
Assessing the Characteristics of FOSS
Contributions in Network Automation Projects

John Anderson
Clemson University
jda3@clemson.edu

Igor Steinmacher
Northern Arizona University

Igor.Steinmacher@nau.edu

Paige Rodeghero
Clemson University

prodegh@clemson.edu

Abstract—Network Automation seeks to integrate software
solutions that aid in the management and maintenance of modern
networks. In industry, large organizations see dedicated software
engineering resources within a networking team. However, in the
broader industry, it is more common to see traditional network
engineers working on network automation. With the growth of
Free and Open Source Software (FOSS), network automation
software solutions also started to adhere to this development
model. However, as it is known from the literature, onboarding
to FOSS projects is not a trivial task and may be more challenging
for people without a software development background. In this
paper, we study network automation FOSS projects, which are
seeing a large number of new contributors who do not have
traditional software engineering skills. We analyze a set of
data collected from pull requests and issues collected from 81
GitHub projects (71 network automation projects, and 10 top-
projects from other domains), to identify the characteristics that
are specific to first-time project contributors in the network
automation domain. Our results show that pull requests in the
Network Automation domain differ from those in the Top-10
set and the existing literature. At the same time that Network
Automation projects are more inclusive (rejection rate: 12% vs.
28% on Top-10), the pull request latency is longer in this specific
domain, especially for first-timers.

Index Terms—software engineering, onboarding, networking
automation, Open Source

I. INTRODUCTION

Network Automation is a recently expanding field within
the area of computer networking that seeks to integrate soft-
ware solutions to aid the management and maintenance of
modern networks. Network operators are increasingly mixing
traditional network engineering with software engineering
fundamentals and skill sets to do this.

In larger organizations, it is not uncommon to see dedicated
software engineering resources within a networking team. In
the broader industry, however, it is much more common to
see these once traditional network engineers learning how to
program and picking up software engineering experience. Also
of note in this transition is the networking industry’s growing
reliance on Free and Open Source Software (FOSS) solutions,
a trend that is no doubt noticed in other disciplines [1].

Naturally, this combination is ripe for FOSS project creation
and contribution. One of the pillars of FOSS is community
collaboration, and this means FOSS projects often see partic-
ipation from a variety of software engineering skill levels [2].
Given the circumstances surrounding network automation, we
desire to understand specific contribution metrics that will

allow us to make statements about the current state of the
network automation FOSS landscape. As it is well known that
first-time contributors often face challenges to onboard [3], it
is important to understand how these contributors interact with
the projects in different domains. In this context, the long-term
goal of this work is to aid the industry in onboarding and
provide guidelines for best practices. More specifically, the
research objective of this paper is to understand better how
new contributors interact with projects in network automation
FOSS projects via issue tracker and pull requests. Therefore,
we propose two research questions (RQs):

RQ1 How do pull requests submitted by first-time con-
tributors in network automation projects compare to
those by experienced members and to those in other
domains?

RQ2 How do issues and pull requests resulting from issues
submitted by first-time contributors compare to those
by experienced members in network automation and
to those in other domains?

The goal of the first research question is to identify if
network automation projects are seeing quality concerns in
the contributions made by first-time contributors which may
determine the fate of the contribution. While many different
factors can cause this, if the relationship of the characteristic
and the result of the contribution is more significant when
compared to the broader industry, it may indicate a need for
more attention to the onboarding practices within network
automation projects. To analyze the pull requests, we rely on
metrics used in related literature [4]–[6]: number of commits,
pull request status, code churn, number of comments, and
latency (time to close the pull request).

The goal of the second research question is to explore issue
collaboration with first-time contributors. GitHub issues are
often used as a forum to submit feature requests and bug
reports. We analyzed the data to explore a possible correlation
between first-time contributors and the fate of their feature
requests and bug reports. Should a relationship be found, it
could be an indicator that new collaborators misunderstand the
intended use of these issues. To analyze the issues, we used
the following metrics: number of comments, latency, and link
between issues and pull requests.

In this paper, we conduct a statistical study of data surround-
ing FOSS project collaboration in the domain of network au-



tomation. We identified 71 network automation-related FOSS
projects on GitHub and, using the GitHub Archive [7], we
collected data from each of these projects for the entire year
of 2019. This data set includes event details from pull requests,
issue comments, commit pushes, repository popularity metrics,
and more. We compared this data to another subset that
contains the same events but for a list of 10 repositories
called out by GitHub as the top repositories for 2019 [8]. We
found that the characteristics of pull requests found in Network
Automation projects are quite different from those found in the
Top-10 GitHub projects. Pull requests in Network Automation
are usually larger (in terms of commits, additions, and files
touched) and foster less discussion when compared to the Top-
10 pull requests. Furthermore, the pull requests in Network
Automation take longer to be closed. In terms of issues, we
found similar behavior: they take longer to be closed and foster
less discussion. On the other hand, the Network Automation
community looks more welcoming with a higher pull request
acceptance rate (88% vs. 72% in the Top-10). We found that
Network Automation projects do not follow the practices well-
known in mature FOSS projects, showing that knowledge
related to FOSS practices and software development and
maintenance are no longer optional.

II. BACKGROUND

The field of network automation represents a unique sub-
section of the broader industry, one that is not only interdis-
ciplinary but also one that only relatively recently came into
existence in the formal sense. In terms of general software
engineering, this case study can provide an example of an
industry that is turning to more programmatic solutions. With
that transition comes inherent problems related to software
engineering, which deserve attention.

Network operators, driven by the ever-changing business
landscape, desire to run their networks with increased effi-
ciency and reduced costs. Many solutions have arisen like
Software Defined Networking (SDN) [9], Network Function
Virtualization (NFV) [10] that serve to implement new tech-
nologies to solve networking problems. While these solutions
have their place in the industry, operators are more often than
not tied to their existing network deployments and unable to
re-architect them to meet their automation goals. Operators
are looking for ways to leverage their existing infrastructure
in more efficient manners. In terms of automation, this usually
begins by examining business processes and identifying areas
in which manual, human-driven workflows can be automated.

In smaller-scale situations such as small to medium enter-
prises, these solutions are typically not full-blown custom soft-
ware projects, but instead integration efforts between existing
products, often FOSS projects. Sometimes this requires code
to be written to “glue” systems together. Larger enterprises
tend to run networks with more scale and often see those
networks as providing definitive business value. They are
typically looking for custom solutions. These efforts may be to
build a system from the ground up, but often businesses realize
the importance of making use of FOSS, and thus this becomes

an issue of upstream contribution to filling gaps. Sometimes
these businesses have the software engineering resources in
house to take on these projects, but this tends to be the
exception, not the rule, which prompts our research efforts.
We are interested in the segment of the market that desires
these sorts of implementations but does not have additional
resources. This situation often leads to network engineering
and operations personal to pick up this slack.

III. RELATED WORK

In this section, we discuss the related work on pull request
analyses, issue analyses, data quality, and FOSS project on-
boarding. We discuss related work to compare and contrast our
approach while reminding the reader a portion of our contribu-
tion is the application of this study to one particular, growing
field identifiable within the broader GitHub ecosystem.

