

What Can Commit Metadata Tell Us

About Design Degradation?
Gustavo Ansaldi Oliva

University of São Paulo
Rua do Matão, 1010

São Paulo – SP – Brazil
+55 11 3091-6499

goliva@ime.usp.br

Igor Steinmacher
Federal University of Tech.

Av. Sete de Setembro, 3165
Curitiba – PR – Brazil

+55 44 3523 4156

igorfs@utfpr.edu.br

Igor Wiese
Federal University of Tech.

Av. Sete de Setembro, 3165
Curitiba – PR – Brazil

+55 44 3523 4156

igorfs@utfpr.edu.br

Marco Aurélio Gerosa
University of São Paulo

Rua do Matão, 1010
São Paulo – SP – Brazil

+55 11 3091-6499

gerosa@ime.usp.br

ABSTRACT

Design degradation has long been assessed by means of structural

analyses applied on successive versions of a software system.

More recently, repository mining techniques have been developed

in order to uncover rich historical information of software

projects. In this paper, we leverage such information and propose

an approach to assess design degradation that is programming

language agnostic and relies almost exclusively on commit

metadata. Our approach currently focuses on the assessment of

two particular design smells: rigidity and fragility. Rigidity refer

to designs that are difficult to change due to ripple effects and

fragility refer to designs that tend to break in different areas

every time a change is performed. We conducted an evaluation of

our approach in the project Apache Maven 1 and the results

indicated that our approach is feasible and that the project

suffered from increasing fragility.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance, and

Enhancement – reestructuring, reverse engineering, and

reengineering; version control.

General Terms

Measurement, Design, Experimentation.

Keywords

Design degradation, software metrics, commit metadata, version

control systems, mining software repositories.

1. INTRODUCTION
The volatility of requirements and the wish for new

functionalities impose constant pressure for changes in software

systems. The need for end-user satisfaction and the great amount

of investment leave no room for the software to be largely

reworked each time a requirement changes. Indeed, software that

is not tolerant to modifications is doomed to abandonment or

replacement [3].

Although it is clear that software systems need to be able to

evolve, such ability tends to decrease over time [5, 20]. Despite

the variety of factors that dictate software evolvability, software

design has always been in the spotlight. In particular, a great

effort has been devoted to the problem of software design

degradation (a.k.a. design erosion) [12, 16, 20, 11]. Degradation

occurs as the elegancy of the system modules becomes lost in the

form of structural patches and violations of architectural rules

[20]. In this scenario, a dense network of interdependencies

among modules commonly emerges, resulting in code that is

difficult to change, not reusable, and that does not communicate

its intention [7]. As a result, software evolves increasingly

slower and its maintenance cost turns to account for a large

portion of the total production costs [5, 24].

Researchers and practitioners have long employed static analysis

techniques to assess design degradation [1, 4, 10, 14, 15, 18, 27].

Such techniques often rely on an evaluation of successive

versions (e.g., revisions, snapshots, or releases) of a software

system over time. While these techniques have acknowledged

benefits, they also have some drawbacks. Firstly, the input to the

static analysis techniques is the source code. Consequently, part

of the process necessarily includes parsing such code, which

implies that the analysis is not programming language agnostic,

i.e., it depends on the specific language in which the subject

system was written. This can be a problem itself, since analyzing

codebases written in different languages may require different

tools and thus lead to more complex analysis processes. This

should be true for a company that needs to maintain different

projects written in different languages. Another example includes

software projects that have components written in different

languages, such as a service-oriented system in which

components are written in different languages and exposed as

web services.

More recently, software repository mining researchers have

developed methods, techniques, and tools to uncover rich

historical information stored in software repositories, such as

version control systems (VCSs), bug-tracking systems, and

communication archives (e.g., discussion forums and mailing

lists) [13]. In order to complement existing static techniques and

deal with their drawbacks, we conceived an approach to asses

design degradation that relies almost exclusively on commit

metadata. Some advantages of our approach include: (i) it is

programming language agnostic; (ii) its computation is

lightweight; and (iii) its results are based on the actual history of

the project. The only requirement is the existence of a VCS (e.g.,

CVS, Subversion, Git, Mercurial) with enough system

development history.

As a first endeavor, our approach focuses on the assessment of

two particular design degradation smells introduced by Martin

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

IWPSE'13, August 19-20, 2013, Saint Petersburg, Russia

Copyright 2013 ACM 978-1-4503-2311-6/13/08... $15.00.

[20]: rigidity and fragility. Rigidity refers to the tendency for

changes in a module to cause a cascade of subsequent changes in

the dependent modules. In turn, fragility refers to the tendency

for software to break in many different places every time a single

change is performed. The reason our approach relies on commit

metadata is because the definitions of rigidity and fragility are

intrinsically connected to the notion of change results. More

specifically, in our approach we define metrics that operate on

commit metadata to measure rigidity and fragility. Furthermore,

since the notion of degradation embeds a temporal aspect, we

calculate such metrics for every commit included in the

development period and analyze their statistical distribution. If

we recognize an increase in the values of such metrics, we then

infer that design rigidity and fragility are also increasing (i.e., the

design is degrading). Therefore, our hypothesis is that

information mined from commit metadata is able to reveal design

degradation.

In this paper, we introduce our approach and evaluate it by means

of an exploratory study. The exploratory study concerned

applying the approach to the core of Apache Maven 1.x, whose

design degraded so intensively that the development team

decided to perform a complete rewrite of the project, which led

to Apache Maven 2.0. The goal of such study were twofold: (i)

assess the overall feasibility of our approach, and (ii) discover

whether our approach is able to show symptoms of increasing

rigidity and fragility in Maven 1.x.

The remainder of this paper is organized as follows. In Section II,

we introduce the concept of design degradation and present our

set of metrics. In Section III, we present the research method we

conducted in our study. In Section IV, we present the results of

such study. In Section V, we discuss the results we obtained. In

Section VI, we present the threats to the validity of our study. In

Section VII, we discuss related work. Finally, in Section VIII we

state our conclusions and plans for future work.

