3: Percentage of quasi-contributors who have per-
formed two or more attempts to contribute. Each point rep-
resents one analyzed project, following the same order of
Figure 1.

Figure 4 shows the distribution of quasi-contributions per quasi-
contributor per analyzed project. As we can see in this figure, the av-
erage of quasi-contributions per project does not differ significantly
(project joomla! (j) is the only one with an average higher than
1.5), except for the few outliers. For instance, project bootstrap
had a total of 2,430 unmerged pull-requests, proposed by 1,962
quasi-contributors. In this particular project, one quasi-contributor
proposed 13 unaccepted pull-requests — the maximum number of
pull-requests proposed by a single person in our dataset. On the
other hand, project flask (h) unaccepted a total 214 pull-requests
proposed by 195 quasi-contributors. When taking into account
absolute numbers, project bootstrap (c) is the one with the great-
est number of quasi-contributions and quasi-contributors (2,430
and 1,962). Other representative examples are the projects angular
(a) (1,524 and 1,247, respectively) and rails (o) (1,289 and 1,066,
respectively).

a b c d e f g h i j k l m n o p q r s t u

2
6

1
0

Figure 4: The distribution of quasi-contributions per quasi-
contributor. Each boxplot represents one analyzed project,
following the same order of Figure 1.

To complement this overview of quasi-contributors and quasi-
contributions, for each analyzed project, we statistically compared
some metrics (number of comments, review comments, commits,
changed files, and line of codes added and deleted) from the un-
merged and accepted pull-requests. In Table 2, we show the effect
size of this comparison. Effect sizes are additionally colored on a

Table 2: Effect size comparison between unmerged and
merged pull-requests. EF means effect size and PV means
p-value.

Projects # Comments # Files # LoC Add # LoC Del
ES PV ES PV ES PV ES PV

angular -0.42 0.00 0.49 0.00 0.48 0.00 0.49 0.00
bitcoin 0.11 0.00 0.26 0.00 0.14 0.00 0.26 0.00

bootstrap -0.41 0.00 0.35 0.00 0.29 0.00 0.34 0.00
caffe 0.16 0.00 0.01 0.72 -0.01 0.39 0.13 0.12
d3 -0.35 0.00 0.01 0.38 0.01 0.39 0.01 0.12

django -0.38 0.00 0.26 0.00 0.13 0.00 0.35 0.00
docker 0.00 0.87 0.22 0.00 0.19 0.00 0.31 0.00
flask -0.38 0.00 0.00 0.98 -0.08 0.06 0.00 0.00

jenkins 0.00 0.00 0.26 0.00 0.21 0.00 0.32 0.00
joomla! 0.03 0.21 0.38 0.00 0.23 0.00 0.39 0.00
jquery -0.38 0.00 0.53 0.00 0.50 0.00 0.56 0.00

kubernetes 0.00 0.00 0.22 0.00 0.22 0.00 0.33 0.00
laravel -0.36 0.00 0.02 0.35 0.00 0.91 0.08 0.00
mongo -0.77 0.00 0.03 0.54 -0.00 0.96 0.06 0.36
opencv -0.24 0.00 0.18 0.00 0.17 0.00 0.31 0.00
rails -0.28 0.00 0.13 0.00 0.04 0.05 0.27 0.00
react -0.30 0.00 0.39 0.00 0.32 0.00 0.42 0.00
redis 0.20 0.00 0.00 0.92 0.00 0.93 0.09 0.04

scikit-learn -0.07 0.08 0.12 0.00 -0.07 0.09 0.13 0.00
spring -0.20 0.00 0.29 0.00 0.25 0.00 0.36 0.00

tensorflow -0.26 0.00 0.28 0.00 0.18 0.00 0.30 0.00

gradient from blue to orange. Cells in blue highlight when the
effect size is higher for the unmerged pull-request, whereas cells
in orange otherwise. Additionally, green cells represent statisti-
cally significant differences.

From this table, we removed the “Review Comments” and “Com-
mits” metrics because their effect sizes were negligible, in the major-
ity of the cases. For instance, using the “review comments”metric, in
only six projects (angular.js, bitcoin, django, jenkins, react,
and kubernetes), we found a small effect size. The median value of
“review comments” was zero for both groups. It is important to note
that “comments” and “review comments” differ in the sense that
the comments are inside the pull-request (e.g., to discuss why the
pull-request is important), and the reviewer comments are inside
the source code (e.g., to suggest implementation changes).

Moreover, we note that, in 13 projects the “number of comments”
was higher in unmerged pull-requests than in merged. Specifically,
in 7 projects (angular.js, bootstrap, d3, django, flask, jquery,
and laravel), we found a medium effect size, and one large effect
size (mongodb). This finding is in line with recent literature that
suggests that highly discussed pull-requests were much less likely
to be accepted [34].

Finally, when observing the remaining three metrics (“changed
files,” ‘lines of code added,” and “lines of code deleted”), we found
that, for most of the cases, merged pull-requests had higher val-
ues than unmerged ones. This result suggests that unmerged pull-
requests tend to be smaller. For instance, merged pull-requests
had a median value of 7,5 lines of codes added and 5 lines of code
deleted (unmerged pull-requests had a median value of 3 and 1,
respectively).

