
Training Software Engineers using Open-Source
Software: The Students’ Perspective

Gustavo Pinto1, Clarice Ferreira1, Cleice Souza2, Igor Steinmacher3, Paulo Meirelles4
1Federal University of Pará (UFPA), 2Federal Institute of Pará (UFPA), 3Northern Arizona University (NAU),

4Federal University of São Paulo (UNIFESP)

Abstract—Software Engineering courses often emphasize
teaching methodologies and concepts in small and controlled
environments over teaching, say, maintenance aspects of full-
fledged real software systems. This decision is partly justified
due to the difficulty of bringing to the context of a classroom a
real software project. The widespread presence of open source
projects, however, is contributing to alleviating this problem.
Several instructors have already adopted contributions to open
source projects as part of their evaluation process, and these
instructors reported many benefits, including the improvement
on students’ technical and social skills. However, little is known
about the students’ perceptions regarding the need to contribute
to an open source project as part of a Software Engineering
course. To better understand the students’ challenges, benefits,
and attitudes, we conducted 21 semi-structured interviews with
students who took these courses in five different Brazilian
universities. We also enriched this data with an analysis of
commits performed in the repositories that students contributed
to. We observed that even though some instructors chose the
open source projects to students to work themselves, some
students and even the open source community participated in the
process of choosing projects and tasks. Students’ contributions
varied concerning both complexity (measured by the number
of additions, deletions, and edited files) and diversity (measured
regarding the different programming languages used). Among
the benefits, students reported improving their technical skills
and their self-confidence. Finally, some students found extremely
important for instructors’ being involved with open source
initiatives (extra-classroom).

Index Terms—Open Source Software, Open Source Commu-
nities, Software Engineering Courses

I. INTRODUCTION

The Software Engineering discipline is one of the most
difficult to teach and learn [1], [2], which is mainly due
to the constant flow of new technologies and tools that
one should master. Traditional software engineering courses
often emphasize theoretical methodologies and concepts, over
teaching students how to deal with existing and complex
software systems [3], [4]. However, although the software
industry depends on software developers who know how to
handle legacy code, the same software industry has little time
available to train unskilled yet promising software developers.

To better align with the software engineering practice, soft-
ware engineering courses ought to include skills and attitudes
that go beyond concepts, methods, and techniques to align with
the current software development landscape [5]. This change
requires going beyond the boundaries of the traditional way
of teaching software engineering, paying more attention to
the complexity of social interactions, in particular, discussing

how collaborative software development occurs in a real-world
environment [6].

However, it is far from trivial to bring software projects
developed inside a software company to the context of a class-
room due to license issues or the possibility to disclose sensi-
tive information [7]; even to interact with software companies
regarding educational matters is not a straightforward task.
Thus, a commonly adopted strategy is to conduct collaborative
projects, with students working in teams — in some cases in
distributed settings, with teams composed of students from
different universities. However, these projects are in general
toy projects tailored to the context of the course; they hardly
exhibit maturity or the breadth of scope necessary for use in
real software development.

As an attempt to bridge this gap, one approach that is
gaining increasing interest is to foster students to participate in
Open Source Software (OSS) projects as part of the course [5],
[6]. OSS projects are environments inherently collaborative,
which stand on the shoulders of a community that interacts
to build a software system. Participation in this kind of
project enables students to interact with real systems, real
problems, and real software development teams interested in
building high-quality working software. Thus, students have
a unique opportunity to learn attitudes only present in real-
world scenarios, which can increase not only their skills but
also their self-confidence [8].

In a previous work, we investigated the instructors’ per-
spective on the use of OSS projects in Software Engineering
courses [6]. According to the instructors, the benefits of this
practice outweigh the challenges given that it improves not
only students’ technical skills but also develops their social
skills. Also, instructors emphasized that the chance of having
accepted contributions to recognized OSS projects can be
beneficial to compose a portfolio to the students use it in
future employment opportunities. Concerning the challenges,
instructors reported that the time constraint of a course that can
hinder students’ engagement with the OSS project. Still, since
students are working with particular tasks in many different
OSS projects, it is hard for instructors to guide students
properly.

As a follow up to our previous work, we sought to investi-
gate students’ perceptions regarding this kind of practice. To
achieve this goal, we conducted 21 interviews with students
who had the opportunity to participate in courses (either in
undergraduate or graduate courses) that leverage OSS projects.

The evidence obtained from a qualitative analysis of the
interviews yield important lessons that can inspire instructors
who want to foster student participation in OSS initiatives.
The results may also be of interest to OSS communities that
want to take advantage of the students’ workforce.

Our main findings include:
1) Choosing the right project and the right task to be ac-

complished in the course requires a good understanding
of OSS practices (e.g., bug trackers, git, or command
line interface). However, a task can be better chosen if
in collaboration with instructors, students and the OSS
community itself (but it would require instructors to be
involved with OSS communities);

2) The majority of the students succeed to contribute to
OSS. The students’ contributions varied regarding com-
plexity (measured by the number of additions, deletions,
and edited files) as well as diversity (measured by
the domain of the contributed projects as well as the
programming languages used). Non-traditional program-
ming languages, such as Scala, Objective-C, or even
Elixir, were also explored to perform contributions;

3) The main benefits perceived were associated with the
fact of dealing with a real software project and un-
derstanding the process of developing real software.
However, some challenges still reside such as dealing
with complex codebase or the lack of time to contribute;

4) Even though instructors are not experts in the OSS
projects, students perceived that the instructors’ involve-
ment in extra-class OSS activities (e.g., either doing
research or contributing to OSS project) is extremely
important to flow the course better.

II. METHOD

In this section, we state the research questions and the
process followed to conduct the interviews.

A. Research Questions
We defined five research questions that guided our study.

They are:
RQ1. What are the strategies used to choose the open source

projects that students would contribute to?
RQ2. How do the students choose the task they work with?
RQ3. What is the nature of the contributions that students

performed?
RQ4. What are the benefits of being exposed to open source

software development?
RQ5. What are the challenges of being exposed to open source

software development?
The research questions were primarily answered based on

the interviews conducted. In particular, we also enriched
the RQ3 answer with an investigation of the contributions
performed at the studied OSS projects.

B. Interviews
In this section, we describe the procedure followed to select

participants for the interviews, how do the interviews were
conducted, and how did we analyze the interviews.

1) Participants Selection: We selected the participants
based on our previous study [6], which studied the instructors’
perspective that leverage OSS projects to students work. Based
on the contacts previously established with the instructors, we
asked them to contact the students who participated in their
courses. By having the contact of those interested, we invited
the students to participate in our interview via e-mail. We did
that in a way that the number of participants from different
universities was similar.