2. DESIGN DEGRADATION
Martin argued that if dependencies among modules are not

adequately managed, then the software starts to rot, just like “a

piece of bad meat” [20]. In this scenario, code becomes difficult

to be maintained and controlled, the reuse rate and testability

decrease, and the effort required to implement new features

continually increases. When a design starts to reveal such

symptoms, it is said to be degrading or, more informally, rotting.

Although similar to the code smells introduced by Fowler [8],

these smells are defined at a higher level of abstraction and they

impregnate all or great part or the software structure (instead of a

localized piece of code).

Martin coined some terms to denote design smells that often

appear throughout software development: rigidity, fragility,

immobility, and viscosity. In the following subsections, we

describe the two particular design smells we are going to deal

with in this paper: rigidity and fragility. For each of the concepts,

we show the metric we conceived to operationalize it and the

rationale behind such operationalization.

2.1 Rigidity
The definition of rigidity given by Martin is as follows. Rigidity

is the tendency for software to be difficult to change, even in

simple ways. A design is rigid if a single change causes a

cascade of subsequent changes in dependent modules. The more

modules that must be changed, the more rigid the design is. Most

developers have faced this situation in one way or another."

[20].

Operationalization of Concept. Software design presents the

symptom of rigidity when a single change requires a cascade of

subsequent changes in dependent modules. In other words, the

more modules one needs to change, the more rigid the design is.

Therefore, it becomes natural to measure the intensity of rigidity

by calculating the number of modified modules per atomic

software change. We operationalize that by calculating the

number of changed files per commit, and we refer to this measure

as commit density.

2.2 Fragility
The definition of fragility given by Martin is as follows. Fragility

is the tendency of a program to break in many different places

when a single change is made. Often, the new problems are in

areas that have no conceptual relationship with the area that

was changed. Fixing those problems leads to even more

problems, and the development team begins to resemble a dog

chasing its tail [20].

Operationalization of Concept. Software design presents the

symptom of fragility when the software starts to break in many

different places every time a single change is performed. In other

words, measuring fragility implies identifying and reasoning

about the places where changes took place. Therefore, we

operationalize fragility by calculating the distance (in the

directory tree) among file paths included in a commit. We refer

to this measure as commit dispersion.

Consider the example depicted in Figure 1. In this figure, shaded

nodes denote all existing directories, leaf nodes denote all source

code files in the repository tree, and nodes X, Y and Z denote the

files that were changed in a specific commit. To calculate commit

dispersion, we first calculate the distance between each pair of

files in the commit. For example, the distance from Y to Z is 6: 2

steps to go from Y to A, plus 4 steps to go from A to Z. Commit

dispersion is then given by the average of the distances, i.e., the

sum of pair-wise distances (X to Y, X to Z, and Y to Z) divided

by the number of pairs (3). The result for this example is (3 + 7 +

6) / 3 = 5.333.

Figure 1. Commit dispersion calculation example

In Listing 1, we show a pseudocode that describes the algorithm

for calculating fragility:

Routine: calculateCommitDispersion

Parameters: commit

01. totalDistance  0

02. commitDispersion  0

03. filePairs  0

04. numFiles  commit.getNumFiles()

05. for (i = 0; i < numFiles; i++)

06. for (j = i + 1; j < numFiles; j++)

07. //Obtains the leaf nodes

08. lfNodeA  commit.getFile(i)

09. lfNodeB  commit.getFile(j)

10. //Obtains the Lowest Common Ancestor(LCA)

11. lca  obtainLCA(lfNodeA, lfNodeB

12. //Calculates distance between leaf nodes

13. distance  calcDist(lfNodeA,lfNodeB,lca)

14. totalDistance  totalDistance + distance

15. filePairs  filePairs + 1

16. end-for

17. end-for

18. //Calcs avgDistance between nodes in commit

19. if (filePairs > 0)

20. commitDispersion  totalDistance/filePairs

21. end-if

22. return commitDispersion

Listing 1. Commit Dispersion Algorithm

The distance between two leaf nodes (line 13) is calculated by

summing the distance of each node to their common lowest

ancestor node (LCA) in the tree. Clearly, the LCA is always a

directory node.

3. RESEARCH METHOD
In this section, we describe the exploratory study we conducted.

We first searched for a software system whose design presented

acknowledged symptoms of rigidity and fragility. After having

found such system, we mined its version control system using

XFlow [25] and then calculated the metrics we conceived for

measuring design degradation. Our goal was to investigate the

feasibility of our approach and check whether we would indeed

find an increase in the metric values throughout the considered

development period of the system.

3.1 The Subject System: Apache Maven 1
For this study, we needed a software project that satisfied all of

the following requirements: (i) to present evident symptoms of

design degradation; (ii) to be hosted on a Subversion (SVN)

repository with anonymous read access; (iii) non-academic; (iv)

to have a non-small development history. The first requirement

arises from the very nature of the goal of our study. The second

requirement exists due to practical constraints on the tools at our

disposal. The third requirement was raised because we wanted to

evaluate the metrics on a real-world software project, which

could be either an industrial software or a free/libre open source

software (FLOSS). The fourth and last requirement exists

because we want to conduct our evaluation on a software system

with enough development history.

The project we selected was (the core of) Apache Maven 1.x.

Maven is a tool aimed at supporting project management and

providing build automation. Although Maven functionalities are

roughly similar to those of the software Ant, it is based on

different concepts. In particular, Maven relies on the concept of

Project Object Model (POM), and thus is able to manage a

project's build, reporting, and documentation from a centralized

piece of information. Maven is currently an Apache Software

Foundation (ASF) top-level project.

Regarding the first requirement, Apache Maven 1.x evolved until

a complete rewrite was needed due to signs of design

degradation. Indeed, in the Maven 1.x project website, the

authors wrote that “the latest version of Maven is the 2.0 tree,

which is a complete rewrite of the original Maven application.”

In the release notes of Maven 2.0, there is also a similar

statement made by the authors “Maven 2.0 is a rewrite of the

popular Maven application to achieve a number of new goals, and

to provide a stable basis for future development.” We surveyed

few Maven developers by email and the answers received reveal

that Maven 1.x was monolithic and hard to maintain. A developer

said it was “unmaintainable” and another one highlighted that

“build scripts were getting too complex”. They also reported that

rigidity and fragility highly influenced Maven redesign.

