
A systematic literature review on the barriers faced by
newcomers to open source software projects

Igor Steinmachera,b,*, Marco Aurelio Graciotto Silvaa, Marco Aurelio
Gerosab, David F. Redmilesc

aComputing Department
Federal University of Technology - Parana

bComputer Science Department
University of Sao Paulo

cDepartment of Informatics
University of California, Irvine

Abstract

Context: Numerous open source software projects are based on volunteers’

collaboration and require a continuous influx of newcomers for their continu-

ity. Newcomers face barriers that can lead them to give up. These barriers

hinder both developers willing to make a single contribution and those will-

ing to become a project member.

Objective: This study aims to identify and classify the barriers that new-

comers face when contributing to Open Source Software projects.

Method: We conducted a systematic literature review of papers reporting

empirical evidence regarding the barriers that newcomers face when con-

tributing to Open Source Software (OSS) projects. We retrieved 291 studies

*Corresponding author [Address: Rua das Cerejeiras, 60 - CEP 87301-350 - Campo
Mourao–PR–Brazil – Phone +55(44)88383380]

Email addresses: igorfs@utfpr.edu.br (Igor Steinmacher),
magsilva@utfpr.edu.br (Marco Aurelio Graciotto Silva), gerosa@ime.usp.br (Marco
Aurelio Gerosa), redmiles@ics.uci.edu (David F. Redmiles)

Preprint submitted to Information and Software Technology November 5, 2014

by querying 4 digital libraries. Twenty studies were identified as primary. We

performed a backward snowballing approach, and searched for other papers

published by the authors of the selected papers to identify potential studies.

Then, we used a coding approach inspired by open coding and axial coding

procedures from Grounded Theory to categorize the barriers reported by the

selected studies.

Results: We identified 20 studies providing empirical evidence of barriers

faced by newcomers to OSS projects while making a contribution. From the

analysis, we identified 15 different barriers, which we grouped into five cate-

gories: social interaction, newcomers’ previous knowledge, finding a way to

start, documentation, and technical hurdles. We also classified the problems

with regard to their origin: newcomers, community, or product.

Conclusion: The results are useful to researchers and OSS practitioners will-

ing to investigate or to implement tools to support newcomers. We mapped

technical and non-technical barriers that hinder newcomers’ first contribu-

tions. The most evidenced barriers are related to socialization, appearing in

75% (15 out of 20) of the studies analyzed, with a high focus on interactions

in mailing lists (receiving answers and socialization with other members).

There is a lack of in-depth studies on technical issues, such as code issues.

We also noticed that the majority of the studies relied on historical data

gathered from software repositories and that there was a lack of experiments

and qualitative studies in this area.

Keywords: Open Source Software, Software Engineering, Newcomers,

Beginners, Novices, Joining, Contribution, Barriers to Entry, Onboarding,

Open Collaboration, Socialization, Systematic Literature Review

2

1. Introduction

Several open source software (OSS) communities rely on volunteers. Ac-

cording to Qureshi and Fang [33], it is essential to motivate, engage, and re-

tain newcomers to promote a sustainable number of developers in a project.

However, newcomers often face barriers for contributing to a project [12].

On many occasions, these barriers lead them to give up. Besides, as stated

by Fogel [16], “if a project doesn’t make a good first impression, newcomers

may wait a long time before giving it a second chance.” Therefore, a major

challenge for OSS projects is to provide ways to reduce these barriers.

Newcomers need to learn social and technical aspects of a project be-

fore making a code contribution. They generally post their questions and

request help in project forums and mailing lists or send emails to specific

developers who have central roles in the project (e.g., owners and project

leaders) [32, 42]. However, receiving replies that do not offer guidance or

unpolished answers can result in the dropout of newcomers [38]. Lack of

awareness and guidance during their first steps (setting up and choosing the

right means to start with), for instance, also discourage further contribu-

tions [39]. Mainly before making their first contribution, newcomers may

be susceptible to several barriers, such as expectation breakdowns, recep-

tion problems, setup misconfiguration, and learning curves. Each of these

may have varying levels of importance to and impact on the overall joining

process [37]. Therefore, it is important to understand the type of barriers

newcomers face and their influence. This understanding is a start to making

possible the creation of mechanisms and tools to reduce these barriers.

By lowering the barriers, it is expected that OSS communities will benefit

3

from more contributions. Studies conducted on open collaboration commu-

nities from other domains showed that it is possible to receive more contribu-

tions by lowering the entry barriers. Wikipedia has been the subject of some

of these studies. For example, Faulkner et al. [15] found that modifying first

time warnings prompted additional newcomer contributions. Morgan et al.

[30] showed that user-friendly tools, safe spaces for newcomers, and posi-

tive interactions between newcomers and established community members

are promising tools for newcomer retention.

However, to date, to the best of our knowledge, no single study has di-

rectly focused on identifying and classifying the barriers faced by newcomers

to OSS projects, despite specific problems being dealt with or reported upon

in several studies in the literature. Moreover, the knowledge about the bar-

riers faced by newcomers to OSS projects is spread across the literature from

different domains, such as Software Engineering, Computer Supported Coop-

erative Work, and Information Systems. Therefore, a systematic review [25]

can aggregate in a single location the information regarding the barriers that

is currently dispersed across various studies.

Thus, the objective of this research is to identify, by means of a systematic

literature review, the barriers faced by newcomers when contributing to OSS

projects. The primary studies were identified by querying digital libraries.

We also made use of two snowballing approaches: backward snowballing, i.e.,

looking at the references of the papers selected from the digital libraries, and

author snowballing, i.e., searching for other papers published by the authors

of the selected papers.

After identifying the primary studies, we extracted the barriers empiri-

4

cally evidenced in the papers and classified them using a coding approach

inspired by the coding procedures from Grounded Theory [9]. Using this ap-

proach, we categorized the barriers identified by type and according to their

origin.

The contributions of this paper include (i) summarizing the existing ev-

idence on barriers faced by newcomers to OSS projects and organizing the

barriers into a single model, (ii) providing a quick reference for researchers

interested in conducting further studies on newcomers to OSS, and (iii) pro-

viding grounded evidence of barriers and some guidelines that can be useful

for OSS communities in helping newcomers. We hope that OSS communities

and researchers will take advantage of this paper to better understand the

barriers in their context and design strategies to address them.

The remainder of this paper is organized as follows. The protocol of the

systematic review is presented in Section 2. In Section 3, we characterize the

projects considered by each study. In Sections 4 and 5, we report the results

of the analysis of the selected studies, including the classification via the type

of barrier and the origin of the barrier. A discussion is presented in Section 6

and threats to validity are presented in Section 7. Finally, conclusions and

further work are presented in Section 8.

5

2. Research method

This study has been undertaken as a systematic literature review (SLR)

based upon guidelines established for the Software Engineering domain [25,

27, 26]. In this section, we provide the protocol used in the SLR, specify

the research question and its components, and establish the requirements

regarding the source and primary study selection, the evidence collection,

and the method of synthesis of such evidences. The results regarding each

step are provided alongside the protocol, except for evidence extraction and

analysis, which are addressed in Section 4.

2.1. Research questions

Newcomers present different technical skills, time availability, and reasons

for joining an OSS project. Notwithstanding, when developers decide to sup-

port an OSS project, they need to learn social and technical aspects of the

project before making a contribution. During this learning period, newcom-

ers face barriers that can result in their decision to give up contributing. Our

main goal is to identify the barriers that are faced by newcomers to make their

contributions. We expect that by reducing the barriers, projects can benefit

from both more occasional contributions and more long-term contributors.

Thus, we have defined the following as our main research question:

∙ RQ 1. What are the barriers that hinder the contribution of newcomers

in OSS projects?

By answering this question, we aim to capture barriers that a newcomer

faces when contributing in an OSS project. We are not interested in new-

comers’ motivations for contributing to a project but in the issues they may

6

face after deciding to contribute to a project. We also make no distinction

regarding the size, quantity, or frequency of contributions made by newcom-

ers.

When dealing with OSS projects, we are aware that there are different

ways newcomers can start to contribute, including translation, bug triage,

bug reporting, user support, and coding. In our current study, we focus only

on source code contributions. Therefore, we define newcomers as developers

who want to make their first code contribution to a project. Moreover,

when we refer to OSS projects, we are talking about community-based open

source projects [8] and open collaboration communities [17]. Community-

based OSS projects rely on the efforts of volunteers to be maintained. In

these projects, mailing lists, issue trackers, and source code (in versioning

systems) are publicly available. Any skilled person who wants to contribute

can get the current code, choose (or report) an issue, address it, and submit

a patch to be included in the product.

2.2. Criteria for selection of studies

The search process encompassed two approaches. The first one was based

on queries in digital libraries. However, as reported in the literature, using

just this approach, especially for systematic reviews in software engineering,

is often inefficient. As suggested by others [22, 26], we used a single step

citation analysis (snowballing), and a single step author snowballing to com-

plement the search process. Details about the way we used such approaches

are described in the following subsections.

Regardless of the mechanism used to search, the studies were screened

according to various criteria pertinent to the research question. We estab-

7

lished the following criteria for the inclusion of studies. Regarding a paper,

it must be available as a full paper, written in English, and published in a

peer-reviewed venue, including workshops, conferences, and journals. As for

the studies reported by the papers, they must report barriers faced by new-

comers to contribute to open source software projects and present empirical

evidence.

The exclusion criteria consisted of removing duplicate results and exclud-

ing papers regarding newcomers or open source software projects that were

not within the scope of this research. Papers that were clearly duplicated

or for which we found newer and more complete versions were excluded.

Regarding studies not relevant to the purpose of this review, we excluded

studies regarding newcomers, but not to open source software; studies about

open source software that do not study newcomers; and studies that do not

provide empirical evidence (studies that present just methods or unevaluated

approaches/tools).

The selection process consisted of the following steps:

1. Search in digital libraries: we queried digital libraries, and the refer-

ences of the retrieved studies were stored in a local repository to be

further analyzed.

2. Title, abstract, and keywords analysis: titles, abstracts, and keywords

were read to verify which studies met the inclusion and exclusion cri-

teria.

3. Author snowballing: studies found and selected by the search in the

digital libraries were analyzed regarding their authors. We searched for

other papers published by the same authors. Candidate papers were

8

submitted to the same process used for papers found in digital libraries:

title, abstract, and keywords analysis (step 2).

4. Introduction and conclusion analysis: the initial and closing sections

of the studies were evaluated regarding their objectives and results.

This analysis enabled the researchers to further verify if the papers

answered the research question and met all inclusion and/or any ex-

clusion criteria. When the reading of the opening and closing sections

was inconclusive, the entire paper was read to decide on its inclusion

or exclusion.

5. Backward snowballing sampling: studies found and selected by the

search in the digital libraries and by author snowballing were analyzed

regarding their references. Candidate papers were submitted to the

same process used for papers found in digital libraries and by author

snowballing: screening by title, abstract, and keywords, followed by

analysis of the introduction and conclusion. We ran just one level of

citation snowballing.

6. Full paper reading: finally, after selecting a paper by its introduction

and conclusion, the entire paper was read to decide on its inclusion or

exclusion.

It is important to note that for every step, more than one researcher

read each paper independently. For conflicting evaluations, researchers fur-

ther discussed the paper to reach a consensus. In cases where there was no

consensus or there was doubt, the study was included to avoid premature

exclusion.

9

2.2.1. Search in digital libraries

The mechanism available for searching in most digital libraries is based

upon textual search expressions. Thus, its definition is crucial for the ef-

fectiveness of the searching step and the systematic review as a whole. A

common approach regarding the establishment of the search expression is

its characterization based on PICO components: population, intervention,

control, and outcome [3]. Based upon previous studies, we knew that most

papers on the subject were case studies that employed quantitative, qual-

itative, or mixed methods. Thus, establishing a control element was not

feasible. It is worth noticing that recent guidelines on systematic review for

Software Engineering are also oriented to omit this characterization [26].

Based upon these recommendations, we have kept the population and inter-

vention components, and omitted comparison and outcome.

A systematic review for Software Engineering establishes the problem

as the target of the systematic review and the intervention as what can

be observed in the context of the systematic review [3]. Considering such

definitions, we initially established the population as open source projects

and the intervention as contributions of newcomers.