During five weeks, we sent 52 invitations (approximately
ten invitations per week). We ended up confirming 20 stu-
dents interested in participating in our research. Unfortunately,
although some students showed a priori interest, some of
them were unable to participate due to time constraints.
We interviewed 16 students. The first two interviews were
conducted in a pilot format, aiming to assess the quality and
length of the interview script. After these two pilot-interviews,
we revised the interview script (we removed some questions
as well as inserted and improved others). The two students
that participated in the pilot-interviews were discarded from
the final set of participants studied. After this first set of
interviews were transcribed and analyzed; we conducted seven
more interviews. These additional interviews were helpful to
substantiate the main categories further already observed, but
we were unable to add any new category to our analysis,
showing signs of saturation. In the end, we interviewed 23
students (two discarded). Demographics information regarding
the 21 participants interviewed are depicted at Table I.

2) Interview Process: We conducted semi-structured inter-
views using an audio conference software. We recorded the
interviews with the participants’ consent. We conducted and
analyzed the first set of interviews during October and Decem-
ber 2017. The remaining seven interviews were conducted and
analyzed between May and July 2018. The 21 interviews lasted
on average 49 minutes (min: 24 minutes; max: 77 minutes).
The interview script was composed of five parts:

1) In the first part, we asked our interviewees questions
about their profile, in particular, which university/course
do they had the course, and some initial questions
regarding the course (e.g., the period, requirements (if
any), and other information);

2) In the second part, we asked the interviewees about the
goal of the course, the duration, and which instructor
taught the course. We also asked about the student
participation in the course and regarding the evaluation
format;

3) In the third part, we asked about how do the stu-
dents chose the OSS project. We also asked about the
complexity of the project and the used programming
language, as well as, the students’ knowledge in that
particular programming language. Moreover, how do the
task was chosen, which kind of contribution the students
made to the selected projects, the interaction with the
OSS community, and the difficulties to interact with the
communities (if any);

4) In the fourth part, we asked about the contribution pro-

cess and the collaboration with the OSS communities. In
particular, we asked our interviewees whether they had
already contributed to OSS before the course. We also
asked whether they succeed in contributing to an OSS
project during the course, the number of contributions
made, as well as, whether they had support from OSS
maintainers and what were the challenges to contribute
to OSS projects;

5) Finally, we asked the interviewees to report the benefits
perceived and the hidden challenges related to contribute
to OSS project as part of a Software Engineering course.
We also asked them to indicate the importance of
the instructors’ involvement in OSS initiative (extra-
classroom), if any. Finally, as ask the interviewees to
suggest improvements in the courses.

C. Interview Analysis

The interview analysis comprehends four steps:
1) Familiarizing with the data: At this stage, we read

and re-read the interview transcript several times to get
acquainted with particular terms that we were not yet
familiar. When needed, we also searched on forums and
mailing lists to better familiarize with the terms.

2) Initial coding: In this step, we added codes, that is, labels
that could express the meaning of the excerpts of the
interview that had appropriate actions or perceptions.
The initial codes are considered temporaries since they
still need refinement. The codes were identified and
refined throughout all the analysis.

3) From codes to categories: Here we already had an
initial list of codes. We then begin to look for similar
codes in the data. We grouped the codes with similar
characteristics in broader categories. Eventually, we also
had to refine the categories found.

4) Categories refinement: Here we have a potential set of
categories. We then search for evidence that supported
or refuted the categories found. We also renamed some
categories to describe the excerpts better there. The final
categories are present throughout Section III.

We conducted the interview analysis in pairs followed by
conflict resolution meetings. During the meetings, at least
one more co-author was present to mediate the discussion.
The categories discussed in this paper are the result of these
consensus meetings.

D. Summary of the participants

Table I shows a summary of the students that participated in
our study. All interviewees are Brazilian, and their interviews
were conducted in Portuguese and later translated into English.
We refer to the participants as P1–P21. The participants P9,
P20, and P21 took two courses those leverage contributions
to OSS in two different universities (U3 during their under-
graduate studies and U4 during her graduate studies). In this
case, we grouped her perception according to the university
which they took the course. As one can see, seven out of
the 21 participants are female, and seven participants took the

courses while working towards their Masters or PhDs. The
majority of the participants (16 of them) did not have previous
experience in contributing to OSS projects before the course.
The participants were required to contribute to OSS during
part of the term of the course, which varied from 2–3 weeks
up to 2 months. On average, the participants have 27.8 years
old.

III. RESULTS

In this section, we present our main results grouped by the
research questions.

A. RQ1: What are the strategies used to choose the open
source projects that students would contribute to?

Among the strategies used to choose OSS projects, we
highlight (i) the freedom to choose OSS projects (9 occur-
rences), (ii) the instructors’ indication (8 occurrences), and
(iii) the previous knowledge about the OSS community (4
occurrences). Here we discuss these strategies.

1) Freedom to choose open source projects: According to
eight students, the instructor gave total freedom to students
to choose the OSS projects they would like to contribute.
For instance, P1 mentioned that the instructor “[...] gave us
the freedom to choose the project we wanted to contribute
to”. Participant P3 also mentioned that “the instructor did not
impose any restrictions related to the open source project”.
Still, the participant P11 affirmed that “[...] the instructors
provided the necessary background and made students free
to choose any interesting open source project”. Also, P8
described that “we could choose any open source project [. . .]
we chose an open source project initially created (in the past)
inside the university; therefore, we could be closer to the
maintainers”.

We also observed other scenarios in which the instructor
gave partial freedom to the students choose the projects. In
this case, the instructor had a set of guidelines that the students
should follow when looking for representative OSS projects.
As an example, P5 mentioned that “the criteria for choosing
the OSS project were the simplicity of the project, previous
experience with the programming language, and the affinity
with the project”. In another institution, P9 cited such approach
in the course they took: “generally speaking, the only strong
requirement was that the project should be active. Even better
if the project could be related to our master’s research”.

2) Instructors’ indication: For some courses, we observed
that the chosen projects were based on the instructors’ indica-
tion. Five students stated this, as P2 highlighted: “Firstly, the
instructor chose the OSS project for us”. However, we also
observed cases in which the instructor had a previous list of
potential projects, and the students had to decide which one
from that list interest them. P5 reported that “the students had
to choose between GNOME or KDE”. The instructors’ partic-
ipation in OSS initiatives also appeared as a relevant factor
for choosing a project, as P9 pointed out: “before the course
started, the instructor already filtered several maintainers from

TABLE I
DEMOGRAPHICS INFORMATION OF THE PARTICIPANTS.