Regarding the second requirement, Apache Maven 1.x was

hosted in a Subversion code repository. Regarding the third

requirement, Maven was (and has been) maintained by the

Apache Software Foundation (ASF), which is a non-profit

organization that has developed nearly a hundred distinguishing

software projects that cover a wide range of technologies and

address several problems from diverse contexts. With relation to

the fourth and last requirement, we used XFlow to mine history

information from the project and we discovered that it involved

37 developers who performed 6,753 commits in total. The

development history encompassed approximately 6 years (from

February 2002 to February 2008). In particular, according to the

categorization proposed by Levine and Moreland [17], small

teams are groups of 5 to 15 individuals. Hence, in light of such

categorization, the selected project fully satisfies the pre-

established criterion of development team size.

3.2 Main Steps
In this subsection, we describe the main steps we followed in our

study.

Data collection and pre-filtering. Interacting with remote

version control systems is usually both troublesome and slow.

Furthermore, to make things even more complicated, ASF has a

single SVN repository that hosts all of its projects and comprises

more than 1.3 million commits. Given these two aspects, we

decided to mirror the whole ASF SVN repository and then

interact with it locally. After having finished the time-consuming

mirroring process, we used XFlow to parse Maven 1 commits and

store its metadata into a MySQL database. Since we are

interested in evaluating design degradation, we only considered

java files when doing the commit parsing (i.e., all other kinds of

files were discarded). Commits having no java files were simply

discarded. Furthermore, we were interested in all commits done

in branches, tags, and trunks. Therefore, we considered java files

inside the root folder “/maven/maven-1/core”. As a final remark,

we highlight that all these filters were easily applied on-the-fly

during data collection thanks to the flexibility provided by XFlow

[25].

Post-filtering. The approach we conceived to calculate rigidity

and fragility operates directly on commit metadata.

Consequently, we needed to exclude commits that referred

crosscutting changes, such as applying or changing software

license, doing repository merge operations, and fixing code

styling issues. Hence, after data collection, we applied some

heuristics to exclude these non-wanted commits. For this

particular project, we discarded commits that included the words

“cvs2svn’, “ASL”, “license header”, and “m2 code style” in their

comments. We also discarded those commits whose comments

started with “Initial revision”. We came up with this set of

keywords by applying the following strategy. We first discovered

which were the largest commits (in terms of commit density),

selected three to five of those, and then manually inspected their

metadata (focusing on the list of changed files and the author

comments). As a result, we conceived a filtering keyword and

tested it to check whether it was able to select the commits we

wanted. In case it selected more commits than it should, we

inspected the additional commits and adjusted the keyword

accordingly. In fact, in some situations the keyword spot more

commits than we had initially identified. Once the keyword was

deemed ok, we repeated the whole process until only desired

commits were left. We emphasize that we were not able to come

up with a simple keyword to capture commits that referred to

repository merge operations. In such case, the strategy was to

discover all commits that included the word “merge” in their

comments, inspect their metadata, and decide which ones were

actually related to repository merge operations.

Data analysis perspectives. Once we finished the data collection

process, we defined which data analysis perspectives we would

employ. After reasoning about the project characteristics, we

decided to follow a top-down approach by (i) first analyzing the

development period as a whole, then (ii) diving the development

period into three slots with each containing the same amount of

commits, and finally (iii) dividing the development period into

three slots with each referring to a major release of the software.

Given the Maven release history depicted in Table 1, we defined

the three perspectives as follows:

- Whole development period: This period goes from the start of

development (19/02/2002) until the end of development

(03/02/2008).

Table 1. Apache Maven Release History

Version Date (dd/mm/yyyy)

[Start of Development] 19/02/2002

Maven 1.0 Beta 5 12/08/2002

Maven 1.0 Beta 6 20/08/2002

Maven 1.0 Beta 7 30/09/2002

Maven 1.0 Beta 8 12/02/2003

Maven 1.0 Beta 9 08/04/2003

Maven 1.0 Beta 10 14/07/2003

Maven 1.0 RC 1 29/09/2003

Maven 1.0 RC 2 23/03/2004

Maven 1.0 RC 3 19/05/2004

Maven 1.0 RC 4 28/06/2004

Maven 1.0 13/07/2004

Maven 1.0.1 10/11/2004

Maven 1.0.2 07/12/2004

Maven 1.1 Beta 1 17/06/2005

Maven 1.1 Beta 2 09/09/2005

Maven 1.1 Beta 3 02/08/2006

Maven 1.1 RC 1 11/05/2007

Maven 1.1 25/06/2007

[End of Development] 03/02/2008

- Three commit groups of equal size: The data collection

procedure resulted in 2145 commits. Hence, the first commit

group comprised commits 1-715, the second commit group

comprised commits 716-1430, and the last commit group

comprised commits 1431-2145. In this case, the goal was to

divide all the contribution volume chronologically into three

equal-sized blocks and check whether the metrics values would

change from block to block.

- Three distinct development periods: The first development

period goes from the start of development (19/02/2002) until the

release of Maven 1.0 Beta 5 (12/08/2002). The second

development period goes from the day after the release of Maven

1.0 Beta 5 (20/02/2002) until the release of Maven 1.0.2

(07/12/2004). The last development period goes from the day

after the release of Maven 1.0.2 (08/12/2004) until the end of

development (03/02/2008). In this case, we the goal was to check

whether metric values would change from release to release.

Data analysis procedures. We organized data according to each

of the aforementioned analysis perspectives and imported it into

MS Excel and Minitab. From these tools, we calculated

descriptive statistics, plotted graphs, and discovered trends. In

particular, we tried to understand how our measures of rigidity

and fragility changed over time, i.e., we studied their statistical

distribution.

3.3 Supporting Tools
XFlow. Mining repositories studies usually require extensive tool

support due to large and complex data that need to be collected,

processed, and analyzed [2]. XFlow is an extensible and

interactive open source tool whose general goal is to provide a

comprehensive analysis of software projects evolution process by

mining software repositories and taking into account both

technical and social aspects of the developed systems [25].