After analyzing the terms related to the population and intervention, we

derived the keywords and synonyms presented in Table 1 to establish the

search expression. The synonyms were suggested by experts and extracted

from papers we used as a control of this study [42, 13, 10, 21, 23].

Using the terms listed in Table 1, we defined a generic search expression.

Considering a set of known studies (the control group) we had previously

established, we performed several trials and iterations until coming to a fi-

10

Table 1: Terms used to build the queries (terms marked with an * were dismissed in the

final query).

Keyword Synonyms

Open Source Software OSS, Open Source, Free Software, FLOSS, FOSS

Newcomers newcomer, newbie, new developer, new member, new contributor,

new people*, novice, beginner, potential participant, joiner, new committer*

Contribution joining*, retention, first steps*, entrance*, initial steps*, joining process, on-

boarding, contributing*

nal search expression. Some synonyms, such as “new people,” “entrance,”

and “new committer,” were removed, as we could either not find any paper

with such terms or the search result would find too many studies that, by

skimming the titles, were considered out of the scope of this systematic re-

view. Furthermore, we also evaluated whether the search expression was still

effective, i.e., whether it recovered the studies established as control.

(

("OSS" OR "Open Source" OR "Free Software" OR FLOSS OR FOSS)

AND

(newcomer OR "joining process" OR newbie OR "new developer" OR "new member" OR "new

contributor" OR novice OR beginner OR "potential participant" OR

retention OR joiner OR onboarding OR "new committer")

)

After defining the search expression, we defined criteria for the selection

of digital libraries. The digital libraries should index papers on open source

software research written in English, support searching using Boolean ex-

pressions, and provide access to the complete text of the paper. Based upon

these criteria, we selected four digital libraries to conduct our search: ACM

11

Digital Library1, IEEE Digital Library2, Scopus3, and Springer Link4.

Moreover, we consulted several experts regarding recommended venues for

studies relevant to this research. The specialists provided a set of conferences,

workshops, journals, and specialized websites. Most of them were indexed by

the digital libraries we selected. The suggested venues that were not indexed

by the preselected digital libraries were excluded due to other source selection

criteria. For instance, specialists’ indications of conferences in languages

other than English and websites that do not support searching using Boolean

expressions were excluded.

2.2.2. Snowballing sampling

In addition to querying the digital libraries, we conducted a single step

snowballing sampling following two approaches. The first approach consisted

of checking if the authors of the selected studies published other relevant

studies that we could not retrieve from the digital libraries. To find other

publications, we accessed authors’ profiles in ACM and IEEE libraries and

checked their DBLP5 profile and personal homepages (when available).

The second approach was backward snowballing sampling. We analyzed

the reference lists of all selected papers to find other possible relevant studies.

Just one level of snowballing sampling was conducted, i.e., we did not apply

snowballing sampling for studies found by a previous snowballing process.

1http://dl.acm.org/
2http://ieeexplore.ieee.org
3http://www.scopus.com/
4http://link.springer.com/
5http://www.informatik.uni-trier.de/~ley/db/

12

Figure 1: Paper selection process.

2.3. Study selection

We used the query presented in Section 2.2.1 to retrieve the candidate

papers from the digital library systems in April 2013, as shown in Fig. 1. We

retrieved 291 papers by searching and 42 other papers by snowballing, total-

ing 333 papers. After applying the selection criteria, we selected 20 papers for

data extraction and analysis. In the following, we present the detailed results

of executing the steps presented in Section 2.2 and its correlated Fig. 1.

Search in digital libraries. As a result, we gathered 291 candidate

papers: 59 from IEEE, 84 from ACM, 132 from Scopus, and 16 from Springer

13

Link.

Title, abstract, and keywords analysis. For the first step, the ti-

tles, abstracts and keywords were independently analyzed by two researchers.

During this step, the researchers identified and dismissed 96 (32.99%) dupli-

cates gathered from different libraries. From the 195 remaining entries, 33

papers were selected after a consensus meeting.

Author snowballing. We applied author snowballing on the selected

papers. We checked other papers published by the authors of these 33 studies,

and we found 20 other candidate papers. After analyzing the abstracts of

these papers, we selected nine relevant papers, bringing us to 42 candidate

papers.

Introduction and conclusion analysis. All 42 papers had their intro-

ductions and conclusions analyzed by the researchers. Among them, 21 were

dismissed. We did not find the full text of three papers; two papers were

extended abstracts; two were proposals to thesis/dissertation workshops; 10

did not study or present evidence of barriers faced by newcomers (including

three papers that only presented tools with no evaluation); and four papers

were clearly not presenting barriers faced by newcomers to OSS.

Backward snowballing sampling. After reading the introduction and

conclusion sections, we conducted a backward snowballing sampling on the 21

remaining papers, looking for papers cited by the selected studies. However,

no additional paper was selected by this approach. An important thing

to note regarding the snowballing sampling is that the previously selected

studies appeared repeatedly, especially [42, 13, 5, 11].

After the snowballing, the papers had their full content read by the re-

14

Table 2: Papers found and included per source.

Source Found Relevant Studies % Search Efficacy

IEEE 59 10 16.95%

ACM 84 9 10.71%

Scopus 132 8 6.06%

Springer Link 16 3 12.50%

Sum 291 30 10.31%

Repeated 96 12

Subtotal 195 18

Authors* 20 2

Citation Analysis* 22 0**

Total 20

* Values presented in the column “Found” represent the number of papers considered after title analysis.

** 12 papers previously selected were found during citation analysis.

searchers. One study was discarded because it was related to user support

Q&A forums and not source code contribution. Therefore, we extracted and

analyzed data from 20 selected studies.

2.3.1. Study Selection Summary

We summarize the total papers found and selected by each source and

approach in Table 2. In the table, it is possible to check how the studies are

distributed according to their source. Scopus returned the largest number of

hits, but its precision was the lowest amongst the sources we used. Mean-

while, IEEE, ACM and Springer Link returned fewer hits but achieved higher

levels of efficacy. This can be explained because Scopus is a meta-search that

15

indexes the literature from different publishers, including ones not related to

Computing. We can see that Scopus, ACM and IEEE would independently

retrieve more than 40% of the primary studies, with several studies available

simultaneously on more than one of them (duplicated).

When a duplicate paper was found, sources that actually publish the pa-

pers were prioritized over those that just index articles from other publishers.

We analyzed the duplicates to verify where the overlaps among papers were.

The results are shown in Table 3. It is possible to check that the Scopus

meta-search retrieved 81 papers duplicated from the other 3 sources. We

also noticed that ACM and IEEE index some venues together, such as ICSE

(International Conference on Software Engineering), which is a co-published

conference. Moreover, ACM also indexes some publications from Springer

Link; in this systematic review, 5 papers from Springer Link were also gath-

ered from the ACM Digital Library.

Table 3: Analysis of Duplicate Source.

Sources Duplicates

ACM & Scopus 43

IEEE & Scopus 16

ACM, IEEE & Scopus 15

ACM & IEEE 6

ACM, Springer & Scopus 5

Springer & Scopus 2

Paper in different venues (Scopus) 1

Regarding the reasons for excluding papers, we account for them in Ta-

ble 4. Once a paper fit any exclusion criterion or did not comply with any

16

inclusion criteria, it was excluded. For instance, 113 papers were excluded

because they were not related to OSS. Meanwhile, from those that addressed

OSS, 50 papers did not address newcomer issues. It is important to note

that we just considered one reason of exclusion per paper in Table 4, but one

paper could actually be classified under more than one exclusion reason in

the selection process.

Table 4: Excluded papers and exclusion reasoning.

Exclusion reason Excluded Studies

333

Duplicate 108 225

Not in English 1 224

Invalid type 29 195

Full paper not available 3 192

Not related to OSS nor newcomers 101 91

Related to newcomers but not to OSS 12 79

Related to OSS but not tonewcomers 50 29

Previous version of a more complete study 4 25

Not related to source code contributions 1 25

Does not present empirical study 6 20

The 20 selected studies and their respective identifiers are presented in

Table 5. Throughout the paper, we will use the identifiers in the format PS?

for the papers selected for analysis in the systematic review.

17

Table 5: Selected Primary Studies.

Identifier Reference

[PS1] Ben et al. [2]

[PS2] Bird [4]

[PS3] Bird et al. [5]

[PS4] Canfora et al. [6]

[PS5] Capiluppi and Michlmayr [7]

[PS6] Cubranic et al. [11]

[PS7] Ducheneaut [13]

[PS8] He et al. [21]

[PS9] Jensen et al. [23]

[PS10] Midha et al. [29]

Identifier Reference

[PS11] Park and Jensen [32]

[PS12] Qureshi and Fang [33]

[PS13] Schilling et al. [35]

[PS14] Steinmacher et al. [39]

[PS15] Steinmacher et al. [38]

[PS16] Stol et al. [40]

[PS17] Von Krogh et al. [42]

[PS18] Weiss et al. [45]

[PS19] Zhou and Mockus [46]

[PS20] Zhou and Mockus [47]

2.4. Overview of the studies

While reading the papers in full, we collected some data regarding the

type of study conducted, and type of data analyzed. The data analyzed by

the selected studies are predominantly gathered from source code repositories

(12 studies), mailing list archives (12 studies), and bug/issue trackers (8

studies). Other data used by the studies include questionnaires, interviews

with developers, observations, and project profiles. Fourteen studies used

more than one data source in their analysis. An interesting fact here is that

the main method used to find issues faced by newcomers was the analysis

of historical data. Only seven studies report interviews, observations, or

questionnaire results.

Most of the papers reported case studies and gave a quantitative analysis

18

of collected data. We found that 19 studies (95%) used the case study method

to evidence the problems. Only one study conducted both an experiment and

a case study, and another one conducted only an experiment. In terms of the

type of analysis, 13 studies (65%) analyzed the data using only quantitative

approaches, as depicted in Fig. 2. Two studies (10%) used only qualitative

methods to analyze the data, and four studies (20%) used both quantitative

and qualitative analysis to evidence the barriers.

Qualitative (7)

Quantitative (18)

Experiment (2)

Case Study (19)

0

0

13

1
0

00

0

0

1
1

4 0

0

0

Figure 2: Type of analysis conducted in experiments and case studies.

It is possible to see the lack of studies conducting qualitative analysis as

supporting the existence of problems that hinder newcomers’ contributions.

Quantitatively analyzing historical data can bring highlights of the barriers

faced by newcomers, but conducting qualitative analysis can enrich the evi-

dence, reveal new facts, and help in finding the issues faced by newcomers.

There is still room available for studies based on observations, interviews and

19

experiments that can help reveal the barriers faced in practice.

We also analyzed the primary studies to check how the publications are

distributed in time. Fig. 3 depicts this distribution. We can see that the topic

appeared in 2003, and just a few papers appeared from then until 2010. The

last 3 years contain more than 50% of the relevant publications for this review

(11 out of 20). It is important to note that the searches were performed in

April 2013, so it is possible that more papers were published in 2012 and

2013 and were not indexed so far.

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

0

1

2

3

4

5

1

0

2

1

2

0

1

2

4

5

2

Years

N
um

be
r

of
st

ud
ie

s

Figure 3: Temporal view of the publications (queries from April 2013).

Out of the 20 papers considered relevant, 5 were published in journals,

and 15 in conference proceedings. The primary studies are spread in different

forums. Software Engineering is the area with the highest number of studies

published (9 out of 20). Two articles were published in Management journals.

Forums of CSCW, Information System, Visualization and Green Computing

also appeared.

20

2.5. Data extraction

Given the set of primary studies, the researchers read the documents in

full and extracted the necessary data. First, we created a list of barriers that

were evidenced by each paper. Each barrier was related to information about

the study and the type of evidence that was used to indicate it. After this

identification, each barrier was linked to text segments that supported it in

the papers they were identified in.

Using the text segments, we classified the barriers applying an approach

inspired on open coding and axial coding procedures from Grounded Theory

(GT) [9]. Although the purpose of the GT method is the construction of

substantive theories, according to Corbin and Strauss [9], the researcher may

use only some of its procedures to meet one’s research goals.