Age Gender University Level of the course Current occupation Previous exp. with OSS? Year of the course
P1 27 Female U2 Undergraduate Software Developer No 2013
P2 23 Female U5 Undergraduate Software Developer No 2015
P3 25 Female U5 Undergraduate Graduate Student No 2013
P4 24 Male U3 Undergraduate Lecturer (temporary) Yes 2013
P5 25 Male U5 Undergraduate Software Developer Yes 2016
P6 26 Male U3 Undergraduate Software Developer Yes 2015
P7 26 Male U2 Undergraduate Software Developer No 2013
P8 24 Male U2 Undergraduate Software Developer No 2013
P9 27 Male U3/ U4 Undergraduate / Graduate Graduate Student No 2014/2016
P10 25 Female U3 Undergraduate Consultant No 2015
P11 30 Male U3 Undergraduate Graduate Student No 2013
P12 34 Male U1 Graduate System Analyst No 2012
P13 33 Male U1 Graduate Entrepreneur Yes 2012
P14 31 Male U2 Undergraduate Software Developer Yes 2013
P15 23 Male U5 Undergraduate Graduate Student No 2016
P16 22 Male U5 Undergraduate Graduate Student No 2016
P17 36 Female U1 Graduate Graduate Student No 2012
P18 23 Female U5 Undergraduate Graduate Student No 2016
P19 50 Female U1 Graduate Faculty No 2012
P20 24 Male U3/ U4 Undergraduate / Graduate Graduate Student No 2016/2018
P21 26 Male U3/ U4 Undergraduate / Graduate Graduate Student No 2013/2018

some consolidated OSS projects. After that, they observed who
would have availability to give some support to the students”.

Finally, P6 indicated a collaborative way for choosing the
OSS projects to contribute to: “The instructor selected the
list of enrolled students at the beginning of the semester and
grouped the students based on their previous programming
experience. If the student did not have the necessary experi-
ence, they gave a challenge to that student. They also asked
the students from the lab to assist the class. All the students
gave their opinions about the selected projects. Finally, the
instructor checked the background of the students. If, for
example, the student had a good background in C, then the
student could work with this project here[...] ”. Still, to assess
students’ experience, the instructor also asked students to
fill a questionnaire at the beginning of the semester. In this
questionnaire, the students should indicate three OSS projects
from the initial set of projects that the instructor curated. The
goal is to have teams with balanced programming experience.
The students with good programming background played a
“coach” role in the team (as in the XP agile method). In this
case, the project was chosen using a set of criteria that the
instructor defined after evaluating students’ background.

3) Prior knowledge about the open source community:
We also identified some cases in which the OSS projects
were chosen based on prior knowledge about the community
responsible for that given OSS project. This prior knowledge
about the OSS project and its community could either be from
the instructor or the students. As an example, participant P4
mentioned that one student “chose an OSS project that they
were already familiar with”. Moreover, P1 mentioned that
“[the instructor] already knew the maintainers that created the
game we were interested in contributing to. Therefore, since
we could easily get in touch with them, we decided to work
on this project.” In two cases, the instructor had the previous

contact with the OSS community. One of these cases was
pointed out by participant P4: “the instructor chose several
projects that they had good contact with the community [...]
from varied programming languages and domains”. Finally,
P10 discussed that: “the instructor chose some projects that
they found interesting, or projects that they had a contact from
within”.

RQ1 Summary: Among the strategies employed to choose
OSS projects, some instructors gave total or partial freedom
to the students to choose whatever project they want to
work. Other instructors provided some criteria that the stu-
dents should meet, while other instructors invited students
and maintainers to choose the project collaboratively.

B. RQ2: How do students choose their tasks?

After choosing the project, the next step is to choose
the task(s) that students should work on during the course.
Participant P5 bring the attention to the fact that, before look
for tasks, it is essential to “study the OSS project”. Afterward,
P5 also mentioned that it is important to “pick a peripheral
task, and avoid tasks related to the core of the project”. Still,
P5 indicated that one possible task to get acquainted with the
project is to “pick a bug and try to reproduce it”.

Several OSS projects studied in the courses were hosted on
social coding platforms, such as GitHub and Gitlab. In this
context, some students mentioned the fact that, on GitHub,
the “issue tracking system has a list of potential tasks that
students could search for”. Based on this list of issues, P6
commented that one particular OSS project created labels to
properly identify “issues that are suitable for students work
on”. P10, P16, and p18 also indicated that the use of labels in
issues assisted students to search for a possible task. P10 noted
that “the project had issues with that determined it was easy

or challenging. The maintainers of this project also assisted in
setting up the project and guided the students when needed.”

The search for tasks in issues in the issue tracking system
was a recurrent topic reported by other students working
on different projects in other institutions. For instance, P7
reported that “the default way was to search for tasks in
the issue tracker”. P18 complemented that they “searched
for tasks and bugs using ’newcomers’ keyword in the issue
tracking system”. Interestingly, P16 reported that some issues
tagged as “newcomers” were straightforward to solve: “in
these issues, it would be easier to the maintainer to solve
the problem rather than create an issue properly describing
the problem.” P16 hypothesized that maintainers opted to
create the issue (rather than solving it) as a way to ease the
onboarding process of external members to the OSS project.

In order to evaluate the feasibility of implementing the task
in the context of a course, P7 indicated that “the students tried
to communicate with the OSS communities to see if the planned
work made sense, or whether it would be doable.” Similarly,
P8 reported that they “searched for open issues”. Afterward,
P8 “picked some issue that they thought they could solve
and that would be interesting to contribute to the project.”
However, P16 also highlighted that one should be aware of
the time taken to choose a task: ”the project we were working
on had too many issues reported [...] we spent too much time
looking for an appropriated task”.

Finally, we also observed a collaborative way of choosing
tasks to students work with, as P11 reported: “We (instructor,
students, and the project maintainer) had meetings to discuss
potential tasks to work. The maintainer suggested some tasks
that are of great interest to the project, the students discussed
what they wanted to do, and the instructor discussed about
whether the task was feasible to the scope of the course”. Ad-
ditionally, participant P9 corroborated with the collaborative
strategy, as they pointed out that “the definition of the tasks
was very democratic, using agile methods. The students sat
together with the instructor one day of the week, opened the
issues and discussed what could be done”. Such collaborative
strategy varied between the projects, as well as the level of
involvement of the students. When students were still getting
acquainted with the projects, the instructor participated in
planning meetings to make sure students could have something
done during the first month of the course. This planning was
essential to motivate students to keep contributing throughout
the course.