Rigidity and Fragility Calculator. We implemented a Java

standalone prototype tool to calculate rigidity and fragility for

every commit of the subject system.

Microsoft Excel, Minitab, and R. These tools supported all

statistical analyses we performed. The statistical tests were

performed in Minitab (except for the Augmented Dickey–Fuller

test and the Powerlaw test, which were available only in R).

4. RESULTS
In this section, we show the results we obtained by applying our

approach to the core of the Apache Maven 1 project.

4.1 Rigidity

4.1.1 Whole development period
Table 2 depicts the descriptive statistics for commit density when

considering the whole development period.

Table 2. Descriptive Statistics for Commit Density

N Mean StDev Min Q1 Med. Q3 Max Skew Kurt.

2145 2.60 5.46 1 1 1 2 79 7.81 78.42

Given the values of Q1 and Q3, it follows that the lower and

upper whiskers of the data corresponding boxplot are 1 and 3

respectively. In other words, usual commit density values range

from 1 to 3. Indeed, in terms of cumulative percentage, commits

with 1, 2, and 3 files comprise 86% of all data. This can be easily

seen in the frequency histogram for commit density depicted in

Figure 2.

We tried to identify the data distribution by performing goodness

of fit tests against the following known distributions: Normal,

Normal after Box-Cox Transformation, Lognormal, 3-Parameter

Lognormal, Exponential, 2-Parameter Exponential, Weibull, 3-

Parameter Weibull, Smallest Extreme Value, Largest Extreme

Value, Gamma, 3-Parameter Gamma, Logistic, Loglogistic, 3-

Parameter Loglogistic, and Powerlaw. The only good fit we

found was for the PowerLaw distribution (as somehow suggested

by the histogram depicted in Figure 2). In all other cases, we

could always reject the null-hypothesis with high confidence.

20191817161514131211109876543210

1400

1200

1000

800

600

400

200

0

Commit Density

Fr
e

q
u

e
n

c
y

Figure 2. Histogram for Commit Density

Figure 3 shows a time-series plot for commit density. Analyzing

the distribution, we noticed that 80.7% values are below mean

(first threshold), 95.6% are below mean + 1*StdDev (second

threshold), and that 97.4% of the values are below mean +

2*StdDev (third threshold). It is interesting to notice, however,

that most part of the values above the third threshold occur in the

second-half portion of the commits (i.e., from commit 1073

onwards).

2140192617121498128410708566424282141

80

70

60

50

40

30

20

10

1

Commit Index

C
o

m
m

it
 D

e
n

s
it

y

Mean + 2*StdDev

Mean + 1*StdDev

Mean

Figure 3. Time Series Plot for Commit Density

We performed a trend analysis for commit density and tried four

different regression models: linear, quadratic, exponential

growth, and s-curve (Pearl-Reed logistic). For each model, we

computed three accuracy measures: Mean Absolute Percentage

Error (MAPE), Mean Absolute Deviation (MAD), and Mean

Squared Deviation (MSD). The results we obtained were as

follows:

Table 3. Trend Analysis for Rigidity

#Trend Model MAPE MAD MSD

Linear 116.22% 2.24 29.74

Quadratic 115.99% 2.24 29.69

Exponential 53.47% 1.75 30.80

S-Curve 39.61% 1.68 31.46

By analyzing the results, we notice that the S-curve model had

the best fit (even though it showed the worst MSD). In this curve,

the first commit scored 1.14 and the last one scored 1.33, which

indicates a negligible trend of increase for the commit density

metric.

Finally, we ran the Augmented Dickey-Fuller test, which tests for

a unit root in a time series sample. The results are summarized

below and indicate that we can reject the null hypothesis, which

states that the time series has a unit root. In other words,

according to the test, the sample can be deemed trend-stationary.

Augmented Dickey-Fuller Test

data: rigidity

Dickey-Fuller = -12.3017, Lag order = 12,

p-value = 0.01

alternative hypothesis: stationary

4.1.2 Three commit groups of equal size
Table 4 depicts the descriptive statistics for commit density when

considering three commit groups of equal size.

Table 4. Descriptive Statistics for Commit Density

(three groups of equal size)

#ID N Sum Sum% Mean StDev Min Max Skew Kurt.

G1 715 1643 29.5% 2.30 4.13 1 52 6.70 56.71

G2 715 1757 31.6% 2.46 4.92 1 72 8.77 97.11

G3 715 2166 38.9% 3.03 6.92 1 79 6.84 57.68

An analysis of the data shows that the sum of the number of files

per commit increases from group to group. Consequently, there is

a minor increase in the mean values (2.30, 2.46, 3.03).

Furthermore, the maximum value also increases (52, 72, 79).

However, from the perspective of rigidity analysis, these results

do not mean much given the high standard deviation values.

We performed a quartile analysis (Table 5) and we noticed that

the quartile values and upper whisker were identical for the three

groups. On the other hand, we noticed an increase in the number

of outliers from group to group (we say that a value is an outlier

when it exceeds the upper whisker). Furthermore, the sum of the

values of the outliers also increased. Therefore, although we did

not find any striking evidence for the increase of rigidity in the

previous analyses, this last result shows that at least the

occurrence of large commits increased over time.

Table 5. Quartile Analysis for Commit Density

(three groups of equal size)

#ID N Q1 Med. Q3
Upper

Whisker
#Outliers %Outliers

Sum of

Outliers

G1 715 1 1 2 3 96 13.4% 858

G2 715 1 1 2 3 99 13.8% 925

G3 715 1 1 2 3 105 14.7% 1358

Finally, Figure 4 depicts a time-series plot for commit density

that highlights the division of commit into groups.

4.1.3 Three distinct development periods
Table 6 depicts the descriptive statistics for commit density when

considering the release periods.

Table 6. Descriptive Statistics for Commit Density

(per release period)

#ID N N% Sum Sum% Mean StDev Min Max Skew Kurt.

