
Department: Head
Editor: Name, xxxx@email

Guidelines for Developing Bots
for GitHub
Mairieli Wessel
Radboud University, The Netherlands

Andy Zaidman
Delft University of Technology, The Netherlands

Marco A. Gerosa
Northern Arizona University, USA

Igor Steinmacher
Northern Arizona University, USA

Abstract—Projects on GitHub rely on the automation provided by software development bots to
uphold quality and alleviate developers’ workload. Nevertheless, the presence of bots can be
annoying and disruptive to the community. Backed by multiple studies with practitioners, this
paper provides guidelines for developing and maintaining software bots. These guidelines aim to
support the development of future and current bots and social coding platforms.

BRIDGING THE GAP between human col-
laborative software development and automated
processes, bots are used to alleviate the software
development workload, improve productivity, and
enable use cases for which humans are not real-
istically suitable [1]. On social coding platforms,
such as GitHub, a bot acts autonomously to some
extent, has a user account, and plays a role
within the development team, executing tasks that
complement the developers’ work [2].

Automating simple, time-consuming, or te-
dious tasks and collecting dispersed information
are some ways that bots support software projects.
In previous work, we have found that the adop-
tion of bots helps developers merge more pull
requests, and reduces the need for communication

between developers [3]. However, while bots are
useful for automating a variety of tasks related to
software development, prior research has shown
that they have the potential side-effect of disrupt-
ing developers in their work [4].

Surveying and interviewing practitioners, we
have found three categories of reported chal-
lenges: interaction, adoption, and development
challenges [5], [4] (see Figure 1). Bot noisiness
has appeared as a crosscutting concern in all
three categories. Noisiness often leads to com-
munication issues and expectation breakdowns.
Developers often complain about a bot’s verbose
messages, timing, and high frequency of actions,
which might be caused by platform limitations or
bot configuration issues.

IT Professional Published by the IEEE Computer Society © 2019 IEEE 1

ar
X

iv
:2

21
1.

13
06

3v
1

 [
cs

.S
E

]
 2

3
N

ov
 2

02
2

Department Head

Phase I - Identification of Bot Challenges

Phase II - Identification of Design Strategies

Interview open-source
practitioners

Interventions
Prototype

Design sessions with
open-source
practitioners

Experimental study to
assess the prototype

Survey the open-source
community

Bot Challenges

Interaction
Challenges

Adoption
Challenges

Development
Challenges

Findings: Challenges Categorisation

Expectation breakdowns
Communication issues
Ethical issues Discoverability issues

Configuration issues
Technical complexity

Platform
limitations

Guidelines
for bot developers

 Findings: Key Bot Characteristics

Intelligence Adaptability Autonomy

Figure 1. Methodology employed to identify challenges, build a prototype, and create guidelines. The result
from Phase I was published at CSCW ([5], [4]), and Phase II at ICSE 2022 [6]. We added a graphical mark
() to identify the challenges related to noisiness, which crosscut the three categories of challenges.

Backed by the results of our empirical studies,
we have investigated interventions/strategies to
mitigate noise and deal with some of the iden-
tified challenges [6]. In line with Erlenhov et
al. [1]’s results, our results indicate that a com-
bination of three different characteristics appears
to be relevant for a bot: intelligence, adaptability,
and autonomy. Although intelligence and adapt-
ability recurrently appear in the literature as a
desired bot characteristic [1], [7], they are not yet
widely present in bots that work on GitHub [5].

Backed by the observations gathered from
these studies, this paper presents a set of guide-
lines to help develop software bots for GitHub
and (re-)design the human-bot interaction on so-
cial coding platforms. We expect that the ad-

vances in bot creation frameworks will provide
better support for the fulfillment of the guidelines
in the future.

Research overview
We have collected evidence of bot noisiness

throughout multiple empirical studies as pre-
sented in Figure 1. First, we surveyed 205 open
source contributors and 23 maintainers [5] and
openly asked them about the challenges of using
and interacting with bots. To deepen our un-
derstanding of these challenges, we interviewed
21 practitioners experienced with bots, including
project maintainers, contributors, and bot devel-
opers [4]. The developers’ most recurrent com-
plaints are related to annoying bot behaviors.