Summary of RQ2: Before start looking for some task to
work on, students have to find the time to get acquainted
with the OSS project. Afterward, looking for a task in
the issue tracker was recurrently commented. Issues with
labels that indicate the complexity of the task could ease
the decision regarding what task to work on. If maintainers
are accessible, instructors, students, and maintainers could
collaboratively find what to work on.

C. RQ3: What is the nature of the students’ contributions?

Table II presents the OSS projects that students contributed
to, as well as quantitative information about these projects. In
this work, we consider a contribution as an accepted commit
made at the official OSS repository.

Despite being sent to the OSS project and have been
evaluated by the OSS maintainers, the participants P5, P12,
P15, and P19 did not have their contributions listed in Table II
because they were not accepted. On the other hand, some
projects received contributions from more than one student
(for instance, project analizo). Moreover, some participants
contributed to more than one project during the same course,
which is the case of participant P9, which contributed to both
prezento and kalibro, during her undergraduate studies,
and contributed to project yosys during her graduate studies.
Still, P21 contributed to elixir-bench, which is an um-
brella for many other OSS. According to him, he contributed
to six OSS projects under elixir-bench. Therefore, the
columns “# Commits”, “# Contributors”, and “# Lines of
Code” in this case refer to the elixir-bench-runner
project, which is the most popular project (in terms of number
of stars) under elixir-bench.

As one could see at Table II, the projects varied concerning
size and programming language. The projects’ domain also
varied from games to mobile platforms, source code analyzers,
web frameworks, among others. Some of the projects were cre-
ated and are maintained by contributors in the same university
that student took the course (e.g., the catch-the-pigeon
project); while other projects are well-known from the soft-
ware development community (e.g., the cakephp project).
Most of the students had 1–2 contributions accepted; P21 was
an outlier: he had 30+ contributions accepted and became
a maintainer while taking the course. In total, we found 89
contributions.

In order to assess the nature of the software development
activity, we employed the definition of Hattori and Lanza [9],
which group the contributions in four broad groups. They are:

1) Forward engineering, for instance, adding new fea-
tures;

2) Reengineering, for instance, refactoring activities;
3) Corrective, for instance, fixing bugs;
4) Management, for instance, updating documentation.
For each participant, we search for the contributions per-

formed. To find such commits, we asked students the links
of their contributions. In the case which the students did not
recall the links, we asked them their usernames, so then we
could search for their contributions in the commit history of
the studied OSS projects. We used the commit message to
categorize the intention of the code changes. When possible,
we tried to match the commit intent with the purpose described
in the interview.

We used a previous list of keywords introduced by Hat-
tori and Lanza [9] to support the grouping procedure of
the contribution’ intent. After applying this procedure, we
observed that the majority of the contributions were related

TABLE II
THE LIST OF OSS PROJECTS THAT STUDENTS CONTRIBUTED TO. THE COLUMNS # COMMITS AND # CONTRIBUTORS REPRESENT THE TOTAL NUMBER OF

COMMITS PERFORMED AND THE TOTAL NUMBER OF CONTRIBUTORS WHO AUTHORED THESE COMMITS. LINES OF CODE (LOC) WERE CALCULATED
WITH THE CLOC UTILITY, CONSIDERING COMMENTS AND BLANK LINES. THE “PL” COLUMN MEANS THE PROGRAMMING LANGUAGE MOST USED IN THE

PROJECT, CALCULATED WITH THE LINGUISTIC UTILITY.

Project # Commits # Contributors # Lines of Code PL Domain
P1 catch-the-pigeon 197 11 7K Java Android game
P2 jabref 12K 143 138K Java BibTeX manager
P2 gnome-music 2K 198 31K Python Music player
P3 L.Office Impress 1K 39 18k Objective-C Office suite
P4 noosfero 15k 126 631K JavaScript Content Management System
P6, P9 prezento 1.7K 35 13K Ruby Web interface tool
P7 diaspora 19K 338 151K Ruby Social network
P8 amadeus 3K 13 114K Python Online learning system
P9 kalibro 1.2K 12 7K Ruby Source code analyzer
P9 yosys 3.8k 54 121K C++ Verilog RTL synthesis suite
P10 radar-parlamentar 2k 56 35K Python Web crawler
P10 gestorpsi 2k 14 103K Python Clinic organization system
P4, P11 analizo 1.1k 18 7K Perl Source code analyzer
P13 cakephp 35k 505 184K PHP Web framework
P14 liferay-portal 264k 478 5,262K Java Web platform for building business
P16, P18 polari 2K 107 40K JavaScript Internet Relay Chat
P17 joomla! 14K 78 320K PHP Content Management System
P18 teammates 16K 370 713K Java Education management tool
P20 spark 22K 1K 739k Scala A cluster computing system for Big Data
P21 elixir-bench 32 4 750 Elixir Benchmarks for Elixir projects

to Forward engineering; eleven participants reported that
introduced new features. For instance, in the interview, the
participant P4 mentioned that her team made “one contribution
to the LibreOffice Impress repository, to change slides using
a smartphone. There was no such feature, and we added”.

Eight participants performed contributions with Corrective
intentions. For instance, participant P2 observed a bug during
“the process of importing to a database. It worked only
when using MySQL, but did not work when using Postgres.”
The participant confirmed the bug with the OSS community
and implemented the fix. Moreover, only four participants
performed contributions related to Reengineering intentions.
Among the examples, we highlight the contribution made
by participant P8, which stated in the commit that they
“refactored some layouts that were not quite appropriated,
according to the Android best practices”.

Finally, only one participant mentioned a contribution re-
lated to Management intentions. This participant mentioned
that they reported bugs or added labels on issues as part of
her contributions. It is important to note that five participants
followed an agile method approach throughout the course,
as P4 highlighted: “We followed the Scrum process. We had
sprints, user stories (and planning poker to estimate the
stories), etc.”, which was fostered by the instructor. The
instructor also used pair programming to improve the transfer
knowledge between the participants within a team.

Next, we also investigate the code churn of the contributions
performed. Figure 1 presents the distributions of these three
variables (i.e., files edited, lines added and removed). When
analyzing the number of additions and deletion in this data,
we could found several outliers. For instance, one single
contribution added a total of 2,711 lines of code and also

files adds dels

0
5

1
5

2
5

#
 O

c
c
u
rr

e
n
c
e
s

Fig. 1. The distribution of the contributions that students made to the OSS
projects. We removed the outliers from the figure to ease visualization.

removed 2,589 lines of code1. This contribution changed the
layout of an Android game; then it was necessary to apply
this change in 39 different files. On average, the contribu-
tions that students made edited 12.5 different files, added 56
lines of code and removed seven lines of code. This finding
is in contrast to the current understanding of contributing
best practices, which suggest that pull-requests should be
small [10]. However, small contributions were also found. The
first quartile of contributions have four lines of code added and
one line removed. For instance, contribution 1142 performed
in the project prezento made one single change: updated
one figure in a web page.