G1 888 41.4% 1952 35.1% 2.20 3.81 1 52 7.08 64.67

G2 1132 52.8% 3218 57.8% 2.84 6.40 1 79 7.58 69.63

G3 125 5.8% 396 7.1% 3.17 5.97 1 38 3.91 15.95

2140192617121498128410708566424282141

80

70

60

50

40

30

20

10

1

Commit Index

C
o

m
m

it
 D

e
n

s
it

y
Commit 1430Commit 715

Mean + 2*StdDev

Mean + 1*StdDev

Mean

Figure 4. Time Series Plot for Commit Density

(three groups of equal size)

An analysis of the data shows that the third group is considerably

smaller than the other two (in terms of the number of commits).

Despite this difference, we again notice a minor increase in the

mean values (2.20, 2.84, 3.17) from group to group. As in the

previous section, these results do not mean much given the high

standard deviation values.

We performed a quartile analysis and the results are summarized

in Table 7. As in the previous section, quartile values and upper

whisker were identical for the three groups. On the other hand,

despite the different sizes of the groups, we noticed a percentage

increase of outliers from group to group. Therefore, although we

did not find any striking evidence for the increase of rigidity in

the previous analyses, this last result again shows that at least the

occurrence of large commits increased (proportionally) over

time.

Table 7. Outlier Analysis (per release period)

#ID N Q1 Med. Q3
Upper

Whisker
#Outliers %Outliers

Sum of

Outliers

G1 888 1 1 2 3 114 12.8% 964

G2 1132 1 1 2 3 167 14.8% 1921

G3 125 1 1 2 3 19 15.2% 256

Finally, Figure 5 depicts a time-series plot for commit density

that highlights the division of commits according to the release

periods we previously defined.

2140192617121498128410708566424282141

80

70

60

50

40

30

20

10

1

Commit Index

C
o

m
m

it
 D

e
n

s
it

y

Commit 2020Commit 889

Mean + 2*StdDev

Mean + 1*StdDev

Mean

Figure 5. Time Series Plot for Commit Density

(per release period)

4.2 Fragility

4.2.1 Whole development period
Table 8 depicts the descriptive statistics for commit dispersion

when considering the whole development period.

Table 8. Descriptive Statistics for Commit Dispersion

N Mean StDev Min Q1 Med. Q3 Max Skew Kurt.

2145 2.11 4.44 0 0 0 2 21 2.63 6.51

Given the values of Q1 and Q3, it follows that the lower and

upper whiskers of the data corresponding boxplot are 0 and 5

respectively. In other words, usual commit dispersion values

range from 0 to 5. Indeed, in terms of cumulative percentage,

commits with dispersion from 0 to 5 comprise 87% of all data.

This can be easily seen in the frequency histogram for commit

dispersion depicted in Figure 6.

As in the case of rigidity, we tried to identify whether commit

dispersion followed any known statistical distribution. In all the

tests we performed, we could always reject the null-hypothesis.

In other words, commit dispersion did not fit any known standard

statistical distribution.

2120191817161514131211109876543210

1600

1400

1200

1000

800

600

400

200

0

Commit Dispersion

Fr
e

q
u

e
n

c
y

Figure 6. Histogram for Commit Dispersion

Figure 7 shows a time-series plot for commit dispersion.

Analyzing the distribution, we concluded that 76.8% of the

values are below mean (first threshold), 88.0% are below mean

+ 1*StdDev (second threshold), and that 92.6% of the values

are below mean + 2*StdDev (third threshold). Interestingly,

commit dispersion becomes much higher from commit 1233

onwards.

2140192617121498128410708566424282141

20

15

10

5

0

Commit Index

C
o

m
m

it
 D

is
p

e
rs

io
n

Mean + 2*StdDev

Mean + 1*StdDev

Mean

Figure 7. Time Series Plot for Commit Dispersion

We performed a trend analysis for commit dispersion and tried

the same regression models from Section 4.1 (except for

exponential growth, which requires all values to be positive). The

results we obtained were as follows:

Table 9. Trend Analysis for Fragility

#Trend Model MAPE MAD MSD

Linear 52.69% 2.87 19.12

Quadratic 53.50% 2.87 19.11

S-Curve 223.89% 9.06 91.95

The linear model had the best fit. In this curve, the first commit

scored 2.30 and the last one scored 3.42, which indicates a slight

trend of increase for the commit dispersion metric.

As we did for the rigidity metric, we ran the Augmented Dickey-

Fuller test. The results are summarized below and indicate that

we can reject the null hypothesis, which states that the time series

has a unit root. In other words, according to the test, the sample

can be deemed trend-stationary.

Augmented Dickey-Fuller Test

data: fragility

Dickey-Fuller = -9.7536, Lag order = 12,

p-value = 0.01

alternative hypothesis: stationary

4.2.2 Three commit groups of equal size
Table 10 depicts the descriptive statistics for commit density

when considering three commit groups of equal size.

Table 10. Descriptive Statistics for Commit Dispersion

(three groups of equal size)

#ID N Sum Sum% Mean StDev Min Max Skew Kurt.

G1 715 854.6 18.9% 1.20 2.65 0 14 2.90 8.36

G2 715 1546.0 34.1% 2.16 4.53 0 20 2.67 6.67

G3 715 2127.8 47.0% 2.98 5.49 0 21 1.99 2.92

An analysis of the data shows that the sum of the commit

dispersion increases substantially from group to group.

Consequently, there is an increase in the mean values (1.20, 2.16,

2.98). Furthermore, the maximum value also increases (14, 20,

21). However, from the perspective of fragility analysis, these

results should be interpreted with care because of the high

standard deviation values.

To further investigate the situation, we performed a quartile

analysis. Differently from rigidity, the results shown in Figure 8

indicate that fragility increased from group to group. In

particular, the third quartile increased from 1.73 to 2.0 to 3.33

and the upper whisker increased from 4.0 to 5.0 to 8.0.

Table 11 depicts an analysis of outliers. We noticed an increase

in the absolute number (and consequently, in the percentage of)

outliers from group to group. Furthermore, the sum of the values

of the outliers also increased. This provides more evidence that

fragility increased over time.