Almost There: A Study onQuasi-Contributors in Open Source Software Projects ICSE, 2018, Sweden

RQ1 Summary: Quasi-contributors are rather common. In our
sample, we found 10,099 quasi-contributors, and 14,623 actual
contributors. Five projects have more quasi-contributors than
actual ones. Most of the quasi-contributors (85%) try just once.
Quasi-contributions are more commented and smaller than ac-
cepted contributions.

4.2 RQ2. Why were the quasi-contributions not
accepted?

To understand the reasons why the pull-requests were not accepted,
we qualitatively analyzed the answers to an open question (Q5)
from our first survey. After analyzing and discussing the results,
we found 19 different reasons mentioned by the quasi-contributors.
The resulting reasons, with the number of mentions for each, are
presented in Table 3. To analyze how the perceived reason affects
the developers’ degree of agreement, we also show the number of
mentions for a given reason for those who disagreed with the pull-
request’s nonacceptance (in the third column). In the last column,
we present the percentage of mentions of each category given by
developers who disagreed.

From the table, it is possible to notice that the most common
reason for nonacceptance from the quasi-contributors perspective
was that their pull-requests were superseded/duplicated. In gen-
eral, the respondents answered that there was already something in
place (“Other pull-requests fixed the same issues as my pull-requests”),
or that someone else made a similar pull-request, which was ac-
cepted. An example was brought by a respondent who said “The
fix I submitted remained unmerged until someone else submitted the
exact same fix . . . the integrators accepted their (identical) fix and
closed mine.” Although 52 respondents mentioned this reason, only
7 of them (13.4%) disagreed with the nonacceptance.

Themismatch between developer’s and team’s vision/opin-
ion was the second most mentioned reason for nonacceptance (45
mentions). In this case, a high number of quasi-contributors (27
of them, or 60%) disagreed with the decision. This reason includes
the cases in which quasi-contributors thought something would
be good, useful, or needed to be changed, while the integrators
disagreed. There were cases in which the author of the pull-request
agreed with the project members’ positions, as reported by one
respondent “when you add a new feature to the project, your vision
can be out of tune with the vision of the project’s team, and this is
natural.” However, in 27 cases, this tag was associated with an an-
swer from developers who disagreed with the nonacceptance, for
example, one of them mentioned that “The project decided that was
not a bug they wanted to provide a fix for,” and another, a little more
nonconformist, answered that ”Because one person was skeptical.”

We could also observe that lack of interest from integrators
was presented as the reason for nonacceptance in 25 cases. In 18
(72%) cases, the developers did not agree with the way the decision
about the pull-request was made. Many of them (13) had been
simply ignored, and did not receive answers or reviews (e.g. “It was
ignored maybe because it was a very minor fix,” and “I did not receive
answers”), and some of them became upset, like the respondent

who stated: “That specific maintainer often ignores people’s pull-
requests and closes them without justification.” In other cases, quasi-
contributors perceived that the community was not supportive
enough to help them get their pull-request accepted, as reported
by a respondent: “The maintainer was unable to reproduce the bug
. . . a greater effort to reproduce the issue could have been made.”

It was interesting to find bureaucracy as a perceived reason
for nonacceptance (with a high disagreement with the nonaccep-
tance: 83.3%). Regarding bureaucracy, one respondent mentioned,
“The process is too onerous, and bureaucratic.” Quasi-contributors
mentioned that some required steps in the process hindered their
pull-request acceptance, for example, special types of sign-off, as
mentioned by two developers: “Introducing new features is prob-
lematic because the whole team needs to accept it.” In this case, the
developer mentioned that the pull-requests matched project require-
ments, passed tests, and still were not merged, because of these
sign-off specificities. Another interesting finding relates to license
issues. Six quasi-contributors mentioned signing an agreement or
the impossibility of providing the proprietary code to reproduce
the bug as the reason to nonacceptance.

Quasi-contributors also mentioned some better-received reasons,
just as “superseded/duplicated pull-request.” Work in progress
as a reason was mentioned by seven developers, and none of
them disagreed with the nonacceptance. In these cases, the quasi-
contributors reported that something was part of a bigger change al-
ready under development, as explained by a respondent: “There was
major work in progress that conflicted with the pull-request and would
finally also solve the problem.” Another reason with a relatively low
disagreement with the nonacceptance was PR not needed/not
relevant. Quasi-contributors that reported this reason appeared to
be convinced that the proposed change “wasn’t important enough
to warrant merging” or “was an unnecessary change.”

We also found quasi-contributors offering amea culpa as the rea-
son for nonacceptance; 20 respondents mentioned that the reason
was quasi-contributor’s lack of experience/commitment, like
in this case: “Because it was incomplete, and I never followed through
on the feedback to complete it.” Not an optimal solution was also
a reason that (24) quasi-contributors assumed the pull-request was
not good enough. One of them reported that the “[my] fix was iffy,”
and other just answered: “I made a mistake.”