2.6. Synthesis

Based upon the extracted data, we synthesized the barriers identified

by the coding as a set of contribution barriers faced by newcomers in open

source software projects. A hierarchical classification was established for the

barriers, which was represented as a mind map. Such classification, which is

presented and detailed in Section 4, was used to answer the primary research

question of this study. In the next section, we present a characterization of

the projects considered in the primary studies.

21

3. Projects analyzed in the selected studies

Before analyzing the studies regarding barriers found by newcomers when

contributing source code, it is important to characterize the projects consid-

ered by each study. After all, we are interested in a diverse and representa-

tive population of projects. There were 28 projects under investigation, plus

studies that analyzed large sets of projects from Apache Foundation and

SourceForge.net. In Fig. 4 we present a summary of the number of projects

analyzed per selected study. Most of the studies (12) analyzed three or less

projects. Only four studies used a set with more than seven projects from

a given software forge: three of them analyzed subsets from SourceForge.net

projects, and one analyzed projects from Apache Foundation. The remaining

three studies considered 4, 5, and 7 projects, respectively.

1 2 3 4 5 7 > 7

1

2

3

4

5

6
6

3 3

1 1 1

4

Number of projects

N
um

be
r

of
st

ud
ie

s

Figure 4: Number of projects analyzed in the selected studies.

Regarding the projects analyzed, as presented in Fig. 5, six projects ap-

peared in more than one study: Apache httpd (3 studies), PostgreSQL (4

22

studies), Python (4 studies), Mozilla (2 studies), Eclipse (2 studies), and

Jboss (2 studies). Another 22 projects appeared in the studies, of which 2

projects were not disclosed by the authors [PS14]. We did not consider the

four studies that focus on forges [PS8, PS10, PS12, PS19], which can include

some of the projects that appeared as objects of other studies.

0 1 2 3 4

Postgres

Python

Apache Httpd

Eclipse

Jboss

Mozilla

4

4

3

2

2

2

Number of studies

Figure 5: Projects most analyzed and the number of studies that used them as objects of

study.

To verify what types of projects were analyzed by these studies, we gath-

ered various characteristics of the projects: activity level (very high, high,

low, or very low), number of developers, size in lines of code (LOC), language,

domain, typical user community, and age. These data are presented in Ta-

ble 6. The data were gathered from OpenHub when available. For projects

that were not available on this platform, we extracted the data manually

from the project repository when available. We did not find information

available for three projects: Arla, AVIS, and MeDiCi.

Considering the projects for which we gathered data, almost all of the

projects analyzed (22 out of 23) had more than 5 years of development and,

23

Table 6: Characteristics of the studied projects (data gathered on Sept. 10, 2013).
Project Activity # of dev LoC Language Domain Final Users Age

Arla NO INFO Filesystem Technical

AVID NO INFO Visualization Tool Technical

CraftBukkit High 51 67,774 Java Game Server General Audience 2 years

Eclipse Very High 115 2,679,475 Java IDE Technical 12 years

FileZilla Very Low 15 250,726 C++ Network system General Audience 12 years

FreeBSD Very High 204 5,013,437 C Kernel Technical > 20 years

Freenet Very High 174 439,184 Java Network system Technical 13 years

Gantt High 27 122,261 Java Proj Management General Audience 10 years

GIMP High 70 731,486 C Image Handling Specific 16 years

Gnome Very High 1053 8,024,516 C GUI General Audience 16 years

Hackystat Very Low 1 296,225 Java Framework Technical 6 years

Hadoop Very High 43 2,277,110 Java Framework Technical 7 years

Httpd Very High 33 22,405,508 C++ HTTP Server Technical 17 years

JBoss # Very High 133 752,477 Java Application Server Technical 14 years

Jonas High 12 9,873,057 Java Application Server Technical 8 years

KDE Very High 663 23,343,508 C++ GUI General Audience 16 years

MediaWiki Very High 172 963,843 PHP Wiki General Audience 10 years

MeDiCi NO INFO

Mozilla Very High 966 9,326,438 C Browser General Audience 11 years

Parrot Very High 31 283,895 Perl Virtual Machine Technical 12 years

Postgres Moderate 23 685,332 C Database Server Technical 17 years

Python Very High 64 866,177 Python Prog Language Technical > 20 years

Samba Very High 66 1,445,110 C File System Technical > 20 years

ServiceMix Very High 7 626,483 Java Integration Container Technical 5 ears

Subversion Very High 37 564,579 C SCM Technical 13 years

Wine Very High 85 2,550,965 C Desktop Emulator General Audience > 20 years

JBoss is now called WildFly

according to the classification employed by OpenHub and adopted by oth-

ers [31], were considered Very Old projects. Seventeen of the 23 projects had

more than 500 KLoC, standing in the top 10% of projects indexed by Open-

Hub in terms of lines of code (according to the data reported by Nagappan

et al. [31]). For the number of developers, 13 out of the 23 projects have

more than 50 developers, a number achieved by only 2.6% of the projects

analyzed by Nagappan et al. [31]. In addition, we can see in Fig. 6 (d) that

17 of the projects studied were written in either Java or C.

Despite the small number of projects, we found a high diversity of projects.

It also seems that most of the authors looked for mature, well-established

24

Figure 6: Summary of projects characteristics.

(a) Number of project developers

0 1 2 3 4 5

Less than 10

Between 10 and 50

Between 50 and 100

Between 100 and 500

Between 500 and 1000

More than 1000

2

4

5

5

2

1

Number of projects

(b) Project age (in years)

0 1 2 3 4 5 6 7 8 9

Less than 5

Between 5 and 10

Between 10 and 15

Between 15 and 20

More than 20

1

4

9

5

4

Number of projects

(c) Project size in kLOC

0 1 2 3 4 5 6 7 8

Less than 100

Between 100 and 500

Between 500 and 1000

Between 1000 and 10000

More than 10000

1

5

7

8

2

Number of projects

(d) Project language

0 1 2 3 4 5 6 7 8 9

Java

C

C++

Perl

PHP

Python

9

8

2

1

1

1

Number of projects

projects to conduct their studies. However, most of the projects chosen

(66.67%) were products used during the development cycle (Application

Servers, Frameworks, IDE, etc.). The remaining projects (33.33%) had, as

their final users, the general (or ‘non-developer’) public. The higher focus on

established, large projects that focus on products used during the develop-

ment cycle can introduce a bias in the results of the studies analyzed.

25

4. Contribution barriers

The main purpose of this systematic review was to find the barriers faced

by newcomers to OSS projects as evidenced by the literature. For each se-

lected study, we analyzed any barrier reported that was empirically identified

or evaluated. The identification and classification of such barriers were ac-

complished by using a coding approach based on procedures of Grounded

Theory as described in Section 2.5. The result of the categorization is shown

in Fig. 7. The figure presents five categories of barriers: Social Interactions,

Newcomers’ Previous Knowledge, Finding a Way to Start, Documentation,

and Technical Hurdles.

In the following subsections we detail each of the categories of barriers

found. Each of the categories and barriers were reported to give a sense of

what each of them represents independently.

Figure 7: Barriers evidenced in the literature.

26

4.1. Social interaction

This category represents the barriers related to the manner in which new-

comers interact with the community members interact, including issues re-

lated to who the members they exchange messages with are, the size of new-

comers’ contact network, and how the community communicates with them.

This category is the most evidenced among the selected studies, appearing in

12 studies (60%). Within this category, we found evidence of three different

barriers that can influence newcomers: lack of social interaction with project

members; not receiving a (timely) answer; and receiving an improper answer.

Lack of social interaction with project members. This category

represents the studies that evidence role, centrality, and the size of newcom-

ers’ social network as barriers that can influence their success in long-term

contribution. Ducheneaut [PS7] analyzed the mailing list archives of the

Python project. He made an in-depth analysis of the socialization history

of one successful newcomer in this community. Based on this individual,

the author identified a set of socialization activities that contributed to his

success in the project. He highlighted the influence of social and political

organization for newcomers willing to become core developers, emphasizing

the need to build an identity in the project: “what the newcomer has to learn

is how to participate and how to build an identity that will help get his ideas

accepted and integrated.” He also reported on the importance of political sup-

port to becoming a core member: “while proposing sound technical solutions

to problems is an important aspect of Fred’s successful participation, these

solutions are not enough by themselves: establishing strategic links with key

members of the project beforehand is what truly allows them to be respected

27

and accepted.”

The social status and the need to build an identity is quantitatively sup-

ported by the evidence presented by Bird [PS2]. He analyzed data from

mailing lists, source code repository histories, and bug tracking databases to

understand how successful OSS projects work. To check the social status of

newcomers, he analyzed the indegree social network metric. This metric rep-

resents the breadth of response to an individual and, thus, status within the

community. Using statistical tools, he found that “the social network mea-

sure, indegree, . . . had a significant effect on immigration,” which presented

very significant influence in the three projects analyzed.

More quantitative evidence on the effect of the socialization was presented

by He et al. [PS8]. They conducted a social network analysis on Source-

Forge.net projects, looking at the centrality of newcomers’ nodes. They found

that newcomers tend to collaborate more with existing members than with

other newcomers “to enlarge his or her influence and position, because the vet-

erans often have more important position and richer experiences.” Zhou and

Mockus [PS20] also found evidence that social interaction is correlated with

successful newcomers. They did not look at the centrality of the members

that the newcomers interacted with but instead at the size of the newcomers’

peer groups. They quantitatively analyzed the mailing lists of the Mozilla

and GNOME projects and reported that “the attributes of her peer group,

in particular, its social clustering and productivity significantly influence her

opportunity to become a Long Term Contributor.”

Other research in this direction was conducted by Qureshi and Fang

[PS12]. A little different from previously presented studies, these authors

28

were looking for different socialization patterns. They used the number of

interactions between newcomers and core members during a time period to

quantitatively analyze social relationships of newcomers. They analyzed tra-

jectories of 133 newcomers in 40 projects from the moment they joined. They

identified four distinct classes of newcomer behavior, considering their initial

amount of interactions with core members and the growth of these interac-

tions, and reported that “individual joiners begin with different initial levels

and follow different growth patterns, suggesting the existence of heterogene-

ity in the socialization trajectories.” By analyzing these different patterns,

they evidenced that “. . . it is important to recognize that socialization with

core developers has a significant impact on joiners’ status progression. . . it is

perhaps more important to achieve a high level of interaction as quickly as

possible.”

We can see that all studies that analyzed the importance of social inter-

actions show a correlation between the centrality of newcomers’ social rela-

tionships and newcomers’ successful permanence as a contributor. However,

there is no clear evidence of the causal relationship between social network

centrality and newcomer success. We found evidence of the influence of this

barrier in seven of the primary studies [PS2, PS3, PS7, PS8, PS12, PS19,

PS20].

All of them report results from case studies, and only one brought qualita-

tive evidence of social interaction influencing the contribution process [PS7].

All studies relied on historical information from mailing lists, issue trackers

and source code versioning systems. Even Ducheneaut [PS7] analyzed his-

torical material to conduct his ‘computer-aided ethnography’ research. It is

29

necessary to conduct more in-depth interviews and mixed method research

to understand the reasons behind the observations made in these studies.

The level of interaction needed to achieve recognition or become a contrib-

utor of a project can vary according to the project, due to the heterogeneity

of OSS projects. This is a limitation for most of the studies, since five studies

drew their conclusions based on analysis of three or less OSS projects [PS2,

PS3, PS7, PS19, PS20]. One of the studies [PS12] analyzed the socialization

level quantitatively and determined that there are different types of inter-

action behavior that result in long-term contribution. Even conducting this

study, by far, there is still a gap in understanding the relationship between

project characteristics and the influence of interaction with core members on

becoming a long-term contributor, which is indicated in some of the studies

[PS2, PS3, PS7]. Characteristics such as project age, community structure,

governance model and existence of sponsors can influence the impact of such

barriers.

Receiving an improper answer. The answers received from the com-

munity play an important role when a newcomer is trying to contribute.

Newcomers can feel unwelcome or insulted if they are not answered politely

or positively. Three studies [PS9, PS15, PS16] brought evidence of the neg-

ative impact of the content of answers received by newcomers in their first

interactions.