2 IT Professional

Those behaviors include the case in which bots
provide comments with dense information “in the
middle of the pull request”, frequently overusing
visual elements, and the case in which bots per-
form repetitive actions, such as creating numerous
pull requests and leaving dozens of comments
in a row. These behaviors are often perceived
as noise, which can lead to information and
notification overload, which disrupts both human
communication and development workflow.

As noise emerged as a central interaction
challenge from our empirical analysis, we have
further investigated how to overcome it. We cre-
ated two interventions: (1) a mediator bot that or-
ganizes existing bot information in a pull request,
and (2) a separate interface for the bot interaction
in the pull request [6]. To design and implement
the interventions, we applied Design Fiction [8],
a technique that has been broadly used in the
Human-Computer Interaction field to explore and
critique future technologies. We presented to 32
open-source maintainers, contributors, bot devel-
opers, and bot researchers a fictional story of a
mediator bot capable of better supporting devel-
opers’ interactions on pull requests and operating
as a mediator between developers and the existing
bots. During synchronous design fiction sessions,
participants answered questions to complete the
end of the fictional story, discussing the design
strategies for the mediator bot and raising con-
cerns about the use of bots.

Building on the findings of our empirical
investigation, we propose a set of guidelines for
both bot developers and tool builders. All the
guidelines are backed by the evidence previously
collected and supported by the literature.

Guidelines for developing bots
To make bots more effective at accomplishing

their tasks, design problems need to be solved to
avoid repetitive notifications, provide consistency
in the tasks being done, make bots adaptive,
and provide clear and contextualized feedback
to project contributors and maintainers [4], [6].
To better design the next generation of bots, we
provide a set of guidelines along with three main
categories: designing bot interaction, facilitating
bot adoption, and overcoming platform limita-
tions.

Designing bot interaction
One of the essential aspects of bot inter-

action is communication. However, the existing
bots might fail to provide meaningful information
to developers. The most recurrent and central
challenge is the introduction of noise into the
developers’ communication channels. Developers
complained about annoying bot behaviors such as
verbosity, high frequency and timing of actions,
and unsolicited actions. Therefore, we present a
set of guidelines to support tool builders and bot
developers in designing bot interactions.

Guideline 1 (G#1)

Provide clear, concise, and well-
organized information.

Interaction challenges: We evidenced the need
for background knowledge to interact with and
understand the messages of bots on GitHub. Com-
bined with lack of context, it might be extremely
difficult for humans to extract meaningful guid-
ance from bots’ feedback. In these cases, when a
bot message is not clear enough, developers “[...]
need to go and ask a human for clarity”, which
may generate more work for both contributors and
maintainers.
What should bot developers do: To reduce the
cognitive effort to process bot feedback, it is
preferable to prioritize conciseness over com-
pleteness. For example, a bot that informs de-
velopers whether the changes in a pull request
affected the code coverage (i.e., a code coverage
bot) should focus on reporting the overall result,
and pointing to sources of additional information.

Guideline 2 (G#2)

Focus on an appropriate way to show
information.

Interaction challenges: Another important aspect
of bot interaction is the way bots should display
information to developers. Developers frequently
do not like it when “[...] bots put a bunch of
information that they try to convey in comments
instead of [providing] status hooks or a link
somewhere.”
What should bot developers do: Bot developers
should identify the best way to convey the in-
formation. On GitHub, this can be achieved by

May/June 2019 3

Department Head

exploring possible ways to show information on
the platform, which can be either status informa-
tion or comments. For example, a bot that looks
over the code in a pull request and catches quality
issues (i.e., a code quality bot) can comment on
a pull request to report a list of code formatting
issues found. In cases where only an overall
status (i.e., passing, falling, blocked) is needed,
it is preferable to use status information and
avoid overloading pull requests with additional
comments.

Guideline 3 (G#3)

Provide actionable changes to develop-
ers.