An interesting observation is that 13 people (3.9%) mentioned
that they did not know the exact reason (e.g., “I do not know, it’s
been a very long time since this pull-request.”). More interesting is
observing that 9 of them did not agree with the nonacceptance. A
possible explanation for those who do not know is that they, in fact,
could not understand or did not accept the decision.

We also asked integrators their perception about nonacceptance.
According to them, the most common reason for nonacceptance
is PR not needed/not relevant (10 occurrences), for instance,
“[such contribution] solves the immediate/local problem but does not
address the deeper systemic issue.” The second most common reason
is guidelines not followed (9 occurrences). According to one
integrator, such guidelines can range from “coding style, lack of tests,
or messy versioning history.” Interestingly, none of the integrators
assumed themea culpa, i.e., the lack of interest from integrators
aforementioned, although one integrator raised the fact that there
are very few integrators available for reviewing code: “people love

ICSE, 2018, Sweden Igor Steinmacher, Gustavo Pinto, Igor Scaliante Wiese, and Marco A. Gerosa

Table 3: Self-perceived reason why pull-request was not
merged

Reason for nonacceptance mentions disagreed w/ % of
(# devs) nonacceptance disagreement

Superseded/duplicated pull
request 52 7 13.46%

Mismatch between developer’s
and team’s vision/opinion 45 27 60.00%

PR not needed/not relevant 37 8 21.62%
Lack of interest from integrators 25 18 72.00%
Not an optimal solution 24 2 8.33%
Lack of experience/commitment
from quasi-contributors’ 20 4 20.00%

Did not answer 14 3 21.43%
Don’t know 13 9 69.23%
Introduce side effects 12 2 16.67%
Lack of tests 11 2 18.18%
Incomplete change 10 4 40.00%
Work in progress 7 0 0.00%
Code/PR was obsolete 6 2 33.33%
Guidelines not followed 6 0 0.00%
License issues 6 3 50.00%
Not a bug 4 1 25.00%
Bureaucracy 6 5 83.33%
The project is too hard to
contribute 3 1 33.33%

Lack of communication skills 2 1 50.00%

to contribute code, but it’s harder to get people to spend time reviewing
other people’s code.” Instead, seven integrators also perceived this
fact, as one respondent mentioned: “some [quasi-]contributors are
not experienced with git, GitHub and/or C++.” According to one
integrator, such lack of experiencemight explain the high number of
superseded/duplicated pull-request, since quasi-contributors
“didn’t look for existing patches.” Finally, two integrators consider
small fixes, such as style or fixing typos, asnoisy, as one respondent
stated: “Trivial PRs that are more trouble than they are worth (e.g., a
non-native speaker attempting to add or improve comments).”

Ultimately, we manually investigated a representative sample
of 263 pull-requests to cross-validate the results from our surveys
about why the contributions were not accepted. We employed the
same codes used in the surveys to analyze the quasi-contributions.
In this analysis, we found that the most common reason for nonac-
ceptance is Superseded/Duplicated solution3 (32 occurrences),
followed by Quasi-contributors’ lack of experience/commit-
ment4 (25 occurrences) and PR not needed/not relevant5 (22
occurrences). This finding is in sharp agreement with our surveys.

RQ2 Summary: We identified 19 reasons for nonacceptance.
There is also a lack of communication, commitment, and experi-
ence. Integrators agree with quasi-contributors that not needed
pull-requests are among the most common cause for nonaccep-
tance. Manual investigation corroborated with the reasons for
nonacceptance found at the surveys.

4.3 RQ3. How do quasi-contributors perceive
nonacceptance?

To better understand quasi-contributors’ perceptions about their un-
merged pull-requests, we asked if they agreed with the integrators
3https://github.com/antirez/redis/pull/1160
4https://github.com/django/django/pull/6174
5https://github.com/moby/moby/pull/14576

Table 4: Demotivation regarding nonacceptance

Felt demotivated
Agreed with the nonacceptance Yes No

Yes 37 178
No 62 43

decision not to merge the pull-request (Q6), if this fact demotivated
them to further contribute (Q7), and if the comments received were
constructive (Q8). In addition, there were two open questions ask-
ing the developers about their motivation to contribute (Q4) and
the why they think their pull-request was not merged (Q5).

In Figure 5, we provide the results for the “yes/no” based ques-
tions. Most of the developers agreed with the decision of having
the pull-request unmerged (67.4%) and that the comments were
constructive (88.8%). We also can notice that, for 69.7% of the re-
spondents, having unmerged commits did not demotivate them
from providing more pull-requests. However, the number of un-
merged pull-requests, the 30.3% of the developers that reported
demotivation, and the 32.6% that reported disagreement with the
community decision are not negligible.