By qualitatively analyzing mailing list messages from three different projects,

Jensen et al. [PS9] found impolite replies to newcomers as a potential prob-

lem. They report that “1.5% of newbie replies were rated as rude/profane

. . . flaming was more common than we expected, and the potential negative

30

effects of such behavior could be significant. . . .” Steinmacher et al. [PS15]

also conducted a qualitative analysis on mailing list messages and drew simi-

lar conclusions as those reported by Jensen et al. In addition, they conducted

a survey with the dropouts and reported that “from the 13 respondents who

intended to contribute to the project, six sent answers related to reception.”

The authors then concluded that “receiving inadequate answers and the [level

of] experience of the respondent affect the decision of newcomers.” In a study

not focused on barriers to contribution, Stol et al. [PS16] reported on feed-

back from a student that dealt with an OSS project and evidenced that “the

community’s response was not considered to be very helpful.”

From the studies that reported issues regarding receiving improper an-

swers, two of them sourced their evidence from a qualitative analysis of the

mailing list history [PS9, PS15]; the other relied on feedback obtained from

semi-structured interviews with students aiming to identify architectural pat-

terns in OSS projects [PS16]. Although their goal was not making a contri-

bution, the subjects performed steps that are similar to those performed by

newcomers willing to make their first contribution to a project.

Generally, newcomers demand attention and friendly hands to start con-

tributing because “humans need attention from other people, and developers

are no exception” [PS20]. There are cases in which an improper answer or the

lack of an answer can play a role in the decision of a newcomer to contribute

or not. Therefore, the use of in-depth interviews and more contextualized

research (such as observation or ethnography) need to be conducted to un-

derstand the reasons behind the observations made in these studies. There

are other cases in which newcomers will keep trying to step on board be-

31

cause people with different profile, skills, cultures, and motivations can feel

and attack this problem differently.

Not receiving a (timely) answer. Just like the barrier presented

beforehand, newcomers can be demotivated or made to feel unimportant

when they do not receive a timely answer. Five studies [PS9, PS15, PS16,

PS17, PS20] reported on the impact of not receiving a timely answer from the

community as a problem that can impact future participation in the project.

Jensen et al. [PS9] used mailing list history to quantitatively evidence

that “nearly 80% of newbie posts received replies, and that receiving timely

responses, especially within 48 hours, was positively correlated with future

participation.” Another piece of quantitative evidence was given by Zhou

and Mockus [PS20]. They analyzed the time until newcomers receive the

first answer and found that “low attention in the form of too rapid response

would reduce the odds [to become a long term contributor] by 28% in Mozilla

and by 39% in Gnome.”

As part of a broader research, von Krogh et al.[PS17] analyzed the mailing

list history of the Freenet project and found quantitative evidence that “a high

78% of the population of development list participants attempted to initiate

dialogue, via starting a new thread, at least once. Of these attempts only

29 (10.5%) participants did not receive any reply to their initial posting and

subsequently did not appear on the developer list again.”

In a qualitative analysis of a debrief session conducted with newcomers

that contributed to OSS projects, Steinmacher et al. [PS14] found that “many

demotivating facts that occurred. . . : emails not answered after a week could

make the group withdraw; . . . a message posted in a forum to announce a new

32

translation was not read and resulted in concurrent work and wasted time.”

This provided some qualitative, contextualized evidence on how the lack of

an answer can impact a newcomer’s contribution in an OSS project. Stol et

al. [PS16] also reported on a debrief from students: “the community had not

replied (yet) on their request for feedback.”

A contradictory result was presented in a more recent study by Stein-

macher et al. [PS15]. They conducted a case study using the mailing list

and issue tracker history of the Hadoop Project and, interestingly, found

that “the lack of answer was not evidenced as a problem that influences new-

comers’ decision to remain or abandon the project.” This finding is opposite

that of the other studies presented. They found that the dropout rate for

newcomers that did not receive answers was not worse than when newcomers

were answered.

There are both quantitative and qualitative results that support these

results. However, the barrier still needs to be further explored. The quanti-

tative evidence found relies only on mailing list histories from a few projects

and is hard to generalize due to the already mentioned high heterogeneity of

OSS projects. In addition, both studies that had qualitative results gathered

feedback from students.

4.2. Newcomers’ Previous Knowledge

This category consists of the barriers related to the experience of newcom-

ers regarding the project and the manner in which they show this experience

when joining the projects. We classified the barriers found into lack of do-

main expertise, lack of technical expertise, and lack of knowledge of project

practices.

33

Lack of domain expertise. When working on a software project, it is

important for the developers to have some previous knowledge of the appli-

cation domain. It is no different in OSS projects, and, according to Gacek

and Arief [18], the people who contribute code to an open source project are

always users of the product.

This is evidenced by Von Krogh et al. [PS17], who claimed that new

features added by newcomers “emerge from the newcomers’ prior domain

knowledge . . . ” Stol et al. [PS16] evidenced it as a barrier to start in a

project, as the subjects of their research “reported their unfamiliarity with

the domain to be a hindrance.”

The evidence found in the literature suggests that previous domain knowl-

edge can increase the odds of a successful joining. However, we found no

study that focused specifically on verifying the influence of this variable in

the success of a newcomer. This is a suitable object of study for future

research.

Lack of technical expertise. To become a developer, an individual

must have (or acquire) some project-specific technical skills. Schilling et al.

[PS13] studied a set of newcomers to KDE. By analyzing newcomers’ pre-

vious knowledge the authors found that “. . . level of practical development

experience is strongly associated with their continued permanence.” Another

interesting finding is that knowledge obtained via academic education is not

significantly associated with successful contributions. A possible explanation

for this result is that quantity (years of education) does not assure qual-

ity [36].

Several studies provide more evidence towards technical expertise and

34

its importance for successful contributions by measuring software artifacts

developed by newcomers. For instance, some studies reported that sending

messages or patches to a mailing list or issue tracker presenting previous

technical skills can benefit the newcomer when joining. Stol et al. [PS16]

evidenced that “when newcomers mentioned that they had already tried some

options to fix their problem and have put efforts to look for a solution in the

forums . . . then the responders were quick to respond and were very helpful.”

They explain it as “a message of legitimacy from the newcomer along the

lines of ’I have done my homework, can I get some help now.” ’

Von Krogh et al. [PS17] reported that a person who finds a problem and

fixes it, or comes with the issue and provides a patch to solve it, is more

likely to join the project. “It shows the developer favors hand-on solutions

to technical problem, and that demonstration of technical knowledge in the

form of software code submission matters more than signaling of interest and

experience” [PS17].

Ducheneaut [PS7] reported an ethnographic study providing evidence

that expertise should be demonstrated by proposing code changes, proving

the extent of the technical experience: “. . . one also has to create material

artifacts.” Ducheneaut reinforced it: “one can submit bug reports and, simul-

taneously (this is important), a proposed solution to fix these bugs.”

Bird [PS2] investigated the issue of technical skill by measuring the im-

pact of sending patches and its acceptance by the project when starting the

contribution, and he found that “community perception of a participant’s

technical skills and knowledge has an effect on becoming a developer.” This

result is based upon a previous study, where Bird et al. [PS3] ran a quanti-

35

tative study based on data mining, the results of which were evaluated using

a statistical hazard-rate model with similar findings.

Therefore, newcomers that want to contribute must check if the technical

skills required for a given task or project match with their skills. If new-

comers are not able to show their skills, they will not be able to contribute

immediately. Moreover, a newcomer often does not have enough technical

expertise and must develop it within the project: “For every individual there

is a ‘race’ going on: will s/he become skilled and reputable enough to become

a developer before s/he loses interest?” [PS3]. Actually, there is a blend of

technical expertise and social interaction, where the interactions are driven

by artifacts that reflect the technical expertise: “Therefore we encompass

capacity and willingness into a single dimension” [PS20]. It is the result of

these demonstrations that will allow both newcomers and developers to per-

ceive the level and possibly lack of technical expertise that hinders effective

contributions to the project. The results obtained by the quantitative [PS3,

PS13], qualitative [PS7], and mixed method studies [PS20] agree to this ex-

tent, reinforcing the importance of technical expertise represented as patches

and its demonstration to the developers.

Lack of knowledge of project practices. We found just one study

presenting evidence of learning project practices as a problem that influ-

ences newcomers not to contribute. The study conducted by Schilling et

al. [PS13] found that previous knowledge regarding the project practices

influences newcomers’ first steps. They reported that “familiarity with the

coordination practices of the project team has a strong association with the

time they spend on their projects after GSoC [Google Summer of Code].”

36

The authors used historical data from the project to analyze the previous

interactions of the subjects before they participated in GSoC to draw their

conclusions. Thus, the evidence regarding previous knowledge of project

practices refers to previous interactions in the project. It would be inter-

esting to conduct an in-depth investigation on how previous interactions are

related to knowledge of project practices and also on how previous knowledge

of practices of other projects impacts newcomers.

4.3. Finding a way to start

This category represents the problems related to difficulties that newcom-

ers face when trying to find the right way to start contributing.

Difficulty to find an appropriate task to start with. Find the

appropriate task to work on was classified as a problem because new devel-

opers have difficulty to find the bugs that are of interest, that match their

skill sets, that are not duplicates, and that are important for their future

community [43]. Von Krogh et al. [PS17] reported the impact of the issue

of finding the right task to work on. They found that “in 56.7% of the cases

members of the community encouraged the new participants to find some part

of the software architecture to work on that would match with their specialized

knowledge. In only 16.7% of the cases new participants were both encouraged

to join and given specific technical tasks to work on.” This occurs because,

according to their interviews, the community expects new participants to

find their own task to work on instead of receiving a specific piece of work.

Park and Jensen [PS11] reported that “. . . subjects expressed a need for

information specific to newcomers, for instance, . . . what to contribute to

(e.g. open issues, required features, sample tasks to start with).” We can see

37

that the community wants the newcomers to pick the task themselves [PS17];

however, newcomers have no clue of how to do this [PS11].

Finding the appropriate task is also presented as a barrier by Ben et al.

[PS1] and Capiluppi and Michlmayr [PS5]. They studied the impact that

the choice of the module in which a newcomer worked had on future partic-

ipation. Ben et al. [PS1] found that “developer contribution is influenced by

the instability of the code he or she starts to contribute. The code with more

developers involve in will lead to less contribution in some degree.” After

looking at the source code history, Capiluppi and Michlmayr [PS5] reported

that “. . . new developers, when joining the project, tend to work more easily

on new modules than on older ones . . . potential new developers should be

actively fostered adding new ideas or directions to the project.”

This problem was evidenced by four studies [PS1, PS5, PS11, PS17] found

in this systematic review. The point of view of communities is that newcom-

ers should be able to find the most appropriate task themselves, as reported

by von Krogh et al. [PS17]. However, other research studies show that the

projects should give special attention to this issue [PS1, PS5, PS11]. Three

primary studies relied on the analysis of versioning system histories [PS1,

PS5] or mailing list archives [PS17], and one study [PS11] contained feed-

back from newcomers that were asked to explore the default environment of

OSS projects and report what they would have wanted to know about the

project before deciding to join. None of them presented evidence collected

from project members or newcomers that actually faced the issue. Conduct-

ing such a study would uncover the reasons and enable practitioners to offer

better support to newcomers. There are some initiatives to support newcom-

38

ers on this specific issue. One of them is OpenHatch6, which tries to identify

easy issues in several OSS projects and classify them according to language

skills; another project is Mozilla, which also provides an easy way to identify

simple bugs for newcomers 7.

Difficulty to find a mentor. In industrial settings, it is a common

practice to offer mentorship to newcomers to support their first steps [1].

However, in OSS projects that rely on volunteers, it is not a common ap-

proach to offer formal mentorship programs. The difficulty to find a mentor

is evidenced in one primary study [PS4]. Canfora et al. [PS4] proposed a

tool called YODA that aimed to recommend mentors to newcomers. They

evaluated the tool by surveying some project members identified as mentors

and mentees in the mailing list. They found that “developers indicated that

mentoring is important, although it seems that developers are more likely to

admit that they performed mentoring than they were mentored.”