Interaction challenges: Another recurrent com-
plaint from our survey and interview participants
is that bots do not provide actionable changes
for developers. Some of the messages and out-
comes from bots are so strict that they do not
guide developers on what they should do next to
accomplish their tasks: “it is great to see ‘yes’
or ‘no,’ but if it is not actionable, then it is not
useful [...]”.
What should bot developers do: Bot outcomes
should be accompanied by actionable and tech-
nically sound recommendations by default for
the decision-making of developers. For example,
a pull request comment from a code coverage
bot informing that the coverage decreased is not
actionable. However, a comment accompanied by
suggested changes is highly actionable because it
helps developers to figure out the next steps.

Guideline 4 (G#4)

Avoid overly humanized bot messages.

Interaction challenges: Previous studies on
human-chatbot interaction have already shown
that human users can hold higher expectations
with overly humanized bots (e.g., bots that say
“thank you”) which can lead to frustration [9].
Our study results underscore that some developers
feel uncomfortable interacting with a bot, as men-
tioned by one participant: “ ‘for some people, it is
still quite strange, and they are quite surprised by
it.” Also, receiving “thanks” from a non-human
feels less sincere.
What should bot developers do: Although devel-

opers envision the bot mediator interacting with
users through natural language, more direct, and
non-humanized bot messages are appreciated. For
instance, developers suggested avoiding sentences
that do not add to the bot’s feedback, such as
“Hey, I’m here to help you [...].”

Guideline 5 (G#5)

Make bots’ purpose clear.

Interaction challenges: By automating and pro-
viding feedback on time-consuming tasks (e.g.,
checking code style or calculating code cover-
age), bots are intended to reduce the workload
of project maintainers and inform project con-
tributors. Nevertheless, maintainers reported that
a challenge they see is that “contributors don’t
understand the value of bots for maintainers.” We
also found that developers with different profiles
and backgrounds have different expectations with
regard to bot interaction. Bots, for example, en-
force predefined cultural rules of a community,
causing expectation breakdowns for outsiders.
What should bot developers do: It is essential
to make the purpose of each bot clear, avoiding
expectation breakdowns from both sides. This
may be implemented, for example, by including a
footnote descriptive sentence or a link to further
information about the bot in the bot comment.

Facilitating bot adoption
If maintainers find an appropriate bot, they

then have to deal with configuration challenges.
Thus, we present advice on how to facilitate the
bot adoption process in addition to the guidelines
for designing the human-bot interaction.

Guideline 6 (G#6)

Provide options to configure bot notifica-
tion.

Adoption challenges: The study conducted to co-
design the mediator bot prototype showed that
open-source developers would like to customize
aspects of the bot interaction, including notifica-
tion frequency and timing. Therefore, it is impor-
tant for bot developers to design a highly cus-
tomizable bot, providing project maintainers bet-
ter configuration control over bot actions, rather
than just turning off bot comments.

4 IT Professional

What should bot developers do: In the medi-
ator bot design sessions, developers suggested
scheduling of bot notifications, so that the bot
would avoid notifying developers according to
(customizable) timeframes indicating when they
do not want interruptions. This may be imple-
mented, for example, using a “do not disturb”
mode. Another option is not to notify maintainers
until the condition is satisfied. In this case, the
bot would notify the developers only when the
predefined conditions are met: “I want to be
notified about new pull requests after all my tests
have passed. And after the bots commented, and if
everything is green, then I want to be notified. The
recommendation is that these mechanisms are
explicitly announced during bot adoption (e.g.,
noiseless configuration, preset levels of informa-
tion).

Guideline 7 (G#7)

Include documentation of alternative in-
stallation settings to accommodate differ-
ent types of users.

Adoption challenges: It is difficult to tailor the
bot configuration to fit the needs of a project.
Even after maintainers spend the time needed
to configure the bot, there is sometimes no way
to predict what the bot will do once installed.
According to developers’ experience, it is “easy
to install the bot with the basic configuration.
However, it is not easy to adjust the configuration
to your needs”.

What should bot developers do: Bot developers
should document the bot installation, giving con-
crete examples of the bot outcomes and possible
effects of each configuration choice, and keep it
updated. This can also be implemented by creat-
ing a FAQ (Frequently Asked Questions) section
in a website or repository where the bot code is
stored. This is also an opportunity for lowering
the entry barrier for new project maintainers, who
need to be aware of how each bot works on the
project.