11.2

69.7

32.6

88.8

30.3

67.4

Were the comments in the PR
constructive? (n=331)

Did the unmerged PR prevent or
demotivate you to provide more

PRs? (n=323)

Do you agree with your PR
being unmerged? (n=322)

100% 80% 60% 40% 20% 0% 20% 40% 60% 80% 100%

Disagree

Agree

Figure 5: Perceptions about nonacceptance

Therefore, we took a closer look at these respondents to see how
their answers are related. By analyzing Table 4, we observe that 99
respondents did not agree with the pull-request nonacceptance, and
62.6% of them (62) answered that this fact demotivated or prevented
them from placing another pull-request. This can indicate that not
accepting a pull-request can be a driving force in demotivating
newcomers, confirming what was stated by Karl Fogel: “if a project
doesn’t make a good first impression, newcomers may wait a long
time before giving it a second chance” [8]. This finding might also
explain why most of the quasi-contributors placed just a single
quasi-contribution. Interestingly, some integrators are aware of
such side effect. Four respondents mentioned that dealing with
personalities and opinions is one of the main challenges that they
face, as one of them highlighted: “Wewant to encourage contributions
and refusing one, even for very good reasons, can be discouraging to
new contributors.”

RQ3 Summary: 32% of the quasi-contributors do not agree
with the decision of not having their contribution accepted
— for 19% of quasi-contributors that did not concur also felt
demotivated or prevented to place additional contributions. 12%
of the quasi-contributors reported that the feedback from the
code review was not constructive.

https://github.com/antirez/redis/pull/1160
https://github.com/django/django/pull/6174
https://github.com/moby/moby/pull/14576

Almost There: A Study onQuasi-Contributors in Open Source Software Projects ICSE, 2018, Sweden

5 DISCUSSION
In this section, we provide additional discussion on the data pre-
sented in the previous section.
Quasi-contributors should stand for their contributions. We
found cases inwhich the quasi-contributor disappeared shortly after
proposing the pull-request. Even if a proposed pull-request had
a robust implementation, integrators were unable to accept since
the proposed changes were not addressed during the code review
process. We observed this by manually analyzing pull-requests,
and it was confirmed by the quasi-contributors who reported they
did not make the requested change (category quasi-contributor’s
lack of experience/commitment in Table 5).
The eagerness to contribute is not always helpful. We noticed
that some contributions were not accepted because the quasi-
contributor failed to understand the contribution process adopted
by the project (e.g., contributions style) or internal implementation
details (e.g., do not know the difference between two variables6). If
quasi-contributors placed additional care in understanding such de-
tails, their contributions might have higher chances of acceptance.
The fast development cycle hinders external contributions.
External contributors face an additional challenge since contribu-
tions proposed to an outdated code are likely not accepted (category
Code/PR was obsolete). Further complicating this matter is that
outdating can happen in a matter of days, as we noticed in one
review: “Thx for the PR, but this change is not valid. In the latest
tutorial version (updated a few days ago), the app is served from /app,
which means that you don’t need /app in the URL.”
Typos are sometimes hard to fix. We found cases in which quasi-
contributions proposed simple typo fixes that were not accepted by
integrators. As one extreme example, one quasi-contributor added
one single comma to the documentation7, but integrators found
that it was better to keep the current wording than to accept ad-
ditional contributions (categoryMismatch between developer’s
and team’s vision/opinion). Yet, in our survey, two integrators
mentioned that such small contributions are noisy.
Some PRs were not accepted but were implemented. We found
cases where the proposed pull-request was not accepted by the
integrators, although integrators got inspired and implemented
the proposed solution themselves8. This was also mentioned by
13 quasi-contributors who answered our survey. It is important to
highlight that 10 out of these 13 disagreed with nonacceptance.
No tests, no fun. In some projects (e.g., bootstrap), if the pro-
posed contribution does not come with tests, the pull-request is
immediately closed – no questions asked (category Lack of tests).
Although newcomers are encouraged to file additional pull-requests
containing tests, we observed that few of them do so.
Integrators are not always kind. Although integrators men-
tioned in our survey that “we try to be as kind as possible,” we found
examples of impolite tone while dealing with quasi-contributors
(e.g., “Not crazy about adding an option for this.”). The category Lack
of interest from integrators was also recurrent in our survey

6https://github.com/angular/angular.js/pull/10810
7https://github.com/angular/angular.js/pull/9168
8https://github.com/twbs/bootstrap/pull/1900

with quasi-contributors and when analyzing the repositories. Im-
polite tone and lack of interest may demotivate quasi-contributors.
Truck Factor does not consider the number of developers will-
ing to contribute. The Truck Factor (TF) calculates “the number of
people on your team that have to be hit by a truck (or quit) before the
project is in serious trouble” [38]. When empirically evaluated, some
authors observed that some highly popular projects have indeed
a really small truck factor, which places a strong dependency on
specific contributors [1]. For instance, the project d3 has TF of 1,
which means that a single contributor is responsible for managing
most of the tasks related to the project. Notwithstanding, d3 has
235 quasi-contributors. That is, this low TF is not related to the
number of external contributors willing to contribute to the project.
“Scratching itches” plays a role. In our first survey, we asked
quasi-contributors what motivated them to contribute to the OSS
project. The four most common motivations are: (i) Fixing a bug
(102 occurrences), (ii) Scratching own itch (71 occurrences), (iii) Im-
proving the project (52 occurrences), and (iv) Altruism/Giving back
(51 occurrences). This result shows that a great part of the respon-
dents was attempting to fix a bug and scratch their own itch.
We observed that the results align with those presented by Pinto et
al. [22], who analyzed the motivation behind casual contributions.