Mentorship is presented as a good way to help newcomers [PS4]. However,

it is not clear whether this type of policy can be applied in OSS communities,

as it depends on experienced developers to perform this task. Although

the entire motivation of the work conducted by Canfora et al. [PS4] is the

difficulty to find a mentor, there was no previous empirical evidence of this

fact. The evidence was part of the results of the tool evaluation, which was

conducted to confirm the mentor recommendations when they asked potential

mentors and mentees about their perceived importance of mentoring. Two

6http://www.openhatch.org
7https://bugzilla.mozilla.org/buglist.cgi?quicksearch=sw:[good+first+

bug]

39

other primary studies made use of anecdotes to address mentorship; however,

they did not present any evidence regarding it [PS6, PS14].

Some issues related to this barrier are still open and deserve to be studied

further. For example, the following questions need to be answered: is it really

difficult to find a mentor? Can a proper mentorship improve the odds of a

newcomer becoming a long-term contributor? How can formal mentorship

be adopted in OSS projects?

4.4. Documentation

Documentation is important to newcomers because, in OSS projects, they

are expected to learn about the technical and social aspects of the project

on their own [34]. The barriers in this category report on which documenta-

tion problems have been evidenced as possible barriers to newcomers in OSS

projects.

Outdated documentation. Providing outdated documentation can

become a barrier to newcomers instead of helping them. Steinmacher et

al. [PS14] reported some issues that this barrier can cause: “we can see

many demotivating facts that occurred . . . outdated information in the issue

tracker made the developers waste time on an already existent feature and

on checking each issue they pick to address. . . ” Stol et al. [PS16] also re-

ported problems regarding outdated documentation. They reported that the

subjects “. . . were uncertain whether the available diagrams were still up to

date and relevant for the current version of the software. . .Another reported

challenge was the uncertainty whether the available documentation was up to

date for the current version of the software.”

Even finding two studies providing evidence of this barrier, we found

40

no study that focused specifically on verifying the influence of this variable

on the success of a newcomer. In addition, both studies that presented

qualitative evidence gathered feedback from students after they worked with

OSS projects. It is necessary to conduct more focused studies to gather more

evidence of this barrier and to better understand what the consequences of

this barrier are.

Too much documentation. In many OSS projects, newcomers need to

explore existing information in mailing lists, source code repositories, issue

trackers, and project pages. Rich and up-to-date documentation is essen-

tial for newcomers trying to understand the project. However, overzealous

attempts to address this can lead to the opposite problem of overwhelming

documentation and sources of information, resulting in information over-

load. Two primary studies [PS11, PS6] identified this overload as a barrier

to newcomers. In both of them, the authors conducted experiments to as-

sess the benefits that tools can bring to newcomers. Cubranic et al. [PS6]

presented and assessed Hipikat, a tool that supports newcomers by building

a group memory linking information from different sources. They conducted

a study with newcomers (with previous experience in software development)

to evaluate the tool. They reported that “since the search space is so large,

newcomers tend to have difficulty coming up not only with a good conjecture,

but also the way of searching through the documentation and code to verify

it . . . ” [PS6].

The projects need to provide easy ways to find and navigate the infor-

mation provided by the projects, linking different sources of information and

enabling the recommendation of “relevant parts of the group memory given

41

information about a task a newcomer is trying to perform” [PS6]. The two

primary studies that presented evidence of information overload were moti-

vated by an anecdote that there is a need to support newcomers in under-

standing all of the information provided by OSS projects. They conducted

well-planned studies and showed that it is possible to make it easier for

newcomers to understand projects and navigate through different sources of

information, reducing this barrier.

Unclear code comments. When newcomers want to contribute to

OSS projects with source code, they need to understand the code. One way

to document the code is by using code comments. By providing unclear code

comments, the newcomers will possibly spend more time trying to understand

the artifacts they need to work with. This is evidenced in the work by Stol

et al. [PS16]. One of the students who participated in their study reported

that “the code was not very well documented, which made it more difficult to

understand the source code.”

Even providing just a single piece of evidence, in a superficial way, based

on feedback from one student who was working with a specific OSS project,

Stol et al. [PS16] revealed this barrier. To better understand the barrier and

provide more conclusive evidence, it is necessary to study this phenomenon

in-depth to answer various questions, for example, what is an unclear com-

ment? What is the impact of these comments? How is it related to the

person’s characteristics, motivation, and background?

4.5. Technical Hurdles

This category consists of the technical barriers imposed by the project

when newcomers are dealing with the code. To contribute, a newcomer usu-

42

ally needs to change existing source code. Therefore, it is necessary for

newcomers to have enough knowledge about the code to begin their contri-

butions. This category includes barriers related to issues to set up a local

workspace, and to understand and modify the source code.

Issues setting up a local workspace. The feedback obtained by Stol

et al. [PS16] evidenced that newcomers have difficulties in setting up their

environment. He reported some obstacles, for example, “a challenge was that

some [subjects] did not have any experience or knowledge on checking out

source code from the version control system.” They also reported problems

in building the project, which is a step of the workspace setup: “some [sub-

jects] encountered build errors, which caused them to manually fix the build

configuration.” Another complaint was that “the compilation process ‘was a

nightmare’; this was caused by the many dependencies on other subsystems

that had to be downloaded in addition.”

Documentation can certainly help newcomers on setting up a local workspace.

In fact, some communities provide tutorials and step-by-step cookbooks on

how to obtain the code, setup up and build a local workspace. However,

some projects have peculiar workspace requirements that cannot be amelio-

rated just by documentation. For instance, management of required building

libraries can be addressed by employing building systems, with dependency

handling mechanisms. Although their usage requires newcomers’ technical

expertise, the provision of a building system is responsibility of the project.

It is worth noticing this barrier was evidenced just by the study conducted

by Stol et al. [PS16]. Conducting observational studies and interviews with

newcomers would help identifying more specificities of this barrier.

43

Code complexity. The study conducted by Midha et al. [PS10]

analyzed how code complexity influenced newcomers contribution to OSS

projects. Using statistical tools to analyze many characteristics of 450 Source-

Forge projects, Midha et al. [PS10] showed that “cognitive [code] complexity

has a strong negative influence on the number of contributions from new de-

velopers. As OSS thrives upon voluntary contributions, the project managers

must actively control the source code complexity in order to attract contri-

butions from new developers. In a complex piece of code, it takes longer for

a developer to determine the flow of logic resulting in slower progress of the

project.”

This is another case of a barrier supported by evidence from only one

primary study. In this case, the evidence was obtained from a case study

counting on a large sample, aiming to verify whether source code’s cognitive

complexity was negatively associated with the number of contributions to

the OSS source code from new developers.

Software architecture complexity. Besides code complexity (unit

level), as in the previous barrier, it is important to consider the software ar-

chitecture (integration and system level). Stol et al. [PS16] highlighted some

complaints of newcomers about the project structure of OSS projects. One

subject reported that “the hierarchy of the source code directory was counter

intuitive for someone with little architecting experience.” Other subjects “also

reported that manually browsing the source code for patterns was ‘tricky’ and

very time consuming.” Cubranic et al. [PS6] also presented an issue faced

during their experiment: “We also had reports of a pair missing a relevant

suggestion because they lacked knowledge about the overall structure of the

44

system. . . ”

Park and Jensen [PS11] analyzed “the potential benefits of information vi-

sualization in supporting newcomers through a controlled experiment.” They

found that “the impact of information visualization. . . suggests that providing

visual information to newcomers may reduce the challenges they face when

learning about a new project.” The feedback obtained from the subjects

revealed that “providing visual information such as the class diagrams or

dependency views . . . would help new developers understand the structure of

existing code and find problems to work on.”

The main complaint regarding code is that its structure is hard to un-

derstand and that learning it takes too much time. The difficulty in dealing

with this type of barrier is related to the newcomer’s previous knowledge. Ap-

proaches such as visualization [PS11] and artifact recommendation [PS6] can

support newcomers in overcoming this barrier, but further solutions should

be investigated.

4.6. Summary

Considering the model defined in Fig. 7, based upon barriers identified by

using GT procedures throughout the selected studies, we can summarize the

evidence for each problem as shown in Table 7. In Fig. 8, we also present

the barriers ranked according to the number of studies that evidence them.

The category most thoroughly studied is social interactions, accounting for

12 studies, followed by Newcomers’ Previous Knowledge with 8 studies. The

other three categories range from 4 to 6 related studies each. It is possible to

note that, thus far, the literature is focused on the social issues. The more

technical barriers, such as software architecture complexity, dealing with the

45

versioning system, setting up a local workspace, and understanding the code,

are poorly studied.

Table 7: Studies that evidence each barrier.
Category Barrier Studies

Social

Interaction

[12 studies]

Lack of social interaction with project

members [7 studies]

[PS2], [PS3], [PS7], [PS8], [PS12],

[PS19], [PS20]

Not receiving a (timely) answer [6 studies] [PS9], [PS14], [PS15], [PS16],

[PS17], [PS20]

Receiving an improper answer [3 studies] [PS9], [PS15], [PS16]

Newcomers’

Previous

Knowledge

[8 studies]

Lack of technical experience [6 studies] [PS2], [PS3], [PS7], [PS13], [PS17],

[PS20]

Lack of domain expertise [2 studies] [PS16], [PS17]

Lack of knowledge of project practices [1

study]

[PS13]

Technical

Hurdles

[6 studies]

Issues setting up a local workspace [1 study] [PS16]

Code complexity [1 study] [PS10]

Software architecture complexity [3 studies] [PS6], [PS11], [PS16]

Finding a Way

to Start

[5 studies]

Difficulty to find appropriate task to start

with [4 studies]

[PS1], [PS5], [PS11],[PS17]

Difficulty to find a mentor [1 study] [PS4]

Documentation

[4 studies]

Too much documentation [3 studies] [PS6], [PS11], [PS16]

Outdated documentation [2 studies] [PS14], [PS16]

Unclear code comments [1 study] [PS16]

Lack of documentation [1 study] [PS16]

*** Some studies support more than one barrier

Considering studied barriers, we found that the most evidenced were (1)

lack of technical experience, from the Newcomers’ Previous Knowledge cate-

gory, and (2) lack of social interaction with project members, from the Social

Interaction category. Overall, barriers related to technical issues, which in-

clude code issues and difficulty to find a way to start, were individually

backed by less evidence.

46

0 1 2 3 4 5 6 7

Lack of social interaction with project members

Lack of technical experience

Not receiving a (timely) answer

Difficulty to find appropriate task to start with

Software architecture complexity

Too much documentation

Receiving an improper answer

Lack of domain expertise

Outdated documentation

Code complexity

Difficulty to find a mentor

Issues setting up a local workspace

Lack of documentation

Lack of knowledge of project practices

Unclear code comments

7

6

6

4

3

3

3

2

2

1

1

1

1

1

1

Number of studies

Figure 8: Barriers ranked by the number of studies that evidence each.

47

5. Origin of the barriers and Some Initial Guidelines

In addition to the identification and classification of the barriers based

on their type, we organized the barriers according to their origin, discussing

them along with a initial set of guidelines to help newcomers to overcome

the barriers.

Three different “origins” were identified during our analysis: newcomers,

community, and the product. Some of the barriers are related to more than

one origin because different actions can be taken to change the barriers’

impact. For example, “setting up local workspace” is a barrier that can be

originated by the newcomer’s profile (e.g., inexperience, or issues regarding

installation of development tools), but the community can also contribute

to the barrier if it does not provide some level of support in preparing the

workspace.

In the following subsections we discuss the barriers along with some guide-

lines for supporting newcomers, enabling practitioners and researchers to take

action and propose tools and processes targeting the origin of the barriers.

5.1. Newcomers

We classified newcomers as the origin of the barriers caused by their be-

havior or profile. By behavior, we mean the manner in which newcomers

interact with the community, while by profile, we mean newcomers’ knowl-

edge background. These barriers are mainly under the “Newcomers’ Previous

Knowledge” category and are related to newcomers’ profiles. In this section,

we present the barriers and EFOREvarious hints for helping newcomers guide

themselves to overcome these barriers.

48

We found that in OSS projects, newcomers themselves play an important

role during the contribution process. This means that before contributing

to a project, newcomers must, for example, verify whether their skills match

with the skills needed to work in the project or choose a project of a known

business domain. It is necessary to find a project that fits a newcomers’

profile to enable their contribution. This type of problem are usually not

addressed by the community directly. Newcomers themselves need to take

action and search for the proper knowledge that is appropriate when joining

the project.