1https://github.com/rodolfoasantos/catch-the-pigeon/commit/51607083
2https://github.com/mezuro/prezento/pull/114/files

https://github.com/rodolfoasantos/catch-the-pigeon
https://github.com/JabRef/jabref
https://gitlab.gnome.org/GNOME/gnome-music
http://document-foundation-mail-archive.969070.n3.nabble.com/LibreOffice-f1639495.html
https://github.com/noosfero/noosfero
https://github.com/mezuro/Prezento
https://github.com/diaspora/diaspora
https://github.com/amadeusproject/amadeuslms
https://github.com/Mezuro/Kalibro
https://github.com/YosysHQ/yosys
https://github.com/radar-parlamentar/radar
https://github.com/gestorpsi/gestorpsi
https://github.com/analizo/analizo
https://github.com/cakephp/cakephp
https://github.com/liferay/liferay-portal
https://github.com/GNOME/polari
https://github.com/joomla/joomla-cms
https://github.com/TEAMMATES/teammates
https://github.com/apache/spark
https://github.com/elixir-bench
https://github.com/rodolfoasantos/catch-the-pigeon/commit/51607083
https://github.com/mezuro/prezento/pull/114/files

Summary of RQ3: Most of the contributions found at
the repositories had forward engineering intentions (e.g.,
adding new features). Corrective intentions (e.g., fixing a
bug) were also common. Although small contributions are
frequent, on average, a student contribution comprehends
56 additions in 12 different files — much higher than the
current understanding of contributing best practices.

D. RQ4: What are the benefits?

Regarding the benefits of participating in such kind of
courses, we observed three main categories: (1) to participate
in a real project, (2) to improve their resume, and (3) to
become an active contributor.

1) Working on a real project: The students felt motivated
and challenged to participate in a real project. Seven partic-
ipants shared this perception. As an example, participant P2
mentioned that “it increases your confidence. You collaborate
in a real project; anyone could see and use your contribution
[...] it is a real-world experience.” P4 complemented that “it is
a great opportunity for a student. First, you can contribute to
an existing non-trivial project. Second, it gives you a chance
to meet OSS communities and understand that contributing to
OSS projects is not a nightmare.”. Moreover, P14 mentioned
the “importance of the philosophical aspects of contributing to
OSS projects”. Further, P7 shared an altruism notion that “you
become happier when, besides having learned, you contributed
a little bit with a project that is being used elsewhere”. The
participant P12 also mentioned that “you could understand
how does the project’s ecosystem survive, and how you could
work in a network of distributed developers.” Along these
lines, P9 mentioned that “you could see that a single person
does not do an OSS project; instead, it is a collaborative
effort”.

2) Improving the resume: Improving the students’ resume
was perceived as one benefit by three participants. According
to P8, the experience acquired in the course “was the start
point onboard in the OSS world”. P6 reported that “Today, in
the company that I work for, I am the most skilled person in
version control systems, which is mostly due to the course I
took,” and complemented saying that “it was an immeasurable
benefit to arrive in a job interview and state that I have
contributed to OSS projects”. Moreover, P10 added that the
course was an opportunity for “[...] build a portfolio, which is
essentially your contributions, and you can bring that to a job
interview [...] many students that liked the course and succeed
contributing during the course were accepted in graduate
programs and received job offers from big companies in Brazil
and abroad. A lot of it was because of the portfolio that we
are building while studying”.

3) Becoming an active member: Regarding the continuity
of the contributions to OSS software projects after the course,
although some participants did not keep contributing, we
observed that eight students become active OSS contributors.
In particular, participant P11 mentioned that “after the course
I spent quite some time looking for ways to get involved in

some OSS projects. I started by sending random pull-requests
to projects hosted on GitHub that I found interesting. I did
that until I found one specific project that I kept contributing
until today”. Still, P9 mentioned that they became a Linux
contributor. “Nowadays I am very focused on Linux [...] I
also contribute to Debian, but I do not implement features
in there, I work with the package management system; I
have two Debian packages, and I am preparing other three”.
Finally, P21 reported that the course helped him to participate
in the Google Summer of Code (GSoC) program, which
he had the opportunity to become even more active. These
three participants (P9, P11, and P21) did not have previous
experience contributing to OSS projects before the course.

Summary of RQ4: Working in a real project was one
of the most positive impressions that students reported,
which improve not only students’ skills but also their self-
confidence. Some participants received job opportunities in
Brazil and abroad, while others participate in GSoC. Other
students became active contributors in well-known, non-
trivial projects (e.g., Debian Linux), even if no previous
experience contributing to OSS projects

E. RQ5: What are the challenges?

During the interviews, the participants mentioned some facts
that hinder their attempt to contribute to OSS projects. After
analysis, we observed that the main challenges are (1) the
source code complexity, (2) to interact with the OSS commu-
nity, (3) to understand and set up the software development
environment, and (4) lack of time to contribute.

1) Source code complexity: The participant P2 reported
that “[...] the difficulty was to understand the source code
structure”. P3 shared a similar concern, when they mentioned
that “ [...] we had to analyze the whole project [...] until
you get acquainted with it. It is a hard process”. Participant
P4 mentioned that “[...] it is always hard to understand the
software architecture and the source code”. Participant P5
stated that “the challenge that I face was with the source code
itself because it did not follow any convention [...] it looked
like several shuffled cards, which we were unable to sort out.”
The student P8 mentioned that it was “hard to understand
how the source code was organized [...] it was also hard to
follow the conventions used in each project”. P21 shared a
similar perception: “I thought I knew Python, but when I joined
the OSS, I perceived I knew nothing about Python”. Finally,
participant P7 reported that the main challenge was “[...] to
get acquainted with the project source code and guidelines”.

To mitigate this kind of challenge, the instructor grouped
students in a way that one student that was facing more
challenges could pair with someone more comfortable with
the project. Still, some instructors got in touch with the
maintainers to solve some open questions. Finally, during
some classes, students were also motivated to study the source
code collaboratively, using techniques such as coding dojo.

2) Interactions with the open source community: During
the process of implementing the tasks, often students had
to interact with the OSS community. According to P3, “it
is hard to interact in a mailing list since you do not know
who is who, and who will answer you [...] a colleague of
mine sent a message to a mailing list and got a very unpolite
reply”. Another challenge, reported by P4 and P9, is related
to understand “the organization of the community itself ”. P5
also mentioned that “the community is not active anymore”,
which makes harder to have their questions answered. Finally,
the last report along these lines was made by P11 that affirmed
that “[...] it is hard to have the first contact with someone from
inside the community [...]”.