6 IMPLICATIONS
This research has implications for different stakeholders.
OSS integrators: Since both integrators and quasi-contributors
agree that pull-requests that do not follow the guidelines are more
likely to be rejected (e.g., “Our project has strict rules for contributions
and PRs that do not follow the rules are not merged”), integrators can
clearly state what are their project norms upfront. We also found
that nonacceptance might demotivate quasi-contributors, incurring
in fewer contributions (RQ3). To prevent such behavior, OSS project
members should (1) state and follow a code of conduct and (2) be
kind and respectful. Finally, a clear roadmap describing the future
plans of the project might avoid PR not needed/relevant.
Newcomers to OSS project: Our surveys and our manual anal-
ysis showed evidence regarding a lack of commitment of quasi-
contributors (RQ1–RQ2). Therefore, it is important for newcomers
to work closely with integrators, and, when necessary, stand and ar-
gue for their contributions. Newcomers should also take a moment
to investigate whether there are existing pull-requests proposing
the same contribution, and, thus, avoid duplication. Newcomers not
only should back up their contributions with tests but also make
sure that their contributions do not introduce side effects.
CS educators: Some OSS projects do not even review contribu-
tions that do not come with tests (Section 5). Still, some tests are
hard to implement, as one integrator stated: “Typical case is con-
tributor figure out a way to implement the change but not how to
implement the tests.” Educators can discuss these scenarios of real-
world tests along with students. Additionally, software engineering
educators can bring non-accepted pull-requests, those considered
“not an optimal solution” (RQ2), to the classroom to engage stu-
dents to discuss and, eventually, propose better solutions. Finally,
since integrators and quasi-contributors reported a lack of experi-
ence with git and GitHub tools, it is important for the educators
to introduce such tools in introductory programming courses.

ICSE, 2018, Sweden Igor Steinmacher, Gustavo Pinto, Igor Scaliante Wiese, and Marco A. Gerosa

Researchers: We found 25 quasi-contributors pointing a lack of
interest from integrators. Still, two integrators also pointed out a
lack of integrators available to review. Researchers can take advan-
tage of this fact and introduce mechanisms to automate/simplify
code review, for example, verifying if the proposed pull-request is
touching an outdated code-base or generating test data based on
diff files. Researchers can also create techniques to compare pull-
requests and warn quasi-contributors if similar pull-requests are
found. Researchers can also introduce tools that identify impolite
tone and suggest alternatives.

7 THREATS TO VALIDITY
In an empirical study, there are always limitations. First, our re-
sults only apply to developers who attempted to contribute to OSS
projects hosted on GitHub. They do not cover software developers
in other source code hosting websites. Our results are limited by
our selection of OSS projects, which one might argue is small or
non-representative. However, we argue that the selected projects
are diverse in terms of domain, popularity, and activity (Section 3.1
provide greater details). Moreover, quasi-contributors are partic-
ularly relevant to OSS projects; in proprietary projects, although
developers may have similar challenges to contribute, they are re-
quired to contribute. This distinction made proprietary projects
unsuitable for this study. Moreover, we likely did not discover all
possible characteristics of quasi-contributions. With our methodol-
ogy and infrastructure 9, we expect similar analysis to be conducted
in the future when such characteristics become relevant. We also
expect to understand the integrators’ and the communities’ per-
spectives about the quasi-contributions. Still, comparing the quasi-
contributors’ unmerged pull-requests to the actual-contributors’
unmerged pull-requests can shed additional light to the phenome-
non.

When quantitatively analyzing data from the selected project, we
used statistical methods to mitigate the threats of generalizing data
based on our personal hypothesis. Moreover, since we leveraged
qualitative research methods to categorize the open-ended answers
to our surveys, as well as unmerged pull-requests, we may have
introduced categorization bias. To mitigate this bias, we conducted
this process in pairs and carefully discussed categorization among
the authors. Still regarding our surveys, the order that the questions
were presentedmay have influenced theway they answered. Instead
of randomizing the questions, we tried to order the questions based
on the natural sequence of actions to help respondents understand
the questions’ context. Moreover, we made our survey as short as
possible, none of the questions were mandatory, the responses were
anonymous, and participation was voluntary. We also employed
well-known survey principles [17, 27].

By conducting this study, it was possible to observe that git
and GitHub data can be mismatching, which can lead to misinter-
pretation. We noticed that, even with the facilities introduced by
the pull-based model, some projects still do not use this approach,
preferring to merge the contributions via git Command Line Inter-
face (CLI). Even using the CLI, this can be done in several ways,
which can lead to losing trace of a contribution, as reported by a
survey respondent: “eventually they copy the related code and inject

9https://doi.org/10.5281/zenodo.1154906

it into the project by their own developers.” In our study, we identi-
fied false-positives in two ways. First, we compared whether the
commits hash that appears at the pull-request exist in the git repos-
itory. Also, we queried GitHub users’ API to double-check whether
the quasi-contributor authored any commit in a given repository.
This API lists commits that were authored by a contributor under
different SHA identifiers. We removed any duplication. Second, our
survey asked whether we correctly identified the developer as a
quasi-contributor. Some respondents (13%) said that we did not.
We asked the respondents to help us by telling why they believe
this happened, and a summary of their answers is presented in Ta-
ble 5. We removed these cases from the analysis and implemented
heuristics to catch similar cases when possible.