Table 11. Outliers Analysis

(three groups of equal size)

#ID N
Number of

Outliers

Percentage of

Outliers

Sum of

Outliers

G1 715 56 7.8% 518.0

G2 715 87 12.2% 1131.4

G3 715 108 15.1% 1590.0

G3G2G1

21

18

15

12

9

6

3

0

C
o

m
m

it
 D

is
p

e
rs

io
n

Figure 8. Boxplots for Commit Dispersion

(three groups of equal size)

Finally, Figure 9 depicts a time-series plot for commit dispersion

that highlights the division of commits into groups. In particular,

we analyzed their distribution using Minitab and we concluded

that none of the three groups follows any known standard

statistical distribution (including common transformations).

2140192617121498128410708566424282141

20

15

10

5

0

Commit Index

C
o

m
m

it
 D

is
p

e
rs

io
n

Commit 1430Commit 715

Mean + 2*StdDev

Mean + 1*StdDev

Mean

Figure 9. Time Series Plot for Commit Dispersion

(three groups of equal size)

4.2.3 Three distinct development periods
Table 12 depicts the descriptive statistics for commit dispersion

when considering the release periods.

Table 12. Descriptive Statistics for Commit Dispersion

(three groups of equal size)

#ID N N% Sum Sum% Mean StDev Min Max Skew Kurt.

G1 888 41.4% 1006.6 22.2% 1.13 2.52 1 14 3.02 9.39

G2 1132 52.8% 3268.6 72.2% 2.89 5.45 1 21 2.07 3.21

G3 125 5.8% 253.2 5.6% 2.03 3.49 1 17 2.14 4.61

An analysis of the data shows that the third group is considerably

smaller than the other two (in terms of the number of commits).

The mean value increases from the first group to the second, and

then decreases from the second to the third.

We performed a quartile analysis and the results shown in Figure

10 indicate that fragility increased from group to group. In

particular, the third quartile increased from 1.71 to 3.0 to 3.33

and the upper whisker increased from 4.0 to 7.5 and then stayed

the same for the third group.

G3G2G1

21

18

15

12

9

6

3

0

C
o

m
m

it
 D

is
p

e
rs

io
n

Figure 10. Boxplots for Commit Dispersion

(per release period)

Table 13 depicts an analysis of outliers. We noticed an increase

in the absolute number and in the percentage of outliers from the

first group to the second group. Furthermore, the sum of the

values of the outliers also increased from the first group to the

second. The third group had only 125 outliers, which corresponds

to 6.4% of all observations in this group. This provides more

evidence that fragility increased over time and that it was more

evident in the second release of the project.

Table 13. Outlier Analysis (per release period)

#ID N
Number of

Outliers

Percentage of

Outliers

Sum of

Outliers

G1 888 63 7.1% 573.7

G2 1132 178 15.7% 2556.0

G3 125 8 6.4% 100.4

Finally, Figure 11 depicts a time-series plot for commit dispersion

that highlights the division of commits into the groups

corresponding to the releases. In particular, we analyzed their

distribution using Minitab and we concluded that none of the

three groups follows any known standard statistical distribution

(including common transformations).

2140192617121498128410708566424282141

20

15

10

5

0

Commit Index

C
o

m
m

it
 D

is
p

e
rs

io
n

Commit 2020Commit 889

Mean + 2*StdDev

Mean + 1*StdDev

Mean

Figure 11. Time Series Plot for Commit Dispersion

(per release period)

5. DISCUSSION
In this paper, we intended to (i) assess the overall feasibility of

our approach, and (ii) discover whether our approach is able to

show symptoms of increasing rigidity and fragility in Maven 1.x.

Regarding (i), we noticed that our approach was feasible, since

we were able to quickly calculate the metrics and obtain the raw

results. At the same time, we had to face some issues. Firstly, we

realized that the data needs to be pre-processed and post-

processed (Section 3.2), otherwise the metrics we proposed get

influenced by dirty data and do not provide reliable results.

Automating this task seems often hard, since the filtering process

operates on contextual information. In the cases where commit

policies are enforced, this task should become easier. Secondly,

we noticed that an in-depth interpretation of the results require

some statistical background on data distributions and forecasting.

On the other hand, the rationale behind such interpretation could

be encapsulated into the approach itself (i.e., it could be

implemented), so that the output is given to the end-user in a

more friendly and straightforward way. Another option would be

to rely on reference values calculated over projects that share a

similar context. Once either option is chosen, it should not be too

complicated to embed such analysis into a continuous integration

process. Regarding (ii), we applied the approach to Maven 1.x

and obtained the results summarized in Table 14. P1 stands for

the first perspective analysis (whole project), P2 stands for the

second one (three commits groups of equal size), and P3 stands

for the third one (release periods). The word increase in the table

header means that there was an increase in the value from G1 to

G2, and also from G2 to G3.

Table 14. Summary of Findings

Trend of

Increase

Increase

in Med.

Increase

in IQR

Increase

in the %

of Outliers

Increase

in Mean

P1 P2 P3 P2 P3 P2 P3 P2 P3

Rigidity    
Fragility     

We did not find many evidences of rigidity in the project. We

only found an increase in the percentage of outliers and in the

mean values, which occurred for both P2 and P3. It caught our

attention however that this happened even though the third

release comprises a very limited number of commits (5.8%). In

the case of fragility, the results were stronger. We found a slight

trend of increase using a linear regression model and we also

found an increase in the interquartile range (for both P2 and P3).

We believe we did not find an increase in the median because

more than 60% of the commits include only a single file, which

results in zero fragility according to our metric. Given the time

series plot of fragility, we already expected to see an increase in

the percentage of outliers and in the mean for P2. Indeed, this

time series plot reveal that fragility increased a lot during the

second release (G2) and started to decrease in the third release

(G3).

6. THREATS TO VALIDITY
Some factors may have influenced the validity of our study. In

the following, we present such factors.

Construct validity. Since the concepts of rigidity and fragility

are broad and complex, it can be that our operationalization do

not accurately represent reality. Furthermore, mismatches can

occur depending on how effectively commit policies are

enforced. In particular, for projects in which different developers

have different commit habits, our metrics may derive misleading

results (just consider one developer that commits his changes

very frequently and another one that only commits his changes by

the end of his working day). To mitigate this issue, automated

commit grouping strategies could be employed to merge related

commits [21].