The driving force of FOSS is open community collabo-
ration. Therefore, the process to onboard onto a project is
a complex process composed of different stages and a set
of forces that push contributors towards or away from the
project [11]. As shown before [3], potential new contributors
face several barriers while attempting to contribute for the first
time to FOSS projects. The new collaboration model brought
by GitHub last decade facilitates onboarding by providing
users with a single contribution process, known as the pull-
based model [6], [12], which allowed it to become the de facto
watering hole for FOSS projects [13]. The growth of GitHub
and FOSS, increased the attention given to research related
onboarding of newcomers onboarding [14]–[16], how out-
siders are received in company-owned projects [17], how the
developers’ emotions and sentiments when interacting [18],
[19], and how inclusive the projects are [20], [21].

The two major backbone features of the pull-based model on
GitHub are pull requests and issues [22]. The pull-based model
followed by GitHub [6], [12] is based on the concept of pull
requests. In this model, the work is distributed between a team,
which submits the pull requests to be considered for merging,
and a core team, which oversees the merging process, provides
feedback, conducts tests, requests changes, and accepts the
contributions [6].

Given the relative openness of public projects available on
GitHub, several studies analyzed the interaction of developers
in pull requests, more specifically focusing on pull request
acceptance/rejection. Gousios et al. [6], for example, found
that 53% of rejected pull requests are rejected for reasons
related to the distributed nature of pull-based model, and only
13% of the pull-requests are rejected for technical reasons.
They report that the decision to merge a pull request is mainly
influenced by whether the pull-request includes recently mod-
ified code and that the time to merge is influenced by the
developer’s history, the project’s size, test coverage, and the
openness to external contributions. Size and maturity of the
project are also reported as influential by Rahman et al. [23].
Padhye et al. [24] complement this list, reporting that bug fixes
are more likely to be merged than feature enhancements, while
Hellendoorn et al. [25] found that code style is an important



aspect. From a less technical perspective, Tsay et al. [26]
reported that the social connection between the submitter
and project manager matters, and that highly discussed pull
requests are less likely to be accepted. Tao et al. [27] also
found that bad timing of patch submission and a lack of
communication with team members can lead to rejection.
More recently, Alami et al. [28] discussed that the governance
model needs to be considered since the communities are
different. They classify the pull request governance model in
protective, equitable, and lenient. They also summarize the
principles used to evaluate the acceptance of pull requests that
are classified as software engineering practices, requirements,
social norms, and strategic vision for the product. While these
studies analyzed the reasons behind contribution rejection, we
complement this literature by expanding them to target first-
time contributions in a specific domain.

In fact, the onboarding of first-timers is (marginally) con-
sidered in the studies that involve analysis of pull requests.
By interviewing maintainers and contributors, German et
al. [29] found that first-time contributors may be treated
unfairly and that maintainers are socially biased in favor of
known people. Soares et al. [30] also found that pull requests
made by an outsider (the first pull request by a developer)
influence the acceptance decision. Finally, while analyzing
quasi-contributors (people who attempted to contribute but did
not have their contribution accepted), Steinmacher et al. [31]
found that the main reasons for pull request rejection from the
quasi-contributors’ perspective were “superseded/duplicated
pull-request” and “mismatch between developer’s and team’s
vision/opinion.” Our work complements these by looking
specifically for first-timers in Network Automation projects,
compared with other projects.

As mentioned before, another main component of GitHub
is the issues. GitHub “issues” are a place to foster discussion
around new software features and bug reports [32], and often
a place to ask questions to the community [33]. In terms of
a typical flow within a GitHub repository, issues are used in
intake bug reports and feature requests, allowing for a lengthy
discussion about these ideas before and during implementa-
tion. Once implementation is prepared, the relevance of the
issue is migrated and linked to one or more pull requests. The
existing literature analyzed the use of issues on GitHub in a
more exploratory sense. Bissyandé et al. [34] investigated the
adoption of issue trackers on GitHub and found that issues
are more thoroughly used by large projects, there is a small
correlation between the numbers of issue reporters and the
time-to-close delays, and that bugs and features are equally
reported. Kikas et al. [35] showed that the number of opened
issues is stable over time while pending issues are constantly
growing. Still, by analyzing labels assigned to issues, Cabot
et al. [36] found that the use of labels positively impacts
the issue evolution by facilitating collaboration and leading
to an increase in the number of issues solved. Although many
studies explore issues, in this paper, we take the perspective
of first-time contributors, to understand how they collaborate
with network automation communities using the issue tracker.

IV. RESEARCH METHODOLOGY

In this paper, we seek to shed light on the current state
of network automation FOSS development, concerning new
developers and skillsets. To replicate our study, please see
Section IV-A. We collected data from the GitHub Archive
project [7], which continuously collects and catalogs events
from all of GitHub. Due to the scope and nature of this data
set, it has been used many times before in the domain of
software repository mining [37]–[39] .

We identified 71 GitHub repositories related to the domain
of network automation, by applying the following criteria:

• we identified activity in 2019,
• relevance to the field, judged by community references

(e.g., Awesome Network Automation list1), and the ex-
pertise of one of the authors (who works in the field),
and

• being an actual software project and not merely a source
of other reference material or knowledge (through a
manual analysis).

With these 71 repositories identified, we executed a query
on the BigQuery platform2 to return all data related to those
71 repositories for the entirety of the year 2019. We created
a local copy with the events for these projects, containing the
tuple of event, a json blob with the event data itself, date
of creation, organization and repository name, and the actor
responsible for the event.

TABLE I
TOP-10 RANKED GITHUB REPOSITORIES

ID GitHub project
1 https://github.com/aspnet/AspNetCore
2 https://github.com/flutter/flutter
3 https://github.com/MicrosoftDocs/vsts-docs
4 https://github.com/istio/istio
5 https://github.com/aws-amplify/amplify-js
6 https://github.com/helm/charts
7 https://github.com/ValveSoftware/Proton
8 https://github.com/gatsbyjs/gatsby
9 https://github.com/storybookjs/storybook
10 https://github.com/cypress-io/cypress

Having identified the subset of repositories by which to
study our niche domain, we wanted to have another data
set to compare to represent the broader software engineering
landscape better. For this, we chose to use GitHub’s list of
Top-10 trending repositories, according to the Octoverse (see
Table I) [8]. These projects represent trending repositories
by the number of new contributors. This factor makes these
specific projects a fair selection to compare with the network
automation projects since our analysis is based on contribution
quality characteristics. It is important to note this Top-10 list
also comes from the year 2019, which ensures that we are
comparing events and data over a consistent timeline. The data
for these repositories comes from GitHub Archive.

1https://github.com/networktocode/awesome-network-automation
2https://cloud.google.com/bigquery



With this data set, we perform our analyses by collecting
data through a series of queries in pursuit of our research
questions. To identify first-time contributors, we used the
classification of the contributors provided by GitHub. In this
classification, project contributors are broken down into five
categories: (1) Collaborator, (2) Member, (3) Owner, (4)
Contributor, and (5) None. These categories are referred to as
the pull request or issue author’s association with the project.
Although we know that issues and pull requests do not hold the
temporal nature of these categories, GitHub Archive does keep
this information given the incremental nature of the collection.

For both issues and pull requests, the category of None
represents the authors that never successfully had a commit
merged in the default branch of the project. We considered
those contributors in this category as our first time contribu-
tors. The Owner category is the person or persons who make
up the lead maintainers role of the project. The Member and
Collaborator categories are roles granted to persons, which
give them some degree of permissions within the repository.
Generally speaking, within the realm of FOSS, these people
have a track record of existing contributions to the project to
be afforded these roles. Finally, the Contributor role makes
up anyone else that has successfully committed to the default
branch and does not fall into one of the other categories. Some
of our analysis aggregates all roles other than None, and in
other instances, we call out specifics for each of the individual
roles. In either case, we make an effort to differentiate.