Table 5: Participants perception on why mistakenly identi-
fied their pull-requests as Unmerged

Reason # answers
No Answer/ Do not know/ Did not give a reason 19
Amended in another commit/squashed 11
Manual merge/ Done outside GitHub workflow 4
Self-closed 2
PR done during migration and merged outside GitHub 1
PR went to another repo/branch 2

8 CONCLUSION
For OSS projects remain sustainable and evolve, it is important that
new contributors onboard the project fixing bugs and proposing
new features. However, the path to becoming an OSS contributor is
not always flowery. In this paper, we investigate quasi-contributors,
that is, OSS contributors that tried to contribute, but did not suc-
ceed. Through quantitative and qualitative analysis from software
repositories and two surveys with quasi-contributors and integra-
tors, we found that quasi-contributors are rather common, although
the majority of them only tried once. The most common reason
for nonacceptance was “mismatch between developer’s and team’s
vision/opinion,” followed by reasons related to a relationship with
the community, while others attributed fault to the developers (ei-
ther quasi-contributors or integrators). Still, about one-third of
the developers disagreed with their nonacceptance and declared
the nonacceptance demotivated or prevented them from placing
another pull-request. Our results can be relevant for developers
interested in contributing to OSS projects, by bringing common
issues that can lead to pull-request nonacceptance. In addition,
the outcomes can benefit those interested in building sustainable
communities and fostering contributions, since our results include
reasons that can potentially scare external members away.

For future work, we plan to propose and evaluate a virtual as-
sistant which will be in charge of helping newcomers to join a
community. Such virtual assistant, while offering guidance for new-
comers to overcome their first barriers, would lower the effort
required on the integrators side.

ACKNOWLEDGMENTS
We thanks the reviewers for their valuable comments. This work is
supported by the CNPq (Grants # 406308/2016-0 and # 430642/2016-
4); PROPESP/UFPA; and FAPESP (Grant # 2015/24527-3).

https://doi.org/10.5281/zenodo.1154906

Almost There: A Study onQuasi-Contributors in Open Source Software Projects ICSE, 2018, Sweden

REFERENCES
[1] Guilherme Avelino, Leonardo Teixeira Passos, André C. Hora, and Marco Tulio

Valente. 2016. A novel approach for estimating Truck Factors. In 24th IEEE
International Conference on Program Comprehension, ICPC 2016, Austin, TX, USA,
May 16-17, 2016. 1–10.

[2] H. Borges, A. Hora, and M. T. Valente. 2016. Understanding the Factors
That Impact the Popularity of GitHub Repositories. In 2016 IEEE International
Conference on Software Maintenance and Evolution (ICSME). 334–344. https:
//doi.org/10.1109/ICSME.2016.31

[3] Jailton Coelho andMarco Tulio Valente. 2017. WhyModern Open Source Projects
Fail. In 25th International Symposium on the Foundations of Software Engineering
(FSE). 186–196.

[4] Luiz Felipe Dias, Igor Steinmacher, Gustavo Pinto, Daniel Alencar da Costa, and
Marco Aurélio Gerosa. 2016. How Does the Shift to GitHub Impact Project
Collaboration?. In 2016 IEEE International Conference on Software Maintenance
and Evolution, ICSME 2016, Raleigh, NC, USA, October 2-7, 2016. 473–477.

[5] Nicolas Ducheneaut. 2005. Socialization in an Open Source Software Community:
A Socio-Technical Analysis. CSCW 14, 4 (Aug. 2005), 323–368.

[6] Susan Elliott Sim and Richard C. Holt. 1998. The Ramp-up Problem in Soft-
ware Projects: A Case Study of How Software Immigrants Naturalize. In 20th
International Conference on Software Engineering (ICSE ’98). 361–370.

[7] Fabian Fagerholm, Alejandro S. Guinea, JÃĳrgen MÃĳnch, and Jay Borenstein.
2014. The Role of Mentoring and Project Characteristics for Onboarding in Open
Source Software Projects. In 8th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM ’14). ACM, New York, NY, USA,
Article 55, 10 pages. https://doi.org/10.1145/2652524.2652540

[8] Karl Fogel. 2013. Producing Open Source Software: How to Run a Successful Free
Software Project (first ed.). O’Reilly Media. http://www.producingoss.com/
.Accessedon01-15-2015

[9] Georgios Gousios and Alberto Bacchelli. 2016. Work Practices and Challenges in
Pull-based Development: The Contributor’s Perspective. In ICSE. 358–368.

[10] Georgios Gousios, Martin Pinzger, and Arie van Deursen. 2014. An Exploratory
Study of the Pull-based Software Development Model. In 36th International
Conference on Software Engineering (ICSE 2014). ACM, New York, NY, USA, 345–
355. https://doi.org/10.1145/2568225.2568260

[11] Georgios Gousios, Martin Pinzger, and Arie van Deursen. 2014. An Exploratory
Study of the Pull-based Software Development Model. In 36th International
Conference on Software Engineering (ICSE 2014). 345–355.