Guidelines’ takeaway

Bot developers should envision bots as
socio-technical rather than technical ap-
plications, which must be designed to
consider human interaction, developers’
collaboration, and other ethical concerns.

Recommendations to platform builders
To complement our guidelines, we also ex-

plored the platform restrictions since they might
limit both the extent of the bots’ actions and the
way bots communicate. We, therefore, present a
set of recommendations for platform builders that
would aid bot developers.
Recommendation 1 (R#1): Enable multiple
interaction mechanisms.
Platform limitations: Our empirical investigation
of bot challenges revealed some limitations im-
posed by the GitHub platform that restrict the
design of bots. As mentioned by one participant:
“There are still a few things that just cannot
be done with the [GitHub] API..” The platform
restrictions might limit both the extent of the bots’
actions and the way bots communicate.
What should platform builders do: It is essential
to provide alternative ways for bots to interact
on the platform. A developer stated that the
platform ideally would provide additional mecha-
nisms since bots interact only through comments.
In other environments, such as Slack, develop-
ers can interact more flexibly with (chat)bots.
On GitHub, this might be achieved by enabling
distinct views of the same bot output depending
on the developer’s role (i.e., maintainer, casual
contributor, newcomer) and enabling developers
to filter and hide specific bot information.
Recommendation 2 (R#2): Consider creating a
dedicated communication channel for bots.
Platform limitations: The interviews we con-
ducted with developers have shown that deal-
ing with bots providing comments with dense
information “in the middle of the pull request”
can be “[...] a lot more distracting than it is
helpful.” Bots may overburden developers who
already suffer from information overload when
communicating online.
What should platform builders do: To reduce
information overload, participants suggested re-

May/June 2019 5

Department Head

moving bot interactions from the main conversa-
tion interface and creating a dedicated place for
them. We prototyped this strategy by designing a
new tab in the pull request interface; this idea
can be leveraged to reshape the interface and
better display bot interactions. There is also room
for integrating GitHub bots into other developer
communication platforms (e.g., Slack, Discord).

The mediator bot
To alleviate the concern of bot noisiness in

pull requests, we have investigated the concept
of a bot that operates as a mediator between
developers and the existing bots (i.e., a meta-bot).
This section presents our mediator bot prototype
and how it connects to the proposed guidelines.
Figure 2 provides an overview of the mediator bot
design strategies, which we mark throughout the
text with (S#n). Firstly, we split our prototype into
two different versions: the experts’ pull request
interface designed to support maintainers and ex-
perienced contributors; and the newcomers’ pull
request interface. We designed a dedicated place
for all information and events regarding bots in
the pull request (S#1; platform recommendation
R#2). The mediator bot creates a summary with
the most important information about each bot,
then groups them into categories (e.g., “warn-
ings”, “information”) (S#3; G#1-2).

To avoid inflating the pull requests with sev-
eral comments from the mediator bot, one sug-
gested strategy is to keep the most recent informa-
tion (S#2; G#1). We include the latest information
from each bot in the summary. Reakit bot, for
example, posted two comments in the timeline of
bot events; however, only one entry is displayed
in the summarized table for that bot. In addition,
in the timeline of bot events, it is possible to
expand all bot comments to see the complete
messages (platform recommendation R#1).

In the newcomer’s interface, we added a text-
based message to fulfill the requirement of wel-
coming newcomers (S#4; G#4). Beyond present-
ing a welcoming message, the mediator bot also
points the contributor to other sources that can
contain information about rules, instructions, and
requirements (S#5; G#1) of the project. Thus, we
included a link to Reakit’s contributing guide-
lines.

Another important distinction between the two

versions is how the mediator bot displays the
information for newcomers versus experts (plat-
form recommendation R#1). We implemented an
interactive process of displaying bots’ informa-
tion (S#6). The mediator bot guide newcomers
by showing the information from other bots “step
by step.” Study participants deemed this strat-
egy a potential solution to reduce the impact
of receiving several different bot notifications
simultaneously. As part of this guidance, the
mediator bot also refers to contribution guidelines
to assist newcomers and present a concise and
direct welcoming message.