Internal validity. There is a threat related to the way we

analyzed the project, since different configurations of commit

groupings could possibly generate different results. The pre and

post filtering processes directly influence the input to the

approach, which means that other filtering keywords could

possibly change the results we obtained. Furthermore, it could be

that unknown contextual factors actually caused our metric

values to change over time, thus disconnecting them from the

purpose of detecting symptoms of degrading design.

Conclusion validity. Despite the acknowledged degradation of

Maven’s 1 design, we found no strong evidence of increasing

rigidity throughout the project’s history. In fact, it can be that the

design did not actually suffer from rigidity at all. We sent a

questionnaire to the developers listed in the “Maven Team”,

including the responsible for the redesign, to hear their opinion

on the reasons the design degraded. We received answers from

only four developers. They confirmed the design degradation, but

they informed that they did not directly contribute to the redesign

process. Unfortunately, we were not able to get the feedback

from the key developer of Maven 1.x that was the actual main

responsible for the redesign.

External validity. The findings of this study are limited to the

evaluation of a single software system, thus constraining the

external validity of this study. In fact, the goal of this study was

to perform a first assessment of the feasibility and effectiveness

of the approach.

7. RELATED WORK
The phenomenon of design degradation has been noted since the

early days of Software Engineering. Along more than twenty

years (1974-1992), Lehman and colleagues [16] proposed the

laws (or rather empirical hypotheses) of software evolution,

being the first ones specifically concerned with continuing

change and increasing complexity. In 1992, inspired by the

second law of thermodynamics, Jacobson [12] coined the term

software entropy to refer to the increases in software disorder

(entropy) over time. In 1994, Parnas [23] introduced the idea of

software aging, by arguing that programs get old, just like people.

The phenomenon of design rigidity has also been studied under

the name of ripple effect. An early work on software ripple effect

is that of Yau and colleagues [28], who presented a maintenance

framework to cope with program modifications. Wilkie and

Kitchenham [27] investigated whether classes with high CBO

(Coupling Between Objects) metric values are more likely to be

affected by change ripple effects. Similarly, Briand and

colleagues [4] investigated the use of coupling measures and

derived decision models for identifying classes likely to suffer

from ripple effect. Interestingly, these two last studies revealed

that highly structurally coupled classes did not always cause

significant ripple effects. Therefore, we believe that our proposed

rigidity metric may complement such existing approaches. For

instance, the tool IBM Structural Analysis for Java (SA4J) tool

offers an interactive visualization named “What If” that

highlights ripple effects based on existing structural dependencies

between classes (Figure 12). Conceptual coupling metrics, which

are calculated based on semantic information obtained from

identifiers and comments in source code, have also been

employed to detect ripple effect [14].

Design fragility has also been studied under the name of Shotgun

Surgery [8]. We highlight the work of Lanza and colleagues [15,

19] in this area, who proposed mechanisms called “detection

strategies” that combine different code metrics to detect code

smells. The free iPlasma tool [18], developed by Lanza and the

LOOSE Research Group, implements the Shotgun Surgery

detection strategy (Figure 13) by parsing the source code of Java

and C# projects. Gîrba and colleagues [10] proposed a similar

approach to detect this same smell based on the identification of

classes that have had their implementation changed together

while maintaining their interfaces intact. While all these studies

depend on the actual code, our proposed metric relies on commit

metadata obtained through the parsing of the log files generated

by the version control system. Therefore, the calculation of our

metric is fast and does not depend on the programming language

in which the software was written.

Figure 12. IBM Structural Analysis for Java

(“What if” Visualization)

Figure 13. Shotgun surgery detection strategy [15, 19]

Finally, in a more general context, Gall and colleagues [9] mined

CVS repositories, collected logical dependencies (a.k.a.

evolutionary dependencies [22]), and showed that design flaws

such as God Classes [8] and Spaghetti Code [7] could be

discovered without analyzing the actual source code. D’Ambros

and colleagues developed an interactive visualization tool called

Evolution Radar [6] that displays logical dependencies among

modules of a software system. They showed that their tool was

able to detect design issues that were not detectable by means of

static analysis of code.

8. CONCLUSIONS AND FUTURE WORK
Mining-based approaches leverage historical data stored in

software repositories to uncover rich evolutionary information. In

this study, we proposed an approach that relies on a set of

metrics that operate on commit metadata to assess design

degradation. The results of the evaluation involving the core of

the Apache Maven 1.x showed that our approach is feasible and

that the project suffered from increasing fragility. Such outcome

suggests that mining-based approaches should be further

developed and enhanced to complement existing structural

analysis techniques, since the two different approaches capture

different dimensions of software evolution. As future work, we

believe that the approach should be further evaluated and refined

based on the analysis of other projects. Gathering feedback from

developers using qualitative research methods seems essential for

a thorough evaluation of the approach. Furthermore, it would be

interesting to compare the metric values for Maven 1.x and

Maven 2.x, since the latter intended to avoid known problems

from Maven 1.x and provide a “stable basis for future

development”. Finally, building tools to automate the metrics

calculation and results interpretation is essential for real-world

adoption. We foresee some research opportunities:

Technical Debt. Since our approach quantifies rigidity and

fragility, it could be employed in the calculation of technical debt

(design debt) [26].

Design immobility. Our approach could be extended to calculate

design immobility, which is another design smell introduced by

Martin [20] (and long known by the software development

community).

Candidates for refactoring. The number of times each file is

committed seem to be a good heuristic for automatically

detecting good refactoring candidates. For instance, Figure 14

shows the number of commits per file in the core of Maven 1.

The right-hand side of the chart point to highly mutable files that

are natural candidates for refactoring, since they were committed

much more often as compared to other files of the same system.

Figure 14. Number of commits per file in Maven

9. ACKNOWLEDGEMENTS
Gustavo Oliva receives individual grant from the CHOReOS EC

FP7 project. Marco Gerosa receives individual grant from CNPq.

Igor Steinmacher and Igor Wiese thank Fundação Araucária for

its Financial Support.