[12] Georgios Gousios, Andy Zaidman, Margaret-Anne D. Storey, and Arie van
Deursen. 2015. Work Practices and Challenges in Pull-Based Development:
The Integrator’s Perspective. In ICSE. 358–368.

[13] Gordon Haff. 2017. Node.js: A project for casual contributors.
https://opensource.com/article/17/3/nodejs-community-casual-contributors.
(2017). [Online; accessed Jan 24, 2018].

[14] Vincent J. Hellendoorn, Premkumar T. Devanbu, and Alberto Bacchelli. 2015.
Will They Like This?: Evaluating Code Contributions with Language Models.
In 12th Working Conference on Mining Software Repositories (MSR ’15). IEEE
Press, Piscataway, NJ, USA, 157–167. http://dl.acm.org/citation.cfm?id=2820518.
2820539

[15] Guido Hertel, Sven Niedner, and Stefanie Herrmann. 2003. Motivation of software
developers in Open Source projects: an Internet-based survey of contributors
to the Linux kernel. Research Policy 32, 7 (2003), 1159 – 1177. Open Source
Software Development.

[16] Yujuan Jiang, Bram Adams, and Daniel M. Germán. 2013. Will my patch make
it? and how fast?: case study on the Linux kernel. In 10th Working Conference on
Mining Software Repositories, MSR ’13, San Francisco, CA, USA, May 18-19, 2013.
101–110.

[17] B.A. Kitchenham, S.L. Pfleeger, L.M. Pickard, P.W. Jones, D.C. Hoaglin, K. El Emam,
and J. Rosenberg. 2002. Preliminary guidelines for empirical research in software
engineering. Software Engineering, IEEE Transactions on 28, 8 (Aug 2002), 721–734.
https://doi.org/10.1109/TSE.2002.1027796

[18] Nora McDonald and Sean Goggins. 2013. Performance and Participation in
Open Source Software on GitHub. In CHI ’13 Extended Abstracts on Human
Factors in Computing Systems (CHI EA ’13). ACM, New York, NY, USA, 139–144.
https://doi.org/10.1145/2468356.2468382

[19] Mozilla. [n. d.]. Mozilla Community Wiki: Casual Contributors. https://wiki.
mozilla.org/Community#Casual_Contributor. ([n. d.]). [Online; accessed Jan 24,
2018].

[20] Meiyappan Nagappan, Thomas Zimmermann, and Christian Bird. 2013. Diversity
in Software Engineering Research. In 2013 9th Joint Meeting on Foundations of
Software Engineering (ESEC/FSE 2013). 466–476.

[21] Rohan Padhye, Senthil Mani, and Vibha Singhal Sinha. 2014. A Study of External
Community Contribution to Open-source Projects on GitHub. In 11th Working
Conference on Mining Software Repositories (MSR 2014). ACM, New York, NY, USA,
332–335. https://doi.org/10.1145/2597073.2597113

[22] G. Pinto, I. Steinmacher, and M. A. Gerosa. 2016. More Common Than You
Think: An In-depth Study of Casual Contributors. In 2016 IEEE 23rd International
Conference on Software Analysis, Evolution, and Reengineering (SANER), Vol. 1.
112–123. https://doi.org/10.1109/SANER.2016.68

[23] Mohammad Masudur Rahman, Chanchal K. Roy, and Jason A. Collins. 2016.
CoRReCT: Code Reviewer Recommendation in GitHub Based on Cross-project
and Technology Experience. In 38th International Conference on Software En-
gineering Companion (ICSE ’16). ACM, New York, NY, USA, 222–231. https:
//doi.org/10.1145/2889160.2889244

[24] Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and Premkumar Devanbu. 2014.
A Large Scale Study of Programming Languages and Code Quality in Github. In
22Nd ACM SIGSOFT International Symposium on Foundations of Software Engi-
neering (FSE 2014). 155–165.

[25] P. C. Rigby and M. A. Storey. 2011. Understanding broadcast based peer review on
open source software projects. In 2011 33rd International Conference on Software
Engineering (ICSE). 541–550. https://doi.org/10.1145/1985793.1985867

[26] J. Romano, J.D. Kromrey, J. Coraggio, and J. Skowronek. 2006. Appropriate
statistics for ordinal level data: Should we really be using t-test and Cohen’sd for
evaluating group differences on the NSSE and other surveys?. In annual meeting
of the Florida Association of Institutional Research. 1–3.

[27] E. Smith, R. Loftin, E. Murphy-Hill, C. Bird, and T. Zimmermann. 2013. Improving
developer participation rates in surveys. In CHASE. 89–92.

[28] Daricélio Moreira Soares, Manoel Limeira de Lima Júnior, Leonardo Murta, and
Alexandre Plastino. 2015. Acceptance Factors of Pull Requests in Open-source
Projects. In 30th Annual ACM Symposium on Applied Computing (SAC ’15). ACM,
New York, NY, USA, 1541–1546. https://doi.org/10.1145/2695664.2695856

[29] Igor Steinmacher, Ana Paula Chaves, Tayana Conte, and Marco AurÃľlio Gerosa.
2014. Preliminary empirical identification of barriers faced by newcomers to Open
Source Software projects.. In 28th Brazilian Symposium on Software Engineering
(SBES ’14). IEEE Computer Society, 1–10.