3) Setting up the environment: Some respondents men-
tioned that it was a challenge to understand and set up the
environment of the studied projects. According to participant
P1, “my team had previous experience with Linux, but I did
not”. Participant P5 reported that “[...] the version control
system was unknown for us”. Moreover, P7 indicated that “
[...] it is not uncommon to have a headache to set up the
project”. Still, P9 also mentioned it was “[...] a hard time to
learn git [...]”. P17 shared a similar concern: “I had to send my
changes through git command line. I had neither experience
with git or command line”.

4) Lack of time to contribute: Due to the hard time to get
acquainted with the OSS project, some participants mentioned
that the duration of the course was not sufficient. Participant
P4 mentioned that the course could be divided into two parts:
the first one which focus was on getting acquainted with OSS
projects and the contribution model, and the second one which
the students would contribute to an OSS project. According
to P4, with two courses, the students would not need to rely
on the maintainers to answer their questions. Similarly, P1
reported that the course could be divided into two semesters.

Summary of RQ5: Regarding technical challenges, stu-
dents had a hard time to understand the code structure and
how to set up the project. Another challenge was to get
involved with the community (mailing lists do not help
much since you do not know who is who). The short
duration of the course was a challenge.

IV. FURTHER ANALYSIS

In this section, we provide additional discussion on the data
presented in the previous sections.
Previous experience with OSS software development is not
mandatory. As one could observe at Table I, 16 out of the 21
participants did not have previous experience in contributing
to OSS software. However, from these 16 participants, 12
succeeded in transposing the first contribution barriers and
had their contributions accepted. In particular, participant P21
performed 30+ contributions.
Implementations that go beyond Java and C++. Even
though some projects were developed using traditional pro-
gramming languages (such as C++ and Java), we could

observe that some students contributed to projects written in
programming languages that are not so common in software
engineering curriculum (such as Perl, Elixir, and Objective-C).
Indeed, P21 mentioned that they purposefully chose one OSS
project in a programming language that they did not master
as a way to learn this programming language. This finding
demonstrates the feasibility of expanding the curriculum to
cover additional programming languages.
Students’ self-assessment. Generally speaking, the partici-
pants reported a good performance in the courses. Only P9
mentioned having regular-to-good performance, while partici-
pant P5 mentioned having insufficient performance. According
to P5, their performance “would be better if I chose a more
active OSS project.” On the other hand, we could see that
the participants well received the process. P11, for example,
reported that “every course in undergraduate level should
leverage OSS contributions [...] If an Instructor needs to talk
about one kind of programming implementation, the Instructor
could discuss real implementations using an OSS project as
an example”.
Patches or pull-requests? Even though the majority of the
contributed projects is hosted in social coding platforms such
as GitHub, we observed that in one of the studied projects (L.
Office Impress), the contributing process occurred send-
ing patches to the mailing list. In this particular project, the
students manually had to generate the patch using a command
line git utility and, still, discuss this patch in another coding
platform (Gerrit, in this case). Although slightly different from
the modern contributing practices [10], the contributions sent
as patches were accepted.
The delay in processing a contribution. Although already
discussed in other studies (e.g., [11]), OSS communities tend
to take longer to process contributions when the author is not
an active member of the community. The participants of this
study also observed this assertion. For instance, P9 is still
waiting for a response to the contributions made in 2016. P9
mentioned that “so far, two of my four pull-requests are still
open [...] they did not respond to the pull-requests yet”. P1
also noticed similar behavior in her colleagues’ work: “some
colleagues had swift feedback and succeeded to contribute
[...] Some other colleagues did not have the same luck. Some
of them did not receive any response during the period of
the course. I still do not know if they have any contribution
accepted.” P16 still has unprocessed pull-requests.
Size of the contributions. Recent studies suggest that con-
tributions to OSS projects tend to be small in nature [11],
[10], [12]. Differently, our sample of contributions has a high
rate of edited files and lines added/removed per contribution.
Since the current recommendation is to perform small and
self-contained contributions (for instance, including automated
tests), which ease the code review process on the integrators’
side. Consequently, the size of the students’ contribution might
indicate a potential lack of experience in the software develop-
ment process. Although this behavior might be expected (i.e.,
our subjects are students, and some of them did not have either
professional or OSS experience before the course), this fact

corroborates the importance of this kind of approach in which
students acquire such practical experience before applying for
positions in industry.
Contributions with test cases. We found that 37 out of the
89 contributions performed were submitted with test cases.
To identify test cases, we observed whether the diff code has
any method that ends or starts with “test” and if this method
resides in a file that ends or starts with “test”. noosfero
was the project that received the most contributions with test
cases (7). This finding is in contrast with recent studies that
suggest that many OSS projects do not accept (or even review)
contributions that do not come with test cases [13].
Good community practices for OSS communities. Some
participants also mentioned best practices that, if incorporated
in OSS communities, could ease the process, students in
particular. For example, P5 indicated that “[...] sometimes
the project has some documentation, but does not have
any developer-oriented documentation”. Examples of such
developer-oriented documentation include guidelines on how
to install and set up the project. P13 corroborated with the
importance of having good documentation in OSS projects:
“we studied why one project is more successful than others,
and part of it is due to very well-done documentation”.
Another aspect also raised by P5 is “lack of labels on issues to
identify whether the issue is for beginners or advanced devel-
opers”. P5 went further and mentioned that the OSS project
should have, indeed, documentation in a way that newcomers
could quickly contribute to newcomer-related issues, whereas
advanced programmers could contribute to the core of the
project.
The instructor involvement in OSS initiatives. Some stu-
dents highlighted the importance of having an instructor
involved in OSS initiatives. In particular, P3 indicated that
such involvement “was essential, since the instructor had more
practical experience. Therefore, when students were blocked
in a task, the instructor could either properly help them or
find someone who could provide help.”. Moreover, participant
P5 indicated that, due to academic research conducted by
the instructor, the students were already aware of some of
the challenges that they might face: “our instructor studied
ways to understand drop out causes in the OSS project.
We faced some of those challenges.” Still, participant P10
stressed that “if the instructor is not prepared, there is no
chance to have such dynamic. It has to be an instructor who
understands and is passionate about OSS software.” Finally,
participant P5 mentioned that besides being involved with the
OSS community, it is equally important to “engage students
to follow the right path”.