We also want to call out we will refer to the category of
None as either “first-time collaborators,” “first-time contribu-
tors,” or “first-timers,” all of which represent the same set of
first-time users to a project. Likewise, we will refer to the all
the remaining categories as an aggregate with either “existing
collaborators” or “existing contributors,” who again, make up
any user having previously contributed to the project.

Our study performs a statistical analysis of the data across
several metrics, described below. We want to point out that we
ran the Anderson-Darling normality test on our data sets and
in all cases the data are non-normalized. This is largely due
to the context surrounding pull request and issues on GitHub
and not a strike against the data itself. Therefore, we used
the non-parametric Mann-Whitney [40] test when comparing
potential indicators. This test determines the significance of a
difference in central tendency of two unpaired samples. We
always report the p-value adjusted for ties.

We explore the data analyzed to answer each RQ in the
following (Section V for RQ1, and Section VI for RQ2).

A. Reproducibility

For the purposes of reproducibility and independent study,
we have made all data, scripts, and a list of network automa-
tion repositories available via an online appendix.3

V. RQ1: ON PULL REQUEST CHARACTERISTICS

RQ1 seeks to determine if there is a relationship between
pull requests opened by first-time contributors and the ultimate

3https://doi.org/10.6084/m9.figshare.12333143

fate of those pull requests. We analyze this comparing to
experienced members and projects in other domains. We
consider a pull request to be successful if it has been merged
into the project’s codebase. Pull requests are unsuccessful
whenever they are closed for any other reason.

We approach this question from a few different angles, and
for each, we offer our analysis of the results and potential
factors leading to the examined numbers.

A. State at Closure

One of the first and most key elements of the pull request
data that exampled was the state of a pull request at the time
it was closed. As we mentioned before, a pull request can
either be merged or rejected. When rejected, there is additional
state information that is key to the determination of why
that pull request may have been closed. Those states include
clean, dirty, draft, unstable, and unknown. Each of these states
carries a particular context, especially when a repository is
using Continuous Integration (CI) checks on commits and
pull requests. A clean state indicates the pull request will not
produce any merge conflicts against the base brace (target
destination) branch, and it has passed any CI checks that
may have been defined. The dirty state says that there will
be one or more merge conflicts that must be resolved before
the pull request can be automatically merged. A dirty state
can sometimes be misleading in terms of quality constraints
because it is not necessarily the fault of a pull request author if
his pull request enters this state. For instance, if an earlier pull
request that makes modifications to overlapping areas of the
code base is merged, there is a good chance the second pull
request will become dirty because, in terms of the git timeline,
it needs to be manually updated. A draft state indicates the
pull request was submitted in draft mode, meaning the author
is not ready for this pull request to be merged and is likely
under active development. It is worth noting that the draft
state was only added as a GitHub feature in February of 2019
which means it is not fully represented in our overall data set,
however, our findings revealed a very small number of draft
pull-requests, so we generally regard them as inconsequential
[41]. The unstable state is perhaps the most interesting to
our current research because it indicates that one or more CI
checks are failing, and this is usually a direct indication of
a quality problem with the proposed contribution. As pointed
out by Vasilescu et al. [42], the purpose of CI pipelines is
to improve the overall quality of the codebase by enforcing
a passing bar for new code. The unknown state is a bit of
a catch-all, but usually, it means the pull request was closed
before GitHub could determine the auto-merge state or before
CI checks completed and reported back to GitHub.

When looking at the Top-10 projects, a total of 29,962 pull
requests were opened and 30,470 were closed, of which 8,445
were rejected. The discrepancy in open vs. closed is explained
by closure of pull requested opened before our 2019 data set
window, and further backed up by our analysis of pull request
age, later. When compared to the network automation data
set, there were 3,578 pull requests opened and 3,589 closed,



of which 437 were rejected a rejection rate of 28% for the Top-
10 and 12% for network automation. It is also worth noting
at this point that there is a small number of pull requests that
were opened in 2019 in both data sets but were not acted upon
by the end of the year and thus are not included in our results
which look at only those pull requests which were definitively
closed for some reason.

In terms of closure state, the Top-10 saw a 66% unstable
rate for existing contributors vs. just 47% for that of first-
time contributors. Network automation, on the other hand, saw
a 35% unstable state rate for existing contributors and 34%
for first-time contributors. Another significant closure state we
looked at is the dirty state. The Top-10 saw 15% for existing
contributors and 17% for first-time contributors, which com-
pares to 22% and 24% for network automation, respectively.
Table II summarizes this information. The noticeable aspects
of these numbers are that network automation sees a higher
rate of closures due to dirty pull requests and that first-time
contributors, in general, are responsible for slightly more of
these dirty pull requests.

TABLE II
PERCENTAGE OF PULL REQUESTS CLOSED IN UNSTABLE AND DIRTY

STATES

Unstable Dirty
Contributor Top-10 Net. Auto. Top-10 Net. Auto.
Existing 66% 35% 15% 22%
First Time 47% 34% 17% 24%

B. Number of Commits

Pull requests are made up of one or more commits, which
are small units of work. It is well understood that “good” pull
requests, i.e., those more likely to be successfully merged, are
small in scope and that generally correlates to a lower number
of total commits contained within a pull request [5]. Again,
while this sort of research already exists, we put it in the
context of new contributors.

We present Figure 1 as a summary of our findings for
the number of commits per pull request. From these, we can
observe that there is a difference in the distribution of merged
pull requests from first-timers when we compare network
automation and Top-10 projects (p-value=0.028)—given the
size of our sample, the difference can be considered marginal.
Besides, we also found that there is a marginal difference for
rejected pull requests (p-value=0.025). With this information,
by analyzing the boxplots and the data, we observed that pull
requests by first-timers in network automation projects have
more commits that in the Top-10 projects. When analyzing the
pull requests by experienced developers, we found the same
trend for the merged pull requests (p-value<0.001). However,
we found no significant difference for the rejections.

When analyzing rejected pull requests comparing first-
timers and experienced members, we found that for the
rejections experienced contributors’ have more commits than
those of first-timers’ pull requests (p=0.026 for network
automation projects, p<0.001 for Top-10). We highlight that,

due to sample size the difference observed for the network
automation can be considered marginal. For the merged pull
requests, the apparent difference in the boxplots is confirmed
for the Top-10 projects (p<0.001). However, we could not
confirm the difference between first-timers and experienced
contributors for the network automation projects (p=0.84).

We also analyzed the differences between pull requests
merged and rejected according to the contributor type. While
we could not observe statistical difference comparing first-
timers for Network Automation, we found that there is a
marginal difference for the Top-10 (p=0.028). On the other
hand, both for Top-10 and network automation, it was possible
to note differences between merged and rejected pull requests
by experienced members.

Fig. 1. Pull Request Commits

C. Size of Changes

Along the same lines as the number of commits in a pull
request, the size of the overall changes to the code base
proposed in a pull request also correlates to the end state
of said pull request [5]. We identify the details of trends as
they relate to first-time contributors. The size of a change
is broken into three metrics: the number of additions, the
number of deletions, and the number of files touched. These
are clear indicators of the size of a proposed change and
directly correlate to the acceptability of a change [43].