Conclusion
Motivated by the growing importance of soft-

ware bots that act upon the pull-based devel-
opment model, we have proposed guidelines on
how to improve the next generation of bots,
considering interaction, adoption, and develop-
ment challenges identified in prior work. These
guidelines can serve bot developers and contrib-
utors and maintainers of GitHub projects that use
bots in two dimensions: understanding how bots
are perceived and how they can be leveraged
to support development tasks. Orthogonal to the
guidelines, we have also explored the concept of
a mediator bot, to alleviate the growing concern
of noisiness among bot users. We envision that
our guidelines will help developers to produce
bots that better automate tasks and further guide
developers in collaborative software development.

Acknowledgments
This work was partially supported by the

Coordenação de Aperfeiçoamento de Pessoal
de Nı́vel Superior – Brasil (CAPES) – Fi-
nance Code 001; CNPq grants 141222/2018-
2, 314174/2020-6, and 313067/2020-1; the Na-
tional Science Foundation under Grant numbers
1815503 and 1900903; and the Dutch science
foundation NWO through the Vici “TestShift”
project (No. VI.C.182.032). We also thank the
developers who spent their time participating in
our research.

REFERENCES
1. L. Erlenhov, F. G. d. O. Neto, and P. Leitner, “An

empirical study of bots in software development–

characteristics and challenges from a practitioner’s per-

6 IT Professional

Experts' pull request interface

[S#1] Separating bot
comments

[S#2] Keep the most
recent information

[S#3] Summarising,
categorising, and

prioritising bot comments

Newcomers' pull request interface

[S#4] Welcoming message

[S#5] Explaining rules,
instructions, and

requirements

[S#6] Provide information
interactively

R#2

G#1

G#1

G#4

G#1

R#2

R#1

G#2

Figure 2. Prototype of the interventions in a real-world scenario on GitHub. It shows the relationship between
the design strategies for the mediator bot derived from Phase II (S#1-6) and our proposed guidelines (G#1,
G#2, G#4)/platform recommendations (R#1, R#2). The interactive version of the prototype is publicly available
on Zenodo [10].

May/June 2019 7

Department Head

spective,” in Proceedings of the 2020 28th ACM SIG-

SOFT International Symposium on Foundations of Soft-

ware Engineering, ser. FSE 2020, 2016.

2. M. Wessel and I. Steinmacher, “The inconvenient side

of software bots on pull requests,” in Proceedings of

the 2nd International Workshop on Bots in Software

Engineering, ser. BotSE, 2020.

3. M. Wessel, A. Serebrenik, I. S. Wiese, I. Steinmacher,

and M. A. Gerosa, “Effects of adopting code review bots

on pull requests to oss projects,” in IEEE International

Conference on Software Maintenance and Evolution.

IEEE Computer Society, 2020.

4. M. Wessel, I. Wiese, I. Steinmacher, and M. A. Gerosa,

“Don’t disturb me: Challenges of interacting with soft-

ware bots on open source software projects,” Proceed-

ings of ACM Human-Computer Interaction, no. CSCW,

2021.

5. M. Wessel, B. M. de Souza, I. Steinmacher, I. S.

Wiese, I. Polato, A. P. Chaves, and M. A. Gerosa,

“The power of bots: Characterizing and understanding

bots in oss projects,” Proceedings of the ACM

Conference on Computer Supported Cooperative

Work Social Computing, vol. 2, no. CSCW, pp.

182:1–182:19, Nov. 2018. [Online]. Available: http:

//doi.acm.org/10.1145/3274451

6. M. Wessel, A. Abdelattif, I. Wiese, T. Conte, E. Shi-

hab, M. A. Gerosa, and I. Steinmacher, “Bots for pull

requests: The good, the bad, and the promising,” Pro-

ceedings of IEEE/ACM International Conference on

Software Engineering, no. ICSE, 2022.

7. C. Lebeuf, A. Zagalsky, M. Foucault, and M.-A. Storey,

“Defining and classifying software bots: A faceted

taxonomy,” in Proceedings of the 1st International

Workshop on Bots in Software Engineering, ser. BotSE

’19. Piscataway, NJ, USA: IEEE Press, 2019, pp. 1–6.