10. REFERENCES
[1] Arnold, R.S. 1996. Software Change Impact Analysis. IEEE

Computer Society Press.

[2] Bevan, J. et al. 2005. Facilitating software evolution research with

kenyon. SIGSOFT Softw. Eng. Notes. 30, 5 (Sep. 2005), 177–186.

[3] Booch, G. et al. 2007. Object-Oriented Analysis and Design with

Applications. Addison-Wesley Professional.

[4] Briand, L.C. et al. 1999. A Unified Framework for Coupling

Measurement in Object-Oriented Systems. IEEE Trans. Softw. Eng.

25, (Jan. 1999), 91–121.

[5] Brooks, F.P. 1995. The Mythical Man-Month: Essays on Software

Engineering. Addison-Wesley Professional.

[6] D’Ambros, M. et al. 2009. Visualizing Co-Change Information with

the Evolution Radar. IEEE Trans. Software Eng. 35, (2009), 720–

735.

[7] Foote, B. and Yoder, J.W. 1999. Pattern Languages of Program

Design. Addison-Wesley Professional.

[8] Fowler, M. 1999. Refactoring: Improving the Design of Existing

Code. Addison-Wesley.

[9] Gall, H. et al. 2003. CVS Release History Data for Detecting

Logical Couplings. Proceedings of the 6th International Workshop

on Principles of Software Evolution (Washington, DC, USA, 2003),

13–.

[10] Gîrba, T. et al. 2007. Using concept analysis to detect co-change

patterns. 9th International Workshop on Principles of Software

Evolution (IWPSE 2007), in conjunction with the 6th ESEC/FSE

joint meeting, Dubrovnik, Croatia, September 3-4, 2007 (2007),

83–89.

[11] Gurp, J. van et al. 2005. Design preservation over subsequent

releases of a software product: a case study of Baan ERP: Practice

Articles. J. Softw. Maint. Evol. 17, (Jul. 2005), 277–306.

[12] Jacobson, I. 1992. Object-Oriented Software Engineering: A Use

Case Driven Approach. Addison-Wesley Professional.

[13] Kagdi, H. et al. 2007. A survey and taxonomy of approaches for

mining software repositories in the context of software evolution. J.

Softw. Maint. Evol. 19, 2 (Mar. 2007), 77–131.

[14] Kagdi, H. et al. 2010. Blending Conceptual and Evolutionary

Couplings to Support Change Impact Analysis in Source Code.

Reverse Engineering (WCRE), 2010 17th Working Conference on

(2010), 119–128.

[15] Lanza, M. and Marinescu, R. 2006. Object-oriented Metrics in

Practice: Using Software Metrics to Characterize, Evaluate, and

Improve the Design of Object-Oriented Systems. Springer.

[16] Lehman, M. et al. 1997. Metrics and Laws of Software Evolution–

The Nineties View. Proceedings IEEE International Software

Metrics Symposium (METRICS’97) (Los Alamitos CA, 1997), 20–

32.

[17] Levine, J.M. and Moreland, R.L. 1990. Progress in Small Group

Research. Annual Review of Psychology. 41, (1990), 585–634.

[18] Marinescu, C. et al. 2005. iPlasma: An Integrated Platform for

Quality Assessment of Object-Oriented Design. Proceedings of the

21st IEEE International Conference on Software Maintenance

(ICSM 2005) - Industrial and Tool volume (2005), 77–80.

[19] Marinescu, R. 2004. Detection Strategies: Metrics-Based Rules for

Detecting Design Flaws. Proceedings of the 20th IEEE

International Conference on Software Maintenance (Washington,

DC, USA, 2004), 350–359.

[20] Martin, R.C. and Martin, M. 2006. Agile Principles, Patterns, and

Practices in C#. Prentice Hall.

[21] Oliva, G.A. et al. 2012. Preprocessing Change-Sets to Improve

Logical Dependencies Identification. Proceedings of the 6th

International Workshop on Software Quality and Maintainability

(Szeged, Hungary, 2012).

[22] Oliva, G.A. et al. 2011. Towards a classification of logical

dependencies origins: a case study. Proceedings of the 12th

International Workshop on Principles of Software Evolution and

the 7th annual ERCIM Workshop on Software Evolution (Szeged,

Hungary, 2011), 31–40.

[23] Parnas, D.L. 1994. Software aging. Proceedings of the 16th

international conference on Software engineering (Sorrento, Italy,

1994), 279–287.

[24] Pressman, R. 2009. Software Engineering: A practitioner’s

approach. McGraw-Hill.

[25] Santana, F. et al. 2011. XFlow: An Extensible Tool for Empirical

Analysis of Software Systems Evolution. Proceedings of the VIII

Experimental Software Engineering Latin American Workshop (Rio

de Janeiro, Brazil, 2011).

[26] Seaman, C. and Guo, Y. 2011. Chapter 2 - Measuring and

Monitoring Technical Debt. M.V. Zelkowitz, ed. Elsevier. 25–46.

[27] Wilkie, F.G. and Kitchenham, B.A. 2000. Coupling measures and

change ripples in C++ application software. J. Syst. Softw. 52, (Jun.

2000), 157–164.

[28] Yau, S.S. et al. 1978. Ripple effect analysis of software

maintenance. The IEEE Computer Society’s Second International

Computer Software and Applications Conference (Nov. 1978), 60–

65.

	1. INTRODUCTION
	2. DESIGN DEGRADATION
	2.1 Rigidity
	2.2 Fragility

	3. RESEARCH METHOD
	3.1 The Subject System: Apache Maven 1
	3.2 Main Steps
	3.3 Supporting Tools

	4. RESULTS
	4.1 Rigidity
	4.1.1 Whole development period
	4.1.2 Three commit groups of equal size
	4.1.3 Three distinct development periods

	4.2 Fragility
	4.2.1 Whole development period
	4.2.2 Three commit groups of equal size
	4.2.3 Three distinct development periods

	5. DISCUSSION
	6. THREATS TO VALIDITY
	7. RELATED WORK
	8. CONCLUSIONS AND FUTURE WORK
	9. ACKNOWLEDGEMENTS
	10. REFERENCES