Newcomers’ behavior is also a problem that influences future contribu-

tions. Newcomers that showed proactivity, sending patches and participating

in discussions, were better received by the community. Some of the primary

studies reported that the content of a message influences the reception of a

newcomer. Being social and acquiring political supporters is also an impor-

tant problem when a newcomer wants to become a core developer. However,

it is important to note that this social and political behavior was important

for newcomers to become long-term contributors or to be accepted by the

communities as members.

By checking the literature, we observed that good social skills, allied

with the right technical skills and proactivity, can positively influence the

contributions. T

5.2. Community

Community was considered the origin of the barriers influenced by the

project processes and the behavior of the community members when inter-

acting directly with the newcomers. Improvements in community receptivity

49

and more appropriate collaborative environments for OSS development can

result in better support for newcomers, positively influencing successful con-

tributions.

We found that lack of information made available by the project and

lack of support given by the community are important problems that can

hinder newcomers when they want to join a project. For example, Park

and Jensen [PS11] reported that the SourceForge repository could be made

more interactive and user-friendly, making it look less geeky/daunting for

newcomers. Community members can support newcomers by making it clear

what is expected from them and what the process and practices are that

must be followed to contribute. Thus, a more informative and less technical

initial environment is beneficial for newcomers.

Community was classified as the origin of some social interaction barri-

ers. These problems are related to the way the community interacts with

newcomers. OSS communities need to take special care with the barriers

reported by some authors [PS9, PS14, PS15, PS16] concerning community

recognition and giving proper answers to newcomers. They evidenced that

the absence of responses, improper answers, and not receiving recognition

from the community can lead to newcomer dropout.

Large and more organized projects could nominate people with social

skills to receive newcomers in the communication channels. Newcomers need

to be welcomed, avoiding the use of project specific terms and jargons, and

they need to receive proper directions in a positive way when they reach the

community. For the community members who have the opportunity to inter-

act with newcomers, social skills are required. Improper reception can result

50

in losing valuable resources. In addition, it is interesting to make newcomers

aware of the average time to receive answers and about the critical periods

(such as pre-release) to help manage their expectations. Newcomers need to

be warned and oriented instead of being improperly received or dismissed.

5.3. Product

The product was classified as the origin of problems related to source code

and documentation. Regarding source code, its structure and complexity

[PS6, PS10, PS11, PS16] were the barriers reported by the literature, and

the product was assigned as their origin. Barriers related to documentation

were also identified in some primary studies [PS6, PS11, PS14, PS16]. Even

knowing that these artifacts (source code and documentation) are the result

of community interaction, we classified these barriers as originated by the

product because our goal is to point to where practitioners and research

community need to pay attention.

The main product of the OSS projects is the code. Code complexity was

identified as a barrier in the study conducted by Midha et al. [PS10]. They

analyzed a large set of projects and verified that code complexity negatively

influenced newcomers’ decision to contribute to the projects. To help new-

comers in reducing this technical barrier, Cubranic et al. [PS6] and Park

and Jensen [PS11] conducted experiments to analyze the potential of tools

in supporting newcomers in understanding the code structure. The former

[PS6] proposed and evaluated a tool (Hipikat) that recommends the source

code artifacts that should be related to the issue a newcomer is working on.

The latter [PS11] evaluated the benefits of source code visualization tools in

supporting newcomers. Both of them reported good results when newcomers

51

are supported by the tools.

Documentation is also a product generated by the community. Stol et

al. [PS16] reported some comments from students that worked with OSS

projects. They presented feedback that raises issues regarding outdated in-

formation, lack of documentation and diagrams, too much documentation,

and lack of meaning in the code comments. Steinmacher et al. [PS14] also

presented feedback from newcomers and reported that “newcomers became

demotivated due to outdated information.” Information overload is also re-

ported and explored in two experiments conducted with tools aiming to fa-

cilitate newcomers’ joining process [PS6, PS11].

Keeping the code simple and the documentation organized and up-to-date

potentially increases the odds of receiving contributions from newcomers.

Community members need to think of their product from the perspective of

newcomers if they want to receive more contributions. The source code is

the set of artifacts that need to be understood and changed by the members

to contribute. Perhaps keeping the code simple and easy to understand is a

good way to increase the number of newcomers contributing. Sometimes it is

not easy to make it simple because the core of a large application is inherently

complex, and the code reflects this complexity. However, directing newcomers

to peripheral modules (at least warning them of the complexity) or offering

tools to help them find the right artifacts to work on given a specific task

would benefit newcomers during their first steps.

Regarding documentation, providing easy-to-access, organized and up-

to-date documentation would benefit newcomers. In the case where there is

no way to keep it up-to-date, it would be a nice policy to make newcomers

52

aware of the status of the documents (which ones are outdated, which are

still up-to-date). In addition, the use of tools such as Hipikat that aim to

link information from different sources to build a project memory would be

beneficial to provide newcomers with a way to navigate the information.

53

6. Discussion

For purposes of simplicity, in Section 4, we presented some of the discus-

sion of our results alongside each of the barriers, and in Section 5, provided

some discussion about the origins of the barriers and some countermeasures

in the form of guidelines. In this section, we discuss some of the key findings

at a higher-level perspective.

In general, this study identified empirical evidence of barriers faced by

newcomers to OSS projects. This empirical evidence is important, as many

studies are motivated by or deal with anecdotal evidence. This paper brings

evidence from reality, which is rarely precisely documented.

As a result of this study, we found that the most evidenced barriers are

related to socialization, appearing in 75% (15 out of 20) of studies analyzed,

with high focus on interaction in mailing lists (receiving response and social-

ization with other members). We also noticed a lack of in-depth studies on

technical issues faced by newcomers. The reason can be attributed to the

small number of qualitative studies found because it cannot be quantitatively

extracted from mailing lists. For example, technical hurdles are evidenced

by only five studies analyzed. Issues related to workspace setup is reported

in only one study, by one subject in a debrief session. These kinds of issue

deserve more attention, from both practitioners and researchers.

Some barriers identified in this systematic review are also reported and an-

alyzed by the literature of other online communities; the most explored barri-

ers are those related to community reception issues. For example, not receiv-

ing an answer is well evidenced quantitatively in Q&A literature [24, 28, 44].

Receiving impolite answers was also largely studied in the CSCW literature,

54

mainly on the analysis of reverts in Wikipedia [20, 14, 41]. The proposed

strategies of automated answers and feedback used in Wikipedia [15, 19] can

be adapted and then evaluated in OSS context.

Studies that used mixed methods to draw their conclusions are good

examples of how to bring evidence from the historical data and contextualize

them. It is the case of the studies conducted by von Krogh et al. [PS17]

and Ducheneaut [PS7]. The former used interviews with project members

and an analysis of issue tracker, mailing list, and project documents to bring

qualitative evidence presented with and backed by quantitative information

mined from a project’s repository.

On the other hand, studies such as those conducted by Steinmacher et

al. [PS14] and Jensen et al. [PS9] presented simplistic views of the problem

when they drew conclusions from only analyzing the first messages from new-

comers and their retention. The context is important: Why did they send

the messages? What motivated them? Did they really want to contribute

or just clarify some doubt? Did they contribute at the end but never got

back to the mailing list? To answer such questions, we need to merge in-

formation from different sources (issue tracker, mailing lists, documentation,

code repository) and verify the context by talking to practitioners. Another

possibility is to conduct observational and ethnographic studies by analyzing

the barriers and effects for newcomers in real settings.

It is worth noting that the main focus of analysis were large projects

with a high number of developers and more than five years of existence.

Moreover, projects that focused on products used during the development

cycle and developed in Java and C were preferred. Such projects can be

55

classified as clearly successful projects which, combined with the historical

data available, provide an easy target to search for newcomers. We observed

that, although projects gain several newcomers, just a small percentage are

successful in contributing some source code. Because the identification of

barriers faced and surpassed by such newcomers is important, projects with

a high number of developers (and newcomers) are easier to analyze to find

evidence of such barriers. However, a high number of OSS projects present

different characteristics, such as small teams and short lifetime, and were

not considered for evaluation. Naturally, such projects provide less data

and are less attractive than large successful projects, but when considering

newcomers, they can account for different problems than those identified

by our model or modify their importance. Further investigation is required

regarding such projects to improve the model of barriers described in this

paper.

We analyzed the characteristics and goals of the newcomers. However,

many of the papers did not explicitly profile the newcomers they analyzed.

This is probably related to the type of data analyzed and the type of study

conducted, as most of the studies only used data coming from software repos-

itories and did not go deeper in the analysis of the subjects. The problem

is that the term newcomer can be used in a loose way, which can bias the

results. Newcomers can be novice developers who are starting their career,

people who are experienced developers from industry but are not used to

OSS projects, or people who are migrating from other OSS projects. These

three profiles are different and can face different barriers or experience barri-

ers differently. Therefore, it would be a better approach to assess how these

56

different types of developers see the barriers and what their impressions of

them are. For example, does a novice developer find more issues to contribute

than an experienced developer without an OSS background?

In one case [PS13], the newcomers analyzed were participants of the

Google Summer of Code. They were students that received a scholarship

from Google to develop for KDE. Experienced KDE developers were as-

signed as formal mentors of the participants. There are other cases where

students were the subjects of studies. Steinmacher et al. [PS15] received

some feedback from Ph.D. students. The subjects were technically skilled

and were newcomers to Open Source Software projects. Park and Jensen

[PS11] conducted their experiment on visualization tools with students who

had at least two years of experience with Java programming.

The participants of a Cubranic et al. [PS6] study were experienced in

developing large or medium-sized software systems and familiar with tools

commonly used (versioning systems, issue trackers, etc.). Ducheneaut [PS7]

analyzed the steps followed by a Python developer from his first interactions

with the project until he became a core developer. In this case, the subject

was experienced and was motivated to become a core developer from the

beginning.

Other studies did not focus on any specific newcomer profile. They an-

alyzed first posts on mailing lists, history of socialization in mailing lists,

participation in issue trackers, patches sent, and commits submitted. There-

fore, their focus seems to be on developers that have some technology skills.

As reported by Cubranic et al. [PS6], they were “interested in studying

newcomers, not novices.”

57

The goals of the studies also differ. The goal of some [PS3, PS7, PS18] was

to provide guidelines or scripts on “how to become a core member.” Other

studies [PS19, PS20] model the chances of a person becoming a Long-Term

Contributor based on his willingness and the project environment. Schilling

et al. [PS13] analyzed the characteristics of subjects who started as partici-

pants of Google Summer of Code that remained in the project after the end

of the program. Other studies do not mention the goals of newcomers in

terms of their future in the project.

This heterogeneity of profiles, goals, and projects analyzed provides op-

portunities for future research, such as analyzing how these barriers are felt

by different profiles and in different types of projects.

OSS researchers can also benefit from these results by using them to con-

ceive strategies for newcomer support. To achieve this, it is necessary to put

more effort on specific research topics, such as understanding and creating

ways to measure the influence of the barriers in newcomers’ experience, iden-

tifying and creating different strategies to lower each barrier, and proposing

metrics to grade the support offered for each barrier. To gain a better un-

derstanding of the barriers and to what extent they need to be lowered, it

is important to conduct more qualitative studies because this phenomenon

occurs in a complex, social environment in which the context of its occur-

rence is important. Moreover, a qualitative view complements the existing

literature, which relies mostly on quantitative evidence.

OSS practitioners can take advantage of the barriers model to organize the

project environment and to adjust their behavior to better receive newcomers.

The model can be used as a guide on what type of information or tools need

58

to be provided to newcomers. By providing ways to lower entry barriers,

the projects can benefit from more contributions and, possibly, from more

long-term contributors. Assuming that, as stated by Dagenais et al. [PS7],

“newcomers are explorers who must orient themselves within an unfamiliar

landscape,” the model of barriers can be used by OSS communities to place

the proper signs and maps to help newcomers orient themselves and to alert

or warn them about the obstacles that they might face.