Right off the bat, the boxplot in Figure 2 shows some trends,
notably that network automation pull requests contain more
additions when compared to the Top-10. The Mann Whitney
tests confirm the differences. First, when analyzing the first-
timers’ pull requests, we found a significant difference for both
merged and rejected (p=0.029 for merged, p<0.001 for those
rejected). When analyzing the pull requests by experienced
members, we could not find statistical significance.

When analyzing only Network Automation projects, we
found that additions in merged and rejected pull requests by
first-timers are different (p=0.015). Moreover, we can see that
rejected pull requests are different when comparing first-timers



and experienced in Network Automation(p=0.001). Interest-
ingly, we could not find these differences when analyzing the
pull requests in the Top-10 set.

Figures 2, 3, and 4 show our findings for pull request
additions, deletions, and files touched from both Network
Automation and Top-10 projects. In line with the established
literature, we observe that the amount of changes on rejected
pull requests is usually larger when compared to merged.
Interestingly, we see that situation is exaggerated within the
network automation projects. For first-timers, it is clear that
they have more additions in their rejected pull requests over
their merged ones (p=0.015); but the same comparison to both
deletions and files touched was not significant. The Top-10 first
timers, on the other hand, do not show a significant difference
in their additions or deletions across merged and rejected
pull requests, but their files touched show difference for
rejected pull requests (p=0.030). First-timer pull requests in
network automation see fewer overall changes within merged
pull requests compared to experienced member’s pull requests
(p<0.001 for each of additions, deletions, and files touched).

Fig. 2. Pull Request Commit Additions

D. Pull Request Comments

Pull request comments are a vital metric to study because
they relate directly to community collaboration within a
project between developers [44]. Pull request comments come
in two forms, and formally are used for two different purposes.
General pull request comments can be added at any point
and are generally used to discuss higher-level details of the
pull request. Review comments are a part of a formal code
review of the pull request. These reviews are an asynchronous
way to perform peer review of a proposed change and allow
participants to tie comments to files and even individual lines
of code. We studied the number of each of these types of
comments on each pull request.

The first thing that stands out from the Figure 5 is net-
work automation communities are not engaged in conversation
through pull requests comments as much as the Top-10. We see

Fig. 3. Pull Request Commit Deletions

Fig. 4. Pull Request Commit Files Touched

this in the comparison of pull requests made by experienced
contributors (p<0.001 for merged) and across first timer pull
requests (p<0.001 for both merged and rejected). We also
noted first timers in network automation see fewer comments
compared to their experienced counterparts for both merged
and rejected pull requests (p<0.001). This is interesting be-
cause the exact opposite is true in the Top-10 (p<0.001 for
both merged and rejected).

Review comments are hard to analyze because the average
pull request receives very few. That being said, it appears
network automation projects are not engaging in peer re-
view through these comments nearly as much as the Top-10
when comparing pull requests from experienced contributors
(p<0.001 for merged and p<0.001 for rejected). We also
found that first timers in network automation are receiving
marginally fewer review comments on rejected pull requests
vs the Top-10 (p=0.033).



Fig. 5. Pull Request Comments

E. Pull Request Age (latency)

The final metric we investigated concerning pull requests
was the age of a pull request when it is closed, also known
as latency [4]. This metric is relevant because it can help to
determine the staleness of contributions, which ultimately is
a detriment to both the maintainers and the submitter of a
pull request. If a pull request sits too long, it risks becoming
dirty, and the longer a first-time contributor waits to hear final
feedback on a pull request, the more disheartened or jaded he
may become about a project or the process in general. On the
flip side, maintainers of FOSS projects are sometimes donating
time, and thus the time needed to review and decide on open
pull requests comes at a premium [4].

Fig. 6. Pull Request Age in Days

As it is possible to observe in the Figure 6, there are
clear differences in the distribution of latency of pull requests.
Most noticeably, first-timers’ pull requests take longer than
those submitted by experienced members, both for the Top-10
projects and Network Automation (p<0.001). Moreover, the

TABLE III
DESCRIPTIVE STATISTICS FOR PULL REQUEST AGE IN DAYS

N Avg Q1 Med Q3 Max
Merg 18476 5.20 0.00 1.00 3.00 608.00Top-10 Rej 6137 17.91 0.00 0.00 13.00 750.00
Merg 2931 4.27 0.00 0.00 1.00 538.00Exp. Net

Auto Rej 260 53.18 0.00 2.00 20.75 639.00
Merg 3549 10.07 0.00 2.00 8.00 430.00Top-10 Rej 2302 38.22 0.00 8.00 49.00 819.00
Merg 221 40.94 1.00 5.00 23.50 746.00

First
Timer Net

Auto Rej 177 72.00 0.00 4.00 82.00 1023.00

boxplots show that the rejected pull requests take longer than
merged ones. Looking at Mann-Whitney results, this holds for
all configurations (p<0.001) except for first-timers of Network
Automation projects; in which we could not find statistical
significance when comparing merged and rejected (p=0.545).

RQ1 Summary. We found marginal differences in first-
timer pull requests related to the number of commits in
both data sets, and we found in network automation first-
timers submit more commits than experienced members.
We found that network automation pull requests contain
larger change sets in general, but for first-timers, we only
found significance in their pull request additions over
merged and rejected states. The comments metric showed
us that network automation is not engaging in pull request
conversation as much as the Top-10 and that first-time
contributors receive significantly fewer of these comments.
Pull request latency, perhaps, is the most telling metric, as
it shows pull requests from first-time contributors sit un-
resolved significantly longer than experienced contributors,
which is a fairly clear indicator of the quality constraints
which live therein and presents opportunity for future study
into those constraints.

VI. RQ2: ON ISSUE CHARACTERISTICS

RQ2 centers around the other core feature of GitHub, issues.
To answer RQ2, we identified several metrics for issues. We
wanted to know if there is a relationship between issues
and first-time collaborators. Issues, however, have a different
context than pull requests. While pull requests are used to
submit code changes, issues are the GitHub mechanism for
asking questions, proposing ideas, and reporting bugs. They
are used as a communication thread but can also be linked
to pull requests and other issues [45]. A study of the Apache
webserver project by Mockus et al. [33] revealed that issue
trackers on platforms like GitHub are used in profoundly
different ways, which is consistent with our own findings.

The timing semantics surrounding issues work a bit differ-
ently than those of pull requests. Issues track ideas, feature
requests, and bug reports, while pull requests track proposed
low-level code changes. For this reason, we spend more time
examining the open and close dates of issues to identify
boundaries within the year 2019.

In the Top-10 data set, 40,645 issues were opened in 2019,
and 36,249 total issues closed, but many of those were opened



before the beginning of 2019. In total, 31,322 were opened and
closed in 2019. In the network automation data set, there were
1,750 issues opened, and 1,261 were closed within the year.
There were a total of 1,604 issues closed in 2019, but similarly
to pull requests, some of these were opened before 2019.

A. Issue Comments

As a starting point, we analyzed the total number of
comments that existed in an issue thread when it was closed.
This is one metric that allows us to begin to comprehend
the rigor of the conversation being undertaken in issues. As
noted by Liu et al. [46], the social aspect of FOSS is a major
contributing factor in the success of any project, so it stands to
reason a correlation with issue comments would be significant.