[Online]. Available: https://doi.org/10.1109/BotSE.2019.

00008

8. M. Blythe, “Research through design fiction: narrative

in real and imaginary abstracts,” in Proceedings of the

SIGCHI Conference on Human Factors in Computing

Systems. ACM, 2014, pp. 703–712.

9. U. Gnewuch, S. Morana, and A. Maedche, “Towards

designing cooperative and social conversational agents

for customer service,” in International Conference on

Information Systems (ICIS). AIS, 2017.

10. M. Wessel, A. Abdellatif, I. Wiese, T. Conte,

E. Shihab, M. A. Gerosa, and I. Steinmacher,

“Supplementary Material for ICSE’22 paper ”Bots

for Pull Requests: The Good, the Bad, and

the Promising”,” Sep. 2021. [Online]. Available:

https://doi.org/10.5281/zenodo.5675702

Mairieli Wessel is an Assistant Professor in the
Department of Software Science (SwS) at Radboud
University, The Netherlands. She obtained her Ph.D.
in Computer Science from the University of São
Paulo, Brazil. Her main research interest is in software
engineering (SE) and computer-supported cooper-
ative work (CSCW), focused on software bots and
open-source development. Her research goal is to
design intelligent support for developers by lever-
aging bots’ capabilities. For more information, visit
http://www.mairieli.com

Andy Zaidman, is a Full Professor in software
engineering at Delft University of Technology, The
Netherlands. He received his M.Sc. and Ph.D. de-
grees in Computer Science from the University of
Antwerp, Belgium, in 2002 and 2006, respectively. His
main research interests include software evolution,
program comprehension, mining software reposito-
ries, software quality, and software testing. He is
an active member of the research community and
involved in the organization of numerous conferences
(WCRE’08, WCRE’09, VISSOFT’14 and MSR’18).
In 2013 he was the laureate of a prestigious Vidi
midcareer grant, while in 2019 he received the most
prestigious Vici career grant from the Dutch science
foundation NWO.

Marco A. Gerosa, is a Full Professor at the North-
ern Arizona University, USA, and a Ph.D. advisor at
the University of São Paulo, Brazil. He received his
Ph.D. from the Catholic University of Rio de Janeiro
in 2006. He researches Software Engineering and
CSCW, and recent projects include the development
of tools and strategies to support developers’ on-
boarding to open-source software communities and
the design of bots and chatbots. He published more
than 200 papers and serves on the program commit-
tee (PC) of top-tier conferences, such as ICSE, FSE,
MSR, ICSME, and CSCW. For more information, visit
http://www.marcoagerosa.com

Igor Steinmacher, is an Assistant Professor in the
School of Informatics, Computing, and Cyber Sys-
tems at the Northern Arizona University (NAU), and
was previously at the Federal University of Technol-
ogy Paraná (UTFPR), Brazil. He received a Ph.D.
in Computer Science from the University of São
Paulo (USP — Brazil). He researches the intersec-
tions of Software Engineering (SE) and Computer
Supported Cooperative Work (CSCW). Currently, his
research focuses on the behavior of developers in

8 IT Professional

http://doi.acm.org/10.1145/3274451
http://doi.acm.org/10.1145/3274451
https://doi.org/10.1109/BotSE.2019.00008
https://doi.org/10.1109/BotSE.2019.00008
https://doi.org/10.5281/zenodo.5675702
http://www.mairieli.com
http://www.marcoagerosa.com

Open Source Communities, including the support of
newcomers, the impact of Bots in the community, and
gender bias in Open Source Software. His interests
include Open Source Software, Human Aspects of
Software Engineering, Empirical Software Engineer-
ing, and Mining Software Repositories techniques.

May/June 2019 9

	Research overview
	Guidelines for developing bots
	Designing bot interaction
	Facilitating bot adoption

	Recommendations to platform builders
	The mediator bot
	Conclusion
	REFERENCES
	Biographies
	Mairieli Wessel
	Andy Zaidman,
	Marco A. Gerosa,
	Igor Steinmacher,