Although we considered the barriers as something that can hinder new-

comers’ contributions, some barriers can be used as filters by the projects.

Findings from a Halfaker et al. [19] study on Wikipedia newcomers revealed

that some entry barriers led to improved contributions in the future. More-

over, research conducted in the OSS domain [33, 13] demonstrated that so-

cialization barriers are useful for maintaining community integration and the

quality of the community’s product. A clear direction for future work is to

explore how the communities perceive these barriers and how they impact

the quality of contributions from newcomers.

59

7. Threats to Validity

In this section, we identified and described the threats to the validity of

our study. As for the construct validity, our main concern was to select every

relevant study, despite issues regarding the sources of study, nomenclature,

and fairness in the selection process. Regarding internal validity, the quality

of studies we have found are an important threat. Most papers do not con-

sider barriers as a main focus. Finally, the external validity is threatened by

the sample of OSS projects considered, as well as the profiles and motivations

of the newcomers considered by studies. These items pose some difficulties

when attempting to extrapolate current results to other OSS projects.

7.1. Construct validity

Several tactics were employed to assure the construct validity of this

systematic review. The protocol considered several sources for searching, and

we validated them with five experts (chairs of previous conferences on OSS).

In addition to venues that we had already included, they suggested libraries

that, unfortunately, did not provide any search mechanism. Although that

may be considered a threat, it is reasonable to consider that relevant research,

available in local libraries, will eventually be published in indexed venues.

Moreover, author and citation analysis can help to retrieve such papers.

We adjusted the search expression to cover all relevant papers that were

of our knowledge and conducted pilot studies using a group of relevant stud-

ies. The same experts we consulted for sources validated this set of verified

studies. Every step of the selection process was conducted by two researchers

whose decisions always needed to agree or be made in consensus.

60

Despite all of those measures, this review may have missed some papers

that address problems faced by newcomers to OSS projects because we did

not perform our search into every possible source and some relevant papers

may not contain the chosen terms. Moreover, some papers that address bar-

riers but were not positioned as studies about newcomers to OSS trying to

make code contributions were not included in this review. This can explain

the lack of studies that investigate technical barriers. The adoption of au-

thoring and citation analysis, in addition to searching in digital libraries,

contributed to helping mitigate this issue. For instance, as reported in Ta-

ble 2, two papers were found by author snowballing.

Another threat to our study was that it considered only newcomers as

our object of interest. The selection for barriers was accomplished by the

selection criteria of the systematic review. This was due to known limitation

on the literature available on the topic, with few studies explicitly regarding

barriers to newcomers on OSS projects.

The findings of this review may have also been affected because classi-

fication is a human process and it is based on some subjective criteria. In

particular, the terms of the area do not have a common definition among

all studies. The problems were classified based on the procedures of coding

from Grounded Theory, which also relies on manual classification. The use

of such an approach is not common in systematic reviews. However, we em-

ployed it because our goal was to identify and categorize the barriers faced by

newcomers and identifying and categorizing concepts is one of the key com-

ponents of grounded theory. To reduce the bias related to these concerns,

this review involved two researchers cross checking each paper for inclusion

61

and the coding process, and a third researcher responsible for reviewing and

discussing the information generated after each step.

Moreover, since our goal was to identify and classify the barriers evidenced

in the literature, we reported each of the barriers as independent factors that

influence newcomers. Therefore, there could be some relationships among

the barriers, since they were not reported by the primary studies and require

further investigation in other sources.

7.2. Internal validity

Most of the studies analyzed did not present as their main focus the anal-

ysis of the newcomers’ needs or the problems they faced during their first

steps. The papers that aim to analyze barriers faced by newcomers focus

on very specific problems. We know that it would be hard – or even im-

possible – to identify every factor that can affect newcomers. The quality of

the evidence provided by the selected studies is also a threat to the internal

validity. There are a small number of studies reporting experiments that ad-

dress the barriers. One approach employed by several studies was to identify

successful newcomers and trace the actions they did differently from other

newcomers that did not contribute to the project. However, although that

can show a correlation between them, it may not necessarily be a barrier.

Unfortunately, we could not find a study that quantitatively analyzed just

this factor, although some qualitative studies did provide some evidence of

barriers found by unsuccessful newcomers. With this paper, we expect to

foster more papers addressing barriers and newcomer contribution, provid-

ing empirical primary studies that can be used to improve our results with

newer iterations of this systematic review.

62

To this end, one feature we expect from future primary studies on new-

comers contributions is a better description and control of variables. Ar-

guably, this is not trivial, as there are several variables at hand. However,

it would be interesting to consider “forks” of projects, such as OpenOffice

and LibreOffice, and how the entry barriers they have chosen to address con-

tributed to newcomers’ success. However, this approach would face the issue

that, in such projects, several interventions are applied at once, making it

difficult to identify the variable that really caused the effect. Another ap-

proach would be creating controlled experiments using real OSS projects. For

example, it could provide a new tool, developed to address one barrier, and

evaluate its effectiveness. This might not be suitable for large projects, but

could be provided for smaller projects in software forges such as SourceForge

and GitHub.

Once more studies become available, our systematic review protocol could

be updated to consider barriers or tools used to mitigate a specific barrier

and their effects, such as patch submissions and code contributions. For

instance, several studies could extract similar information from the same

source and provide evidence towards specific barriers (such as lack of technical

experience and lack of social interaction with project members), which could

be aggregated to produce stronger evidence.

7.3. External validity

The studies we selected in our systematic review considered just a small

subset of available OSS projects. Although it would be infeasible to select

a proper sample from the population, most papers considered few successful

and mature software programs. We could find just four projects that used a

63

more heterogeneous collection [PS8, PS10, PS12, PS19], such as those hosted

at SourceForge and Apache Foundation.

The choice of projects considered by most researchers is understandable.

After all, data mining approaches require a considerable volume of data,

which is often provided by mature and large projects. However, the barriers

identified in them are not necessarily the same as those of smaller projects.

Nonetheless, considering studies with small code bases [PS16, PS17], the

results were compatible with those from studies of larger projects. This does

not mean that the barriers are always the same, but at least it provides

some hint that some barriers are independent of a project’s characteristics.

Further studies must be conducted to evaluate whether there are distinct

barriers between such projects and assess the importance among them.

As discussed in the previous section, most of the papers did not explicitly

profile the newcomers analyzed, and there is a high diversity of projects

studied. Thus, it is difficult to generalize or to specify the implications of the

results of this systematic review.

Another threat to external validation is that newcomers can be driven by

different motivations to contribute and present different expectations from

the project. In our model, we use the term ‘newcomers to OSS’ to refer to

volunteer contributors. However, OSS is increasingly being driven by paid

employees in commercial companies. In such cases, some of the barriers can

be softened or mitigated by the motivation that drives paid newcomers and

by the socialization tactics used by companies.

64

8. Conclusion

In this study, we identified 20 papers that evidence barriers faced by new-

comers while making a contribution to an OSS project. We aggregated the

barriers evidenced across the related literature in a single place. By using

a coding approach inspired by Grounded Theory procedures to organize the

barriers, we proposed a model composed of five categories: social interactions,

newcomers’ previous knowledge, finding a way to start, documentation, and

technical hurdles. The model extracted from the literature (presented in

Fig. 7 and discussed in Section 4) is the main contribution of this system-

atic review, as it brought to light the barriers that were already evidenced

in the literature as barriers for newcomers to contribute to OSS projects.

This classification provides a baseline for further research related to contri-

bution barriers faced by newcomers to OSS projects. We also classified the

problems regarding their origin: newcomers, community, or product. Such

classification can be used to provide a quick reference for researchers and

OSS practitioners willing to investigate or implement tools and mechanisms

to support newcomers.

Considering the most studied barriers, we found that the most evidenced

are (1) lack of social interaction with project members; (2) not receiving a

(timely) answer, both from Social Interaction category; and (3) newcomers’

previous technical experience, from Newcomers’ Previous Knowledge cate-

gory. It is important to notice that although the social interaction issues

were the most evidenced barriers, we found a lack of evidence of the causal

relationship between these barriers and newcomer success. We also highlight

that, overall, barriers related to technical issues, which include code issues

65

and difficulty to find a way to start, are individually backed by less evidence.

We noticed a high diversity of projects studied. Most of the authors

looked for mature, well-established projects to conduct their studies. In

addition, 66.67% of the projects studied were products used during the de-

velopment cycle (Application Servers, Frameworks, IDE, etc.). The higher

focus on established, large projects that deliver products used during the

development cycle can introduce a bias in the results of the studies analyzed.

Most of the studies analyzed rely on the results of quantitative case studies

using historical data gathered from software repositories. Historical data can

highlight the real obstacles and problems faced by newcomers, but conducting

experiments with newcomers, like [32, 11], and gathering information from

the project members and newcomers by means of interviews and surveys can

reveal the real problems and needs of the newcomers.

Based on the analysis conducted, we can conclude that newcomers that

wish to contribute must have a blend of domain knowledge, technical skills,

and social interaction, which can increase the odds of a successful joining.

The interactions are driven by artifacts that reflect the technical and domain

expertise. It is the result of these interactions that will allow both newcomers

and developers to perceive the level and possibly lack of background that

hinders effective contributions to the project.

It is also important to highlight that improvements in community recep-

tivity and more appropriate collaborative environments for OSS development

can result in better support for newcomers. Improper reception can result

in losing valuable resources. Moreover, community members need to think

of their product in terms of newcomers in case they want to receive more

66

contributions. Keeping the code simple and the documentation organized

and up-to-date could potentially increase the odds of receiving contributions

from newcomers.

Identifying the barriers evidenced by the literature (Section 4) and pro-

viding some guidelines (Section 5) for community members and newcomers

were the initial steps towards better orienting newcomers’ first steps. OSS

projects can benefit from additional contributions if they offer the right sup-

port specific for newcomers who are trying to contribute to the project. A

smooth first contribution may increase the total number of successful contri-

butions made by single contributors and, hopefully, the number of long-term

contributors.

In the future, we aim to conduct some qualitative studies to confirm the

problems evidenced by the literature. We are conducting some interviews

with experienced OSS developers and newcomers to verify the main prob-

lems faced by newcomers from their perspective. We also plan to refine the

classification model based on the results of the interview analysis. Addition-

ally, based on the model, it is possible to propose awareness mechanisms and

tools to offer better support for newcomers.

Acknowledgements

The authors would like to thank UTFPR, Fundação Araucária, CNPq

(proc. 477831/2013-3), NAPSoL-PRP-USP, NAWEB, and FAPESP for their

financial support. Igor Steinmacher received grants from CAPES (BEX 2038-

13-7).

67

References

[1] Begel, A., Simon, B., 2008. Novice software developers, all over again.

In: Proceedings of the Fourth International Workshop on Computing

Education Research. ICER ’08. ACM, New York, NY, USA, pp. 3–14.

[2] Ben, X., Beijun, S., Weicheng, Y., 2013. Mining developer contribution

in open source software using visualization techniques. In: Proceedings

of the 2013 Third International Conference on Intelligent System Design

and Engineering Applications. ISDEA ’13. IEEE, Hong Kong, pp. 934–

937.

[3] Biolchini, J., Mian, P. G., Natali, A. C. C., Travassos, G. H., May 2005.

Systematic review in software engineering. Technical Report RT-ES

679/05, COPPE/UFRJ, Rio de Janeiro, RJ, Brazil.

URL http://www.cin.ufpe.br/~in1037/leitura/

systematicReviewSE-COPPE.pdf

[4] Bird, C., 2011. Sociotechnical coordination and collaboration in open

source software. In: Proceedings of the 2011 27th IEEE International

Conference on Software Maintenance. ICSM ’11. IEEE, Washington,

DC, USA, pp. 568–573.

[5] Bird, C., Gourley, A., Devanbu, P., Swaminathan, A., Hsu, G., 2007.

Open borders? immigration in open source projects. In: Proceedings

of the Fourth International Workshop on Mining Software Repositories.

MSR ’07. IEEE, Washington, DC, USA, pp. 1–8.

68

[6] Canfora, G., Di Penta, M., Oliveto, R., Panichella, S., 2012. Who is

going to mentor newcomers in open source projects? In: Proceedings of

the ACM SIGSOFT 20th International Symposium on the Foundations

of Software Engineering. FSE ’12. ACM, New York, NY, USA, pp. 44:1–

44:11.