We present Figure 7 to summarize the issue comments
data. Keeping in mind the relative difference in population
size between the two data sets, we first noted that network
automation sees fewer comments from both first timer and
experienced contributors compared to the Top-10 (p<0.001 in
either case). Second, within network automation, experienced
member’s issues received fewer comments than first timers
(p<0.001). While visually it appears the opposite is true of
the Top-10, we were unable to find any significance in the
Mann-Whitney test result.

Fig. 7. Number of Issue Comments

B. Issue Age

Like pull requests, it is also essential that we consider
the age of issues when they are finally closed. For this we
present our summary in Figure 8. First, we can see a large
difference in the age of issues within network automation
(p<0.001) and we found the same to also be true for the Top-
10 data set (p<0.001). We can also make out that experienced
collaborators in network automation have an issue open for
much longer than those experienced members in the Top-
10 (p=0.009). Finally, we found that first timers in network
automation have issues closed sooner than those of first timers
in the Top-10 (p<0.001).

Fig. 8. Issue Age in Days

C. Issues Resulting in Pull Request

One of the primary uses of issues is to facilitate discussion
before the submission of a pull request. For this reason, the
final and potentially most telling metrics we studied was the
identification of issues that resulted in the submission of a pull
request. Li et al. has conducted extensive research in the way
GitHub issues are linked to pull requests and other issues and
found that the practice is not only useful but popular among
developers on GitHub [47].

We did our typical analysis and found for the Top-10 that
9,005 pull requests were submitted that resulted from issues
opened by existing users. Of those, just 4,028 (45%) were
merged. We dug a little deeper and discovered of those merged
pull requests, 905 were submitted by first-time contributors
(about 25% of them). Of the rejected pull requests in this
category, just 23 were opened by first-time users.

Next, we compared these results to issues opened by first-
time contributors in the Top-10 data sets and found 2,051 is-
sues resulted in a pull request submission. Of those, 899 (44%)
were merged, and the same first-time collaborators submitted
all. Of the rejected pull requests, 1,176 were submitted by the
first time contributors. The discrepancy in comparison to the
total is due to a specific small percentage of items opened
before 2019 but closed within the year. We only look at items
that have been closed for any reason.

To continue our analysis, we then studied the network
automation data set. We found 375 pull requests that linked
to issues submitted by existing contributors vs. 112 for issues
opened by first-time collaborators. Of the 375, a total of 226
(60%) pull requests were merged, and first-timers submitted 35
(15%) of those. Again we saw the same phenomena in which
112 pull requests from first time issues, 9 were merged, and
they were all from first time collaborators. From the existing
contributors’ issues, 2 resulting pull requests were rejected and
had been submitted by first-time contributors, compared to 106
rejections from first-time contributor’s issues.



RQ2 Summary. We found significance in fewer issue
comments in network automation, and for both data sets
that first-time contributors have their issues closed sooner.
We also identified a low ”pick-up” rate of pull requests
submitted by first-time contributors resulting from issues
opened by experienced members. This culminates in us
declaring that the number of issue comments, issue age, and
analysis of pull requests linked to issues is good metrics for
comparative analysis and we would want to further study
their relation as quality constraints.

VII. DISCUSSION

Our work initially set out to explore two questions related
to first time contribution. To reach this goal, we devised a
framework of metrics by which to analyze GitHub event data
to identify trends. Our framework is based entirely off of first
order attributes available with the event data. We feel this
makes our approach very palatable to all sorts of individual
use cases and skillsets. Much of the existing work on GitHub
data mining relies on complex code analysis, natural language
processing, or machine learning techniques [48]. We do not
mean to diminish this research or their approaches; instead,
we are arguing that the relative simplicity of the technical
requirements in our methodology makes it easier to reproduce.

We apply our method to two different data sets with
the same structure; one that represents the niche domain of
network automation and another, which is comprised of the
Top-10 trending repositories on GitHub, which is meant to be
used as a control of the broader industry. Part of our goal in
this work was to glean information from this niche domain, so
have a basis by which to compare was vital. This means that
our work can be reused to examine other subdomains within
the software engineering field.

For network automation, we found that for many metrics,
this domain is performing on par with the broader industry.
There were several cases of deviation, however, that we
attempted to address. Some of this is certainly due to the
nature of network automation projects, which often tend to be
low-level tools intended for use by a specific set of people in
the industry. Still though, there are several large scale projects
in the place just as NetBox [49], Batfish [50], NSoT [51],
NAPALM [52], Netmiko [53], and others which do attract a
proper gathering of FOSS involvement. It is these projects for
which our interest is first time contribution is intended, and
we feel we have contributed some meaningful findings.

Different acceptance rate: Our results showed that the
acceptance rate for pull requests in Network Automation
(88%) is considerably higher than the Top-10 projects (72%).
Interestingly, the number for the Top-10 is in line with
previous studies (64% [54], 71% [55]). We believe that the
domain specifics, and the policies of the projects influence
these numbers. Top-10 projects, are well-recognized and ma-
ture projects with potentially high standards, while Network
Automation projects are smaller, and may welcome more
contributors seeking to create a community.

Instability of pull requests: When analyzing the state
of the pull requests at closure (Section V-A), it appears that
there are more unstable pull requests in the Top-10 than in
the Network Automation projects. It is important to consider
that the Top-10 projects see many more contributions, and
that have tools and processes in place to help triaging pull
requests. For example, analyzing the Top-10 projects, it was
possible to notice that Continuous Integration is set running.
Due to the nature of the Network Automation projects, this
may be the case that triaging processes or CI pipelines are
not commonplace. This can also be the case that only 31% of
projects state [56].

Size of pull requests: According to the existing literature on
FOSS [1], [6], smaller pull requests have more chances to be
merged. We found that pull requests in Network Automation
domain are larger than in Top-10 projects in terms of the
number of commits and lines added (Sections V-B and V-C).
This may be related to the practices in the Networks Automa-
tion community, which is frequently composed of contributors
without a software development background.

Pull requests take longer than usual to be processed: It
was clear that the pace of Network Automation is slower than
Top-10 projects. There are a few potential explanations for the
apparent delay of first-time submissions, but the most logical
is to remember the pull request size and scope disparities eval-
uated earlier. This is higher than the numbers reported by Pinto
et al. [57], who found that pull requests made by volunteers
in company-owned projects take, in average, 11.37 days to be
processed (q3=5, stdev=55). For the sake of comparison, first-
timers rejected pull requests take on average 72 days (q3=82,
stdev=135), while merged take 40.94 (q3=23.5, stdev=5.93).
It is likely that project maintainers simply look at the first
timer’s pull request as a bit of a daunting task because they
have proven to be much larger and thus take more time to
review and understand realistically. Another factor leading to
long review times is duplicate pull requests. Li et al. showed
that duplicates are abundant in larger projects and can be hard
to weed out [58], [59].

First timers’ issues are closed faster: First-timers’ issues
are staying open for roughly half the total time of issues from
existing members of a project. There are several potential
reasons for this, including the fact that regular users often
use issues as a software support mechanism. We say regular
users here because this is a class of GitHub users that are not
engaging in software development but are merely looking for
help in using software from an end-user standpoint. This is
still a quality constraint in our minds because it is a project
maintenance burden. While issues are commonly used as a
support forum, they quickly become noise when the issue
backlog is primarily being used to manage the software de-
velopment life cycle. Other factors playing into this ratio may
include incorrect bug reports, duplicates, malformed styling,
or language barriers, to name a few [60]. Some maintainers
have even turned to custom solutions like bots and web apps
to help stem the tide and review of issues, as pointed out in
work conducted by Ristemi et al. [61], [62].