[30] Igor Steinmacher, Tayana Conte, and Marco AurÃľlio Gerosa. 2015. Understand-
ing and Supporting the Choice of an Appropriate Task to Start With In Open
Source Software Communities. In 48th Hawaiian International Conference in
Software Systems (HICSS ’15). 1 – 10.

[31] Igor Steinmacher, Tayana Conte, Marco AurÃľlio Gerosa, and David F. Redmiles.
2015. Social Barriers Faced by Newcomers Placing Their First Contribution in
Open Source Software Projects. In 18th ACM Conference on Computer Supported
Cooperative Work & Social Computing (CSCW ’15). ACM, New York, NY, USA,
1–13.

[32] Anselm Strauss and Juliet M. Corbin. 2007. Basics of Qualitative Research :
Techniques and Procedures for Developing Grounded Theory (3rd ed.). SAGE
Publications.

[33] Y. Tao, D. Han, and S. Kim. 2014. Writing Acceptable Patches: An Empirical Study
of Open Source Project Patches. In 2014 IEEE International Conference on Software
Maintenance and Evolution. 271–280. https://doi.org/10.1109/ICSME.2014.49

[34] Jason Tsay, Laura Dabbish, and James Herbsleb. 2014. Influence of social and
technical factors for evaluating contribution in GitHub. In ICSE. 356–366.

[35] Georg von Krogh and Eric von Hippel. 2003. Editorial: Special issue on open
source software development. Research Policy 32, 7 (July 2003), 1149–1157.

[36] Peter Weißgerber, Daniel Neu, and Stephan Diehl. 2008. Small patches get in!. In
2008 International Working Conference on Mining Software Repositories, MSR 2008
(Co-located with ICSE), Leipzig, Germany, May 10-11, 2008, Proceedings. 67–76.

[37] D.S. Wilks. 2011. Statistical Methods in the Atmospheric Sciences. Academic Press.
https://books.google.com.br/books?id=IJuCVtQ0ySIC

[38] LaurieWilliams and Robert Kessler. 2002. Pair Programming Illuminated. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[39] Yue Yu, Huaimin Wang, Vladimir Filkov, Premkumar Devanbu, and Bogdan
Vasilescu. 2015. Wait for It: Determinants of Pull Request Evaluation Latency on
GitHub. In 12th Working Conference on Mining Software Repositories (MSR ’15).
IEEE Press, Piscataway, NJ, USA, 367–371. http://dl.acm.org/citation.cfm?id=
2820518.2820564

[40] Yue Yu, Huaimin Wang, Gang Yin, and Tao Wang. 2016. Reviewer Recommenda-
tion for Pull-requests in GitHub. Inf. Softw. Technol. 74, C (June 2016), 204–218.
https://doi.org/10.1016/j.infsof.2016.01.004

[41] Minghui Zhou and Audris Mockus. 2015. Who Will Stay in the FLOSS Commu-
nity? Modelling Participant’s Initial Behaviour. IEEE Transactions on Software
Engineering 41, 1 (2015), 82–99. https://doi.org/10.1109/TSE.2014.2349496

https://doi.org/10.1109/ICSME.2016.31
https://doi.org/10.1109/ICSME.2016.31
https://doi.org/10.1145/2652524.2652540
http://www.producingoss.com/.Accessedon01-15-2015
http://www.producingoss.com/.Accessedon01-15-2015
https://doi.org/10.1145/2568225.2568260
http://dl.acm.org/citation.cfm?id=2820518.2820539
http://dl.acm.org/citation.cfm?id=2820518.2820539
https://doi.org/10.1109/TSE.2002.1027796
https://doi.org/10.1145/2468356.2468382
https://wiki.mozilla.org/Community#Casual_Contributor
https://wiki.mozilla.org/Community#Casual_Contributor
https://doi.org/10.1145/2597073.2597113
https://doi.org/10.1109/SANER.2016.68
https://doi.org/10.1145/2889160.2889244
https://doi.org/10.1145/2889160.2889244
https://doi.org/10.1145/1985793.1985867
https://doi.org/10.1145/2695664.2695856
https://doi.org/10.1109/ICSME.2014.49
https://books.google.com.br/books?id=IJuCVtQ0ySIC
http://dl.acm.org/citation.cfm?id=2820518.2820564
http://dl.acm.org/citation.cfm?id=2820518.2820564
https://doi.org/10.1016/j.infsof.2016.01.004
https://doi.org/10.1109/TSE.2014.2349496

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Selecting Open Source Projects
	3.2 Identifying Quasi-Contributors
	3.3 Understanding Quasi-Contributors
	3.4 Analyzing Data

	4 Results
	4.1 RQ1. How common are quasi-contributors and quasi-contributions?
	4.2 RQ2. Why were the quasi-contributions not accepted?
	4.3 RQ3. How do quasi-contributors perceive nonacceptance?

	5 Discussion
	6 Implications
	7 Threats to Validity
	8 Conclusion
	Acknowledgments
	References