URL http://doi.acm.org/10.1145/2393596.2393647

[7] Capiluppi, A., Michlmayr, M., 2007. From the cathedral to the bazaar:

An empirical study of the lifecycle of volunteer community projects. In:

Feller, J., Fitzgerald, B., Scacchi, W., Sillitti, A. (Eds.), Open Source

Development, Adoption and Innovation. Vol. 234 of IFIP – International

Federation for Information Processing. Springer US, Limerick, Ireland,

pp. 31–44.

URL http://dx.doi.org/10.1007/978-0-387-72486-7_3

[8] Capra, E., Wasserman, A. I., 2008. A framework for evaluating manage-

rial styles in open source projects. In: Russo, B., Damiani, E., Hissam,

S., Lundell, B., Succi, G. (Eds.), Open Source Development, Commu-

nities and Quality. Vol. 275 of IFIP – The International Federation for

Information Processing. Springer US, pp. 1–14.

URL http://dx.doi.org/10.1007/978-0-387-09684-1_1

[9] Corbin, J. M., Strauss, A., 2008. Basics of Qualitative Research: Tech-

niques and Procedures for Developing Grounded Theory, 3rd Edition.

SAGE Publications.

[10] Cubranic, D., Murphy, G. C., 2003. Hipikat: recommending pertinent

software development artifacts. In: Proceedings of the 25th International

69

Conference on Software Engineering. ICSE 2003. IEEE, Washington,

DC, USA, pp. 408–418.

[11] Cubranic, D., Murphy, G. C., Singer, J., Booth, K. S., Jun. 2005.

Hipikat: a project memory for software development. IEEE Transac-

tions on Software Engineering 31 (6), 446–465.

[12] Dagenais, B., Ossher, H., Bellamy, R. K. E., Robillard, M. P., de Vries,

J. P., 2010. Moving into a new software project landscape. In: Pro-

ceedings of the ACM/IEEE 32nd International Conference on Software

Engineering. Vol. 1. ACM, New York, NY, USA, pp. 275–284.

[13] Ducheneaut, N., Aug 2005. Socialization in an open source software

community: A socio-technical analysis. Computer Supported Coopera-

tive Work 14 (4), 323–368.

[14] Farzan, R., Kraut, R. E., 2013. Wikipedia Classroom Experiment: Bidi-

rectional benefits of students’ engagement in online production commu-

nities. In: Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems. CHI ’13. ACM, New York, NY, USA, pp. 783–792.

URL http://doi.acm.org/10.1145/2470654.2470765

[15] Faulkner, R., Walling, S., Pinchuk, M., 2012. Etiquette in wikipedia:

Weening new editors into productive ones. In: Proceedings of the Eighth

Annual International Symposium on Wikis and Open Collaboration.

WikiSym ’12. ACM, New York, NY, USA, pp. 5:1–5:4.

URL http://doi.acm.org/10.1145/2462932.2462939

70

[16] Fogel, K., 2013. Producing Open Source Software: How to Run a Suc-

cessful Free Software Project, 1st Edition. O’Reilly Media.

URL http://www.producingoss.com/

[17] Forte, A., Lampe, C., 2013. Defining, understanding, and supporting

open collaboration: Lessons from the literature. American Behavioral

Scientist 57 (5), 535–547.

URL http://abs.sagepub.com/content/57/5/535.abstract

[18] Gacek, C., Arief, B., Jan 2004. The many meanings of open source.

IEEE Software 21 (1), 34–40.

[19] Halfaker, A., Geiger, R. S., Morgan, J., Riedl, J., 2013. The rise and

decline of an open collaboration system: How wikipedia’s reaction to

sudden popularity is causing its decline. American Behavioral Scientist

57.

URL http://abs.sagepub.com/content/57/5/664

[20] Halfaker, A., Kittur, A., Riedl, J., 2011. Don’t bite the newbies: How re-

verts affect the quantity and quality of Wikipedia work. In: Proceedings

of the 7th International Symposium on Wikis and Open Collaboration.

WikiSym ’11. ACM, New York, NY, USA, pp. 163–172.

URL http://doi.acm.org/10.1145/2038558.2038585

[21] He, P., Li, B., Huang, Y., 2012. Applying centrality measures to the

behavior analysis of developers in open source software community. In:

2012 Second International Conference on Cloud and Green Computing.

CGC. IEEE, Washington, DC, USA, pp. 418–423.

71

[22] Jalali, S., Wohlin, C., 2012. Systematic literature studies: Database

searches vs. backward snowballing. In: Proceedings of the ACM-IEEE

International Symposium on Empirical Software Engineering and Mea-

surement. ESEM ’12. ACM, New York, NY, USA, pp. 29–38.

URL http://doi.acm.org/10.1145/2372251.2372257

[23] Jensen, C., King, S., Kuechler, V., 2011. Joining free/open source soft-

ware communities: An analysis of newbies’ first interactions on project

mailing lists. In: 44th Hawaii International Conference on System Sci-

ences. HICSS. IEEE, Kauai, HI, USA, pp. 1–10.

[24] Joyce, E., Kraut, R. E., 2006. Predicting continued participation in

newsgroups. Journal of Computer-Mediated Communication 11, 2006.

[25] Kitchenham, B., Jul 2004. Procedures for performing systematic re-

views. Tech. Rep. TR/SE-0401, Department of Computer Science, Keele

University, Keele, UK.

[26] Kitchenham, B., Brereton, P., Dec 2013. A systematic review of system-

atic review process research in software engineering. Information and

Software Technology 55 (12), 2049–2075.

[27] Kitchenham, B., Charters, S., 2007. Guidelines for performing system-

atic literature reviews in software engineering. Joint Report EBSE 2007-

001, Keele University and Durham University.

[28] Lampe, C., Johnston, E., 2005. Follow the (Slash) Dot: Effects of Feed-

back on New Members in an Online Community. In: Proceedings of the

2005 International ACM SIGGROUP Conference on Supporting Group

72

Work. GROUP ’05. ACM, New York, NY, USA, pp. 11–20.

URL http://doi.acm.org/10.1145/1099203.1099206

[29] Midha, V., Palvia, P., Singh, R., Kshetri, N., 2010. Improving open

source software maintenance. Journal of Computer Information Systems

50 (3), 81–90.

[30] Morgan, J. T., Bouterse, S., Walls, H., Stierch, S., 2013. Tea and sym-

pathy: Crafting positive new user experiences on wikipedia. In: Pro-

ceedings of the 2013 Conference on Computer Supported Cooperative

Work. CSCW ’13. ACM, New York, NY, USA, pp. 839–848.

URL http://doi.acm.org/10.1145/2441776.2441871

[31] Nagappan, M., Zimmermann, T., Bird, C., 2013. Diversity in software

engineering research. In: Proceedings of the 2013 9th Joint Meeting

on Foundations of Software Engineering. ESEC/FSE 2013. ACM, New

York, NY, USA, pp. 466–476.

URL http://doi.acm.org/10.1145/2491411.2491415

[32] Park, Y., Jensen, C., 2009. Beyond pretty pictures: Examining the ben-

efits of code visualization for open source newcomers. In: Proceedings

of the 5th IEEE International Workshop on Visualizing Software for

Understanding and Analysis. IEEE, Washington, DC, USA, pp. 3–10.

[33] Qureshi, I., Fang, Y., 2011. Socialization in open source software

projects: A growth mixture modeling approach. Organizational Re-

search Methods 14 (1), 208–238.

URL http://orm.sagepub.com/content/14/1/208.abstract

73

[34] Scacchi, W., Feb 2002. Understanding the requirements for developing

open source software systems. IEE Proceedings Software 149 (1), 24–39.

URL http://digital-library.theiet.org/content/journals/10.

1049/ip-sen_20020202

[35] Schilling, A., Laumer, S., Weitzel, T., 2012. Who will remain? an eval-

uation of actual person-job and person-team fit to predict developer

retention in FLOSS projects. In: 45th Hawaii International Conference

on System Sciences. IEEE, Washington, DC, USA, pp. 3446–3455.

[36] Schmidt, F. L., Hunter, J. E., Sep. 1998. The validity and utility of se-

lection methods in personnel psychology: Practical and theoretical im-

plications of 85 years of research findings. Psychological Bulletin 124 (2),

262–274.

[37] Steinmacher, I., Gerosa, M. A., Redmiles, D., 2014. Attracting, onboard-

ing, and retaining newcomer developers in open source software projects.

In: Workshop on Global Software Development in a CSCW Perspective

held in conjunction with the 17th ACM Conference on Computer Sup-

ported Cooperative Work & Social Computing (CSCW’14).

URL http://143.107.45.80/public/papers/15705/NEXGSD.pdf

[38] Steinmacher, I., Wiese, I., Chaves, A. P., Gerosa, M. A., 2013. Why

do newcomers abandon open source software projects? In: 6th Interna-

tional Workshop on Cooperative and Human Aspects of Software Engi-

neering. CHASE’13. IEEE, Washington, DC, USA, pp. 25–32.

[39] Steinmacher, I., Wiese, I. S., Gerosa, M. A., 2012. Recommending men-

74

tors to software project newcomers. In: 3rd International Workshop on

Recommendation Systems for Software Engineering. IEEE, Washington,

DC, USA, pp. 63–67.

[40] Stol, K.-J., Avgeriou, P., Ali Babar, M., 2010. Identifying architectural

patterns used in open source software: approaches and challenges. In:

Proceedings of the 14th International Conference on Evaluation and As-

sessment in Software Engineering. EASE’10. British Computer Society,

Swinton, UK, UK, pp. 91–100.

URL http://dl.acm.org/citation.cfm?id=2227057.2227069

[41] Suh, B., Convertino, G., Chi, E. H., Pirolli, P., 2009. The singularity

is not near: Slowing growth of Wikipedia. In: Proceedings of the 5th

International Symposium on Wikis and Open Collaboration. WikiSym

’09. ACM, New York, NY, USA, pp. 8:1–8:10.

URL http://doi.acm.org/10.1145/1641309.1641322

[42] Von Krogh, G., Spaeth, S., Lakhani, K., 2003. Community, joining,

and specialization in open source software innovation: A case study.

Research Policy 32 (7), 1217–1241.

URL http://www.sciencedirect.com/science/article/pii/

S0048733303000507

[43] Wang, J., Sarma, A., 2011. Which bug should I fix: Helping new devel-

opers onboard a new project. In: Proceedings of the 4th International

Workshop on Cooperative and Human Aspects of Software Engineering.

CHASE ’11. ACM, New York, NY, USA, pp. 76–79.

URL http://doi.acm.org/10.1145/1984642.1984661

75

[44] Wang, Y.-C., Kraut, R., Levine, J. M., 2012. To stay or leave?: The

relationship of emotional and informational support to commitment in

online health support groups. In: Proceedings of the ACM 2012 Con-

ference on Computer Supported Cooperative Work. CSCW ’12. ACM,

New York, NY, USA, pp. 833–842.

URL http://doi.acm.org/10.1145/2145204.2145329

[45] Weiss, M., Moroiu, G., Zhao, P., 2006. Evolution of open source commu-

nities. In: Damiani, E., Fitzgerald, B., Scacchi, W., Scotto, M., Succi,

G. (Eds.), Open Source Systems. Vol. 203 of IFIP International Fed-

eration for Information Processing. Springer Boston, Como, Italy, pp.

21–32.

URL http://dx.doi.org/10.1007/0-387-34226-5_3

[46] Zhou, M., Mockus, A., 2011. Does the initial environment impact the

future of developers. In: Proceedings of the 33rd International Confer-

ence on Software Engineering. ICSE ’11. ACM, New York, NY, USA,

pp. 271–280.

URL http://doi.acm.org/10.1145/1985793.1985831

[47] Zhou, M., Mockus, A., 2012. What make long term contributors: Will-

ingness and opportunity in OSS community. In: Proceedings of the

34th International Conference on Software Engineering. ICSE ’12. IEEE

Press, Piscataway, NJ, USA, pp. 518–528.

URL http://dl.acm.org/citation.cfm?id=2337223.2337284

76