Pull requests linked to issues: When analyzing RQ2,
we could see a 45% acceptance rate of pull requests that are
linked to issues. We see a disproportionately lower number of
successful pull requests from first-time contributors within the
network automation data set. We also observed, in the Top-10
dataset, that first-time contributors are attempting to address
24% of issues they did not open (relative to all submitted pull
requests), but in the network automation data, first-timers are
only attempting 10% of all issue related pull requests. We
call this the issue “pick up rate” as it designates work that
someone is taking on that was initially proposed by someone
else. Jiang et al. touched on this in their work, which analyzed
the proportion of all available users within a project that can
contribute vs. those that do [63].

Call for action: The results show that the characteristics of
pull requests on Network Automation projects differ from the
Top-10 and from what is presented by the current literature.
This may be attributed to the fact that the contributors to
the projects under this domain lack a software engineering
background. Therefore, the way that the projects function,
including the processes and tools used to maintain the con-
tribution flow, is different from the state-of-the-art of mature
software projects. For researchers, this is an opportunity to
understand how the process differs in various domains, and
how they adhere to well-known practices and tools used
in mature projects. An open gap here regards the potential
impact of these differences in the code in terms of, for
example, maintainability, efficiency, smells, and reliability.
It is clear that knowledge related to software development
and maintenance is no longer optional. For educators, it is
necessary to include basic knowledge of the development
process in the undergraduate curriculum, focusing on a non-
software developers cohort.

VIII. LIMITATIONS

There are examples in software engineering literature about
perils of mining GitHub data, specifically such as consistent
use of platform features, differing project organizational mod-
els, data staleness, and uses of GitHub unrelated to software
engineering [37], [64], [65]. In this paper, we address some
of these issues with specific remedies within our work, but
generally, our study makes use of a hand-selected set of
repositories to weed out potentially problematic and unrelated
data from the very beginning.

As we mentioned in our method, the author association
attribute does not hold temporally. Once someone becomes a
contributor to a project, for example, all their pull request and
issues will carry the “contributor” association, becoming not
possible to find, for example, the issues that this person opened
when their association was “none.” In our case, we relied on
the GitHub Archive dataset, which holds the temporal aspect
of the issues and pull requests, making it possible to trace
back the association at the time of the creation of the issues.
Still, while there exist some edge case in which such a person
has submitted a successful pull request that was merged to

a non-default branch, in the vast majority of cases, authors
designated as None, are first-time contributors.

Kalliamvakou et al. [66] stated that many merged pull
requests appear non-merged, because commits were merged
through rebase or squash. This may have affected our validity
since we consider the number of merged/rejected pull requests.

We acknowledge that issues and pull requests may be
reopened multiple times during their lifetime. We deliberately
did not factor in pull requests and issues which are reopened.
Such events may be an additional indicator of quality con-
straints as, in some cases, they imply an underlying issue with
the initial implementation or desire to rehash a conversation.
We wish to analyze this further, and in particular, look into
work produced by Mohamed et al. on the subject [67].

The size of the data set used in this research [7] is a double-
edged sword. It contains a broad array of information that we
analyze and compare, but to do so at scale requires expertise
in big data analysis. For reference, the entire year of 2019
in this data set is 1.7TB in size. Previous work makes use
of Google’s BigQuery online service for which the GitHub
Archive has a direct integration. While BigQuery performs
efficient data processing, in this context, it is not cost-effective.
To combat this, we reduced the target data set that of only
events relevant to the 81 projects analyzed. The resulting
subset of data was 6GB large. We created a local copy of
this dataset into a PostgreSQL database, which we queried
consistently without other constraints of BigQuery. From this
more manageable data set, we further extracted data directly
related to our prescribed metrics to run our statistical analysis.

We used the Top-10 projects from Octoverse as our baseline.
Although this set makes up an excellent set to compare, they
do not represent the average projects available on GitHub. To
alleviate this problem, in discussion, we compare our results
with existing literature that analyze the same kind of data.

IX. CONCLUSION

In this paper, we explored the characteristics of first-time
contributions to FOSS projects. We devised a method of data
analysis that uses existing data sets of GitHub events from
across many repositories. We set up a baseline to explore
trends in the broader industry and apply our methods to
a specific domain. Part of our contribution also involves
the application of our methods to the domain of network
automation, which is a growing area seeing the introduction of
developers without traditional software engineering skill sets.

Throughout our research, we identified metrics and factors
that can be used to understand the characteristics of pull
requests and issues in FOSS projects. While the Network Au-
tomation projects are more welcoming (only 12% of rejection
rate), the characteristics of the pull requests and issues in this
domain are different from mature and well-known projects.
These differences may be related to the lack of knowledge
about software engineering best practices and tools, which may
ultimately impact code quality. Future studies may focus on
differences in other domains, and in differences in terms of
the quality of the code produced by these communities.



REFERENCES

[1] G. Pinto, I. Steinmacher, L. F. Dias, and M. Gerosa, “On the
challenges of open-sourcing proprietary software projects,” Empirical
Softw. Engg., vol. 23, no. 6, p. 3221–3247, Dec. 2018. [Online].
Available: https://doi.org/10.1007/s10664-018-9609-6

[2] A. Begel, J. Bosch, and M.-A. Storey, “Social networking meets software
development: Perspectives from github, msdn, stack exchange, and
topcoder,” IEEE Software, vol. 30, no. 1, p. 52–66, 2013.

[3] I. Steinmacher, T. U. Conte, C. Treude, and M. A. Gerosa, “Overcoming
open source project entry barriers with a portal for newcomers,” in Pro-
ceedings of the 38th International Conference on Software Engineering,
ser. ICSE’16. New York, NY, USA: ACM, 2016, pp. 273–284.

[4] Y. Yu, H. Wang, V. Filkov, P. Devanbu, and B. Vasilescu, “Wait for
it: Determinants of pull request evaluation latency on github,” in 2015
IEEE/ACM 12th working conference on mining software repositories.
IEEE, 2015, pp. 367–371.

[5] C. Treude, L. Leite, and M. Aniche, “Unusual events in github
repositories,” Journal of Systems and Software, May 2018.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0164121218300876?via=ihub

[6] G. Gousios, M. Pinzger, and A. v. Deursen, “An exploratory
study of the pull-based software development model,” in 36th
International Conference on Software Engineering, ser. ICSE 2014.
New York, NY, USA: ACM, 2014, pp. 345–355. [Online]. Available:
http://doi.acm.org/10.1145/2568225.2568260

[7] “Gh archive.” [Online]. Available: https://www.gharchive.org/
[8] “The state of the octoverse,” 2019. [Online]. Available: https:

//octoverse.github.com/
[9] W. Xia, Y. Wen, C. H. Foh, D. Niyato, and H. Xie, “A survey

on software-defined networking,” IEEE Communications Surveys &
Tutorials, vol. 17, no. 1, pp. 27–51, 2014.

[10] Y. Li and M. Chen, “Software-defined network function virtualization:
A survey,” IEEE Access, vol. 3, pp. 2542–2553, 2015.

[11] I. Steinmacher, M. A. Gerosa, and D. Redmiles, “Attracting, onboarding,
and retaining newcomer developers in open source software projects,”
in Proceedings of the Workshop on Global Software Development in a
CSCW Perspective, ser. CSCW ’14 Workshops, 2014.