V. IMPLICATIONS

This work has implications for several stakeholders. We
discuss two of them next.
Software Engineering instructors. As we found in the previ-
ous sections, contributing to OSS communities was perceived
as beneficial by many students. As a potential consequence,
many other instructors could experiment with this approach

in their courses. For instructors that already made the shift
to courses that leverage OSS contributions, we believe they
can improve their agenda by, say, challenging students to
contribute to projects written in programming languages that
they do not master or fixing bugs associated with more critical
issues. Similarly, instructors that teach testing courses could
foster students to create test cases for contributions that did
not have tests (37 out of the 89 contributions go without
test cases). Finally, to better understand the challenges that
students face, instructors themselves could try to contribute to
OSS project or to participate in OSS initiatives.
OSS Project Maintainers. OSS maintainers could get in-
spired by some of the findings of this paper. For instance,
maintainers could create issues that could be solved in a
short amount of time by someone with little to no previous
experience in the project. Although it might be tempting to
fix the problem rather than creating an issue describing the
problem, this approach could ease the life of potential new
contributors. OSS maintainers could also put a particular effort
in the documentation. For instance, README files could
state which maintainers are available to support students to
onboard the project. Similarly, since many students had a
hard time trying to understand the source code, maintainers
could improve the documentation by better describing their
architecture, conventions, how to set up the project, etc.

VI. LIMITATIONS

As an empirical study, this one also has many limitations
and threats to validity.

First, our study is limited by the number of students
that participated in our study. Although we conducted 21
interviews, we still believe our findings might not easily
generalize. Moreover, the findings of this study are limited
to the interviews conducted in the five studied institutions
where our participants took the courses. The perceptions of
other students that took similar courses in other institutions
are still unknown. Similarly, this work is limited to software
engineering courses that took advantage of OSS contributions
as part of their learning model. The use of OSS contributions
in other courses — which could lead to different findings
— was also not explored. Another limitation is related to
when our participants took the courses. Some of them took
the courses in 2012 and 2013, so their reflection might not
be accurate. To mitigate this bias, we interviewed participants
from different universities that took the courses in different
time windows. Finally, although enriched with some quantita-
tive data regarding the size of the contributions performed, this
work is mainly based on the interviews conducted. Therefore,
it is limited to our understanding of what the participants
said. To mitigate threats hidden in qualitative analysis, after
we transcribed the interviews, we analyzed each interview in
pairs, followed by conflict resolutions meetings. When needed,
third research was involved in the conflict meeting to drive
consensus.

VII. RELATED WORK

Several recent efforts studied the dynamics of bringing
OSS projects in the context of a classroom [14], [15], [16],
[17], [18]. Smith and colleagues [15] focused on selecting
the most appropriate projects for students work. The authors
claimed that, due to the short duration of a traditional software
engineering course (4–5 months), the instructors should not
select large or complex OSS projects, since the students
would face many difficulties to contribute significantly to these
projects throughout the course. In our work, we perceived that
many OSS project that received contributions are large ones
(on average they have 454.4K lines of code).

Similarly, other works suggest that the OSS projects should
not be rather small or naive since the students would not have
the chance to put into practice important software engineering
principles. Morgan and Jensen [14] detailed the experience
of teaching a software engineering course based on OSS
projects. The authors observed that the size of the project
(Ubuntu, in this case) was a real obstacle for students to
contribute (for instance, some students were unable to find
a simple yet exciting task to work on). Likewise, Buchta and
colleagues [16] reported their experience in teaching software
maintenance and evolution aspects in a software engineering
course. The authors reported a non-trivial setup effort of about
60 hours before the course takes place. However, the authors
did not discuss the potential benefits or challenges related
to this OSS model. Holmes and colleagues [19] reported
the lessons of their Undergraduate Capstone OSS Projects
(UCOSP). In this capstone project, the studied OSS projects
should (1) have an active issue tracker, (2) use a version control
system, and (3) have a well-defined code review process.

To the best of our knowledge, the works of Holmes et al. [3]
and our previous work [6] are the ones closest to this current
study. Holmes et al. [3] also studied the students’ perception
regarding the adoption of OSS contributions. The authors
observed that students’ took advantage of the opportunity
to apply their skills in real tasks, from real projects, while
receiving real feedback from project maintainers. Still, the
authors reported that contribute to the real project provides
a greater understanding of software engineering aspect when
compared to more traditional means. One of the main dif-
ferences between our studies is that Holmes et al. [3] expect
students to contribute to OSS as part of their capstone projects,
while in our case, the students should contribute as part of a
course. This point is particularly important because students
might be more challenged to contribute during a course since
the term of a course is often shorter than a capstone projects.
Also, contributing to OSS is only part of the assignments of
a course; in some cases, students still have exams and other
assignments. Moreover, capstone projects often occur in the
final years, when students are more skilled. In our interviews,
we perceived that some of the students took courses in their
second year. Further, although part of our work can be seen as
complementary to Holmes’ works, our work is unique in the
sense that we studied not only the benefits and the challenges

but also the nature of the contribution and other students’
attitudes.

In a previous study [6], we investigated the challenges,
benefits, and the approach used to select OSS projects looking
at the instructors’ perspective. Indeed, we were inspired by
their work to conduct our work. Differently than this previous
work [6], which interviewed instructors, we interviewed stu-
dents that participate in such kind of courses. Our current work
confirms — by investigating three similar research questions
— and expands the previous one [6] since it brings to the
discussion the students’ perceptions, which was not well
understood.

VIII. CONCLUDING REMARKS

Software engineering instructors are taking advantage of
OSS projects as part of their evaluation model, and recent work
exposed many benefits perceived with these courses. However,
such studies focused on the instructors’ perspective, while the
students’ perspective was still unclear.

In this work, we conducted 21 semi-structured interviews
with students that participated in software engineering courses
that took advantage of OSS projects as part of their evaluation
model. Despite the known challenges related to finding a
typical project and a suitable task to solve in the short
period of the course, many students reported positive im-
pressions regarding the course. The majority of the students
also positively self-evaluated their performance in the course.
Moreover, we observed that the instructors’ participation in
OSS initiatives (extra-classroom) are notoriously important for
a better dynamism between instructors, students, and OSS
communities. Finally, we also observed that the majority of
the students’ contribution was intended to add new features
in the OSS projects studied, although corrective contributions
were also common. On average, a student’s contribution added
56 lines of code in 12 different source code files.

For future work, we plan to conduct a large-scale study
in OSS repositories to investigate and categorize students’
participation in the context of a course. Still, we also plan
to conduct interviews with OSS maintainers and mentors,
triangulating the findings of this and previous studies, to
confirm or refute known findings in the literature.