[12] R. Pham, L. Singer, and K. Schneider, “Building test suites in social
coding sites by leveraging drive-by commits,” in ICSE 2013. IEEE,
2013, pp. 1209–1212.

[13] Y. Hu, J. Zhang, X. Bai, S. Yu, and Z. Yang, “Influence analysis of
github repositories,” SpringerPlus, vol. 5, no. 1, pp. 1–19, 2016.

[14] F. Fronchetti, I. Wiese, G. Pinto, and I. Steinmacher, “What attract
newcomers to onboard on oss projects? tl; dr: Popularity,” in 15th
International Conference on Open Source Systems (OSS), 2019.

[15] I. Steinmacher, M. A. Gerosa, and D. Redmiles, “Attracting, onboarding,
and retaining newcomer developers in open source software projects,”
in Workshop on Global Software Development in a CSCW Perspective,
2014.

[16] A. Rastogi, N. Nagappan, G. Gousios, and A. van der Hoek,
“Relationship between geographical location and evaluation of
developer contributions in GitHub,” in 12th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement.
New York, NY, USA: ACM, 2018, pp. 22:1–22:8. [Online]. Available:
http://doi.acm.org/10.1145/3239235.3240504

[17] G. Pinto, L. F. Dias, and I. Steinmacher, “Who gets a patch accepted
first? comparing the contributions of employees and volunteers,” in 2018
IEEE/ACM 11th International Workshop on Cooperative and Human
Aspects of Software Engineering (CHASE), 2018, pp. 110–113.

[18] V. Sinha, A. Lazar, and B. Sharif, “Analyzing developer sentiment in
commit logs,” in MSR 2016. New York, NY, USA: ACM, 2016,
pp. 520–523. [Online]. Available: http://doi.acm.org/10.1145/2901739.
2903501

[19] E. Guzman, D. Azócar, and Y. Li, “Sentiment analysis of commit
comments in GitHub: An empirical study,” in 11th Working
Conference on Mining Software Repositories, ser. MSR 2014. New
York, NY, USA: ACM, 2014, pp. 352–355. [Online]. Available:
http://doi.acm.org/10.1145/2597073.2597118

[20] B. Vasilescu, D. Posnett, B. Ray, M. G. van den Brand, A. Serebrenik,
P. Devanbu, and V. Filkov, “Gender and tenure diversity in GitHub
teams,” in CHI 2015, 2015, pp. 3789–3798.

[21] C. Mendez, H. S. Padala, Z. Steine-Hanson, C. Hilderbrand, A. Horvath,
C. Hill, L. Simpson, N. Patil, A. Sarma, and M. Burnett, “Open
source barriers to entry, revisited: A sociotechnical perspective,” in
40th International Conference on Software Engineering, ser. ICSE ’18.
New York, NY, USA: ACM, 2018, pp. 1004–1015. [Online]. Available:
http://doi.acm.org/10.1145/3180155.3180241

[22] J. Tantisuwankul, Y. S. Nugroho, R. G. Kula, H. Hata, A. Rungsawang,
P. Leelaprute, and K. Matsumoto, “A topological analysis of
communication channels for knowledge sharing in contemporary github
projects,” Sep 2019. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0164121219301906?via=ihub

[23] M. M. Rahman, C. K. Roy, and J. A. Collins, “Correct: Code reviewer
recommendation in github based on cross-project and technology
experience,” in 38th International Conference on Software Engineering
Companion, ser. ICSE ’16. New York, NY, USA: ACM, 2016, pp. 222–
231. [Online]. Available: http://doi.acm.org/10.1145/2889160.2889244

[24] R. Padhye, S. Mani, and V. S. Sinha, “A study of external community
contribution to open-source projects on github,” in 11th Working
Conference on Mining Software Repositories, ser. MSR 2014. New
York, NY, USA: ACM, 2014, pp. 332–335. [Online]. Available:
http://doi.acm.org/10.1145/2597073.2597113

[25] V. J. Hellendoorn, P. T. Devanbu, and A. Bacchelli, “Will they like
this?: Evaluating code contributions with language models,” in 12th
Working Conference on Mining Software Repositories, ser. MSR ’15.
Piscataway, NJ, USA: IEEE Press, 2015, pp. 157–167. [Online].
Available: http://dl.acm.org/citation.cfm?id=2820518.2820539

[26] J. Tsay, L. Dabbish, and J. Herbsleb, “Influence of social and technical
factors for evaluating contribution in github,” in ICSE, 2014, pp. 356–
366.

[27] Y. Tao, D. Han, and S. Kim, “Writing acceptable patches: An empirical
study of open source project patches,” in 2014 IEEE International
Conference on Software Maintenance and Evolution, Sept 2014, pp.
271–280.

[28] A. Alami, M. L. Cohn, and A. Waisowski, “How do foss communities
decide to accept pull requests?” in Proceedings of the Evaluation
and Assessment in Software Engineering, ser. EASE ’20. New York,
NY, USA: Association for Computing Machinery, 2020, p. 220–229.
[Online]. Available: https://doi.org/10.1145/3383219.3383242

[29] D. M. German, G. Robles, G. Poo-Caamaño, X. Yang, H. Iida, and
K. Inoue, “”was my contribution fairly reviewed?” a framework to study
the perception of fairness in modern code reviews,” in 2018 IEEE/ACM
40th International Conference on Software Engineering (ICSE), 2018,
pp. 523–534.

[30] D. M. Soares, M. L. de Lima Júnior, L. Murta, and A. Plastino,
“Acceptance factors of pull requests in open-source projects,” in
Proceedings of the 30th Annual ACM Symposium on Applied
Computing, ser. SAC ’15. New York, NY, USA: Association for
Computing Machinery, 2015, p. 1541–1546. [Online]. Available:
https://doi.org/10.1145/2695664.2695856

[31] I. Steinmacher, G. Pinto, I. S. Wiese, and M. A. Gerosa, “Almost there:
A study on quasi-contributors in open-source software projects,” in ICSE
2018, 2018, pp. 256–266.

[32] A. B. Dhasade, A. S. M. Venigalla, and S. Chimalakonda, “Towards
prioritizing github issues,” in Proceedings of the 13th Innovations
in Software Engineering Conference on Formerly Known as India
Software Engineering Conference, ser. ISEC 2020. New York, NY,
USA: Association for Computing Machinery, 2020. [Online]. Available:
https://doi.org/10.1145/3385032.3385052

[33] A. Mockus, R. T. Fielding, and J. Herbsleb, “A case study of open
source software development: The apache server,” in Proceedings of the
22nd International Conference on Software Engineering, ser. ICSE ’00.
New York, NY, USA: Association for Computing Machinery, 2000, p.
263–272. [Online]. Available: https://doi.org/10.1145/337180.337209

[34] T. F. Bissyandé, D. Lo, L. Jiang, L. Réveillère, J. Klein, and Y. L.
Traon, “Got issues? who cares about it? a large scale investigation of
issue trackers from github,” in 2013 IEEE 24th International Symposium
on Software Reliability Engineering (ISSRE), 2013, pp. 188–197.

[35] R. Kikas, M. Dumas, and D. Pfahl, “Issue dynamics in github projects,”
in Product-Focused Software Process Improvement, P. Abrahamsson,
L. Corral, M. Oivo, and B. Russo, Eds. Cham: Springer International
Publishing, 2015, pp. 295–310.

[36] J. Cabot, J. L. Cánovas Izquierdo, V. Cosentino, and B. Rolandi,
“Exploring the use of labels to categorize issues in open-source software



projects,” in 2015 IEEE 22nd International Conference on Software
Analysis, Evolution, and Reengineering (SANER), 2015, pp. 550–554.

[37] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and
D. Damian, “The promises and perils of mining github,” in Proceedings
of the 11th working conference on mining software repositories, 2014,
pp. 92–101.

[38] M. Allamanis and C. Sutton, “Mining idioms from source code,” in
Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, ser. FSE 2014. New York,
NY, USA: Association for Computing Machinery, 2014, p. 472–483.
[Online]. Available: https://doi.org/10.1145/2635868.2635901

[39] D. Graziotin, F. Fagerholm, X. Wang, and P. Abrahamsson, “What
happens when software developers are (un)happy,” Journal of Systems
and Software, vol. 140, pp. 32 – 47, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0164121218300323

[40] H. Mann and D. Whitney, “On a test of whether one of two random
variables is stochastically larger than the other,” Annals of Mathematical
Statistics, vol. 18, no. 1, pp. 50–60, 1947.

[41] “Introducing draft pull requests.” [Online]. Available: https://github.
blog/2019-02-14-introducing-draft-pull-requests/

[42] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov, “Quality and
productivity outcomes relating to continuous integration in github,” in
Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, 2015, pp. 805–816.

[43] K. Muthukumaran, A. Choudhary, and N. L. B. Murthy, “Mining github
for novel change metrics to predict buggy files in software systems,”
in 2015 International Conference on Computational Intelligence and
Networks, 2015, pp. 15–20.

[44] Y. Zhang, G. Yin, Y. Yu, and H. Wang, “A exploratory study of @-
mention in github’s pull-requests,” in 2014 21st Asia-Pacific Software
Engineering Conference, vol. 1, 2014, pp. 343–350.

[45] N. Bleiel, “Collaborating in github,” in 2016 IEEE International Pro-
fessional Communication Conference (IPCC), 2016, pp. 1–3.

[46] J. Liu, J. Li, and L. He, “A comparative study of the effects of pull
request on github projects,” in 2016 IEEE 40th Annual Computer
Software and Applications Conference (COMPSAC), vol. 1. IEEE,
2016, pp. 313–322.

[47] L. Li, Z. Ren, X. Li, W. Zou, and H. Jiang, “How are issue units linked?
empirical study on the linking behavior in github,” in 2018 25th Asia-
Pacific Software Engineering Conference (APSEC), 2018, pp. 386–395.

[48] N. Khadke, M. H. Teh, and M. Shen, “Predicting acceptance of github
pull requests,” Stanford–CS 229, Tech. Rep., 2012.

[49] Netbox-Community, “netbox-community/netbox,” Apr 2020. [Online].
Available: https://github.com/netbox-community/netbox

[50] Batfish, “batfish/batfish,” May 2020. [Online]. Available: https:
//github.com/batfish/batfish

[51] Dropbox, “dropbox/nsot,” Oct 2019. [Online]. Available: https:
//github.com/dropbox/nsot

[52] Napalm-Automation, “napalm-automation/napalm,” May 2020.
[Online]. Available: https://github.com/napalm-automation/napalm

[53] Ktbyers, “ktbyers/netmiko,” Apr 2020. [Online]. Available: https:
//github.com/ktbyers/netmiko

[54] J. Zhu, M. Zhou, and A. Mockus, “Effectiveness of code contribution:
From patch-based to pull-request-based tools,” in Proceedings of the
2016 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, 2016, pp. 871–882.

[55] J. Terrell, A. Kofink, J. Middleton, C. Rainear, E. Murphy-Hill,
C. Parnin, and J. Stallings, “Gender differences and bias in open
source: pull request acceptance of women versus men,” PeerJ
Computer Science, vol. 3, p. e111, May 2017. [Online]. Available:
https://doi.org/10.7717/peerj-cs.111

[56] O. Elazhary, M. Storey, N. Ernst, and A. Zaidman, “Do as i do, not as i
say: Do contribution guidelines match the github contribution process?”
in 2019 IEEE International Conference on Software Maintenance and
Evolution (ICSME), 2019, pp. 286–290.

[57] G. Pinto, L. F. Dias, and I. Steinmacher, “Who gets a patch accepted
first? comparing the contributions of employees and volunteers,” in 2018
IEEE/ACM 11th International Workshop on Cooperative and Human
Aspects of Software Engineering (CHASE), 2018, pp. 110–113.

[58] Z. Li, G. Yin, Y. Yu, T. Wang, and H. Wang, “Detecting duplicate
pull-requests in github,” in Proceedings of the 9th Asia-Pacific
Symposium on Internetware, ser. Internetware’17. New York, NY,
USA: Association for Computing Machinery, 2017. [Online]. Available:
https://doi.org/10.1145/3131704.3131725

[59] X. Zhang, Y. Chen, Y. Gu, W. Zou, X. Xie, X. Jia, and J. Xuan, “How do
multiple pull requests change the same code: A study of competing pull
requests in github,” in 2018 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2018, pp. 228–239.

[60] D. Kavaler, S. Sirovica, V. Hellendoorn, R. Aranovich, and V. Filkov,
“Perceived language complexity in github issue discussions and their
effect on issue resolution,” in 2017 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE), 2017, pp. 72–83.

[61] I. Ristemi, M. A. Trpkovska, and B. Cico, “Mygitissues web application
as a solution in dealing with issues on github,” in 2019 8th Mediter-
ranean Conference on Embedded Computing (MECO), 2019, pp. 1–4.

[62] Z. Hu and E. F. Gehringer, “Improving feedback on github pull requests:
A bots approach,” in 2019 IEEE Frontiers in Education Conference
(FIE), 2019, pp. 1–9.

[63] J. Jiang, D. Lo, X. Ma, F. Feng, and L. Zhang,
“Understanding inactive yet available assignees in github,” Jun 2017.
[Online]. Available: https://www.sciencedirect.com/science/article/abs/
pii/S0950584917304457?via=ihub

[64] M. M. Rahman and C. K. Roy, “An insight into the pull requests
of github,” in Proceedings of the 11th Working Conference on
Mining Software Repositories, ser. MSR 2014. New York, NY, USA:
Association for Computing Machinery, 2014, p. 364–367. [Online].
Available: https://doi.org/10.1145/2597073.2597121

[65] P. S. Kochhar, D. Wijedasa, and D. Lo, “A large scale study of multiple
programming languages and code quality,” in 2016 IEEE 23rd Interna-
tional Conference on Software Analysis, Evolution, and Reengineering
(SANER), vol. 1. IEEE, 2016, pp. 563–573.

[66] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and
D. Damian, “The promises and perils of mining GitHub,” in Proceedings
of the 11th Working Conference on Mining Software Repositories, ser.
MSR 2014. New York, NY, USA: ACM, 2014, pp. 92–101. [Online].
Available: http://doi.acm.org/10.1145/2597073.2597074

[67] A. Mohamed, L. Zhang, J. Jiang, and A. Ktob, “Predicting which pull
requests will get reopened in github,” in 2018 25th Asia-Pacific Software
Engineering Conference (APSEC). IEEE, 2018, pp. 375–385.