ACKNOWLEDGMENTS

We thank the students for participating in the study and
the reviewers for they useful feedback. This work is partially
funded by PROPESP/UFPA, Northern Arizona University,
CNPq (#406308/2016-0 and #430642/2016-4), and FAPESP
(Grant #2015/24527-3).

REFERENCES

[1] Y. Sedelmaier and D. Landes, “A research agenda for identifying and de-
veloping required competencies in software engineering.” International
Journal of Engineering Pedagogy, vol. 3, no. 2, 2013.

[2] F. Fagerholm and M. Pagels, Examining the Structure of Lean
and Agile Values among Software Developers. Cham: Springer
International Publishing, 2014, pp. 218–233. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-06862-6 15

http://dx.doi.org/10.1007/978-3-319-06862-6_15

[3] R. Holmes, M. Allen, and M. Craig, “Dimensions of experientialism
for software engineering education,” in Proceedings of the
40th International Conference on Software Engineering: Software
Engineering Education and Training, ser. ICSE-SEET ’18. New
York, NY, USA: ACM, 2018, pp. 31–39. [Online]. Available:
http://doi.acm.org/10.1145/3183377.3183380

[4] O. Cawley, S. Weibelzahl, I. Richardson, and Y. Delaney, Incorporat-
ing a self-directed learning pedagogy in the Computing Classroom:
Problem-Based Learning as a means to improving Software Engineering
learning outcomes. IGI Global, 2014, pp. 348–371.

[5] D. M. Nascimento, K. Cox, T. Almeida, W. Sampaio, R. A. Bittencourt,
R. Souza, and C. Chavez, “Using open source projects in software
engineering education: A systematic mapping study,” in 2013 IEEE
Frontiers in Education Conference (FIE), Oct 2013, pp. 1837–1843.

[6] G. Pinto, F. Figueira Filho, I. Steinmacher, and M. Gerosa, “Training
software engineers using open-source software: The professors’ per-
spective,” in 30th Conference on Software Engineering Education and
Training (CSEET), 2017, pp. 117–121.

[7] G. Pinto, I. Steinmacher, and M. Gerosa, “Leaving behind the software
history when transitioning to open source: Reasons and implications,”
in Proceedings of The 14th International Conference on Open Source
Systems, 2018.

[8] C. Chavez, A. Terceiro, P. Meirelles, C. Santos Jr, and F. Kon,
“Free/libre/open source software development in software engineering
education: Opportunities and experiences,” Fórum de Educação em
Engenharia de Software (CBSoft’11-SBES-FEES), 2011.

[9] L. P. Hattori and M. Lanza, “On the nature of commits,” in 23rd
IEEE/ACM International Conference on Automated Software Engineer-
ing. IEEE Press, 2008, pp. III–63.

[10] G. Gousios, M. Pinzger, and A. van Deursen, “An exploratory study
of the pull-based software development model,” in 36th International
Conference on Software Engineering, ICSE ’14, Hyderabad, India - May
31 - June 07, 2014, 2014, pp. 345–355.

[11] G. Pinto, L. F. Dias, and I. Steinmacher., “Who gets a patch accepted
first? comparing the contributions of employees and volunteers,” in 11th
IEEE/ACM International Workshop on Cooperative and Human Aspects

of Software Engineering, CHASE@ICSE 2018, Gothenburg, Sweden,
May, 2018, 2018.

[12] G. Gousios, A. Zaidman, M. D. Storey, and A. van Deursen, “Work
practices and challenges in pull-based development: The integrator’s
perspective,” in 37th IEEE/ACM International Conference on Software
Engineering, ICSE 2015, Florence, Italy, May 16-24, 2015, Volume 1,
2015, pp. 358–368.

[13] I. Steinmacher, G. Pinto, I. Wiese, and M. A. Gerosa, “Almost there: A
study on quasi-contributors in open-source software projects,” in 40th
IEEE/ACM International Conference on Software Engineering, 2018.

[14] B. Morgan and C. Jensen, “Lessons learned from teaching open source
software development,” in 10th International Conference on Open
Source Systems, OSS 2014, San José, Costa Rica, May 6-9, 2014., Berlin,
Heidelberg, 2014, pp. 133–142.

[15] T. M. Smith, R. McCartney, S. S. Gokhale, and L. C. Kaczmarczyk,
“Selecting open source software projects to teach software engineering,”
in 45th ACM Technical Symposium on Computer Science Education, ser.
SIGCSE ’14, 2014, pp. 397–402.

[16] J. Buchta, M. Petrenko, D. Poshyvanyk, and V. Rajlich, “Teaching
evolution of open-source projects in software engineering courses,” in
22nd IEEE International Conference on Software Maintenance, ser.
ICSM ’06, 2006, pp. 136–144.

[17] D. Coppit and J. M. Haddox-Schatz, “Large team projects in software
engineering courses,” in 36th SIGCSE Technical Symposium on Com-
puter Science Education, ser. SIGCSE ’05, 2005, pp. 137–141.

[18] A. Sarma, M. A. Gerosa, I. Steinmacher, and R. Leano, “Training
the Future Workforce Through Task Curation in an OSS Ecosystem,”
in 2016 24th ACM FSE, ser. FSE 2016. ACM, 2016, pp. 932–935.
[Online]. Available: http://doi.acm.org/10.1145/2950290.2983984

[19] R. Holmes, M. Craig, K. Reid, and E. Stroulia, “Lessons learned
managing distributed software engineering courses,” in Companion
Proceedings of the 36th International Conference on Software
Engineering, ser. ICSE Companion 2014. New York, NY, USA:
ACM, 2014, pp. 321–324. [Online]. Available: http://doi.acm.org/10.
1145/2591062.2591160

http://doi.acm.org/10.1145/3183377.3183380
http://doi.acm.org/10.1145/2950290.2983984
http://doi.acm.org/10.1145/2591062.2591160
http://doi.acm.org/10.1145/2591062.2591160

	Introduction
	Method
	Research Questions
	Interviews
	Participants Selection
	Interview Process

	Interview Analysis
	Summary of the participants

	Results
	RQ1: What are the strategies used to choose the open source projects that students would contribute to?
	Freedom to choose open source projects
	Instructors' indication
	Prior knowledge about the open source community

	RQ2: How do students choose their tasks?
	RQ3: What is the nature of the students' contributions?
	RQ4: What are the benefits?
	Working on a real project
	Improving the resume
	Becoming an active member

	RQ5: What are the challenges?
	Source code complexity
	Interactions with the open source community
	Setting up the environment
	Lack of time to contribute

	Further Analysis
	Implications
	Limitations
	Related Work
	Concluding Remarks
	References

