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ABSTRACT 

Design degradation has long been assessed by means of structural 

analyses applied on successive versions of a software system. 

More recently, repository mining techniques have been developed 

in order to uncover rich historical information of software 

projects. In this paper, we leverage such information and propose 

an approach to assess design degradation that is programming 

language agnostic and relies almost exclusively on commit 

metadata. Our approach currently focuses on the assessment of 

two particular design smells: rigidity and fragility. Rigidity refer 

to designs that are difficult to change due to ripple effects and 

fragility refer to designs that tend to break in different areas 

every time a change is performed. We conducted an evaluation of 

our approach in the project Apache Maven 1 and the results 

indicated that our approach is feasible and that the project 

suffered from increasing fragility.   

Categories and Subject Descriptors 

D.2.7 [Software Engineering]: Distribution, Maintenance, and 

Enhancement – reestructuring, reverse engineering, and 

reengineering; version control. 

General Terms 

Measurement, Design, Experimentation. 

Keywords 

Design degradation, software metrics, commit metadata, version 

control systems, mining software repositories. 

1. INTRODUCTION 
The volatility of requirements and the wish for new 

functionalities impose constant pressure for changes in software 

systems. The need for end-user satisfaction and the great amount 

of investment leave no room for the software to be largely 

reworked each time a requirement changes. Indeed, software that 

is not tolerant to modifications is doomed to abandonment or 

replacement [3]. 

Although it is clear that software systems need to be able to 

evolve, such ability tends to decrease over time [5, 20]. Despite 

the variety of factors that dictate software evolvability, software 

design has always been in the spotlight. In particular, a great 

effort has been devoted to the problem of software design 

degradation (a.k.a. design erosion) [12, 16, 20, 11]. Degradation 

occurs as the elegancy of the system modules becomes lost in the 

form of structural patches and violations of architectural rules 

[20]. In this scenario, a dense network of interdependencies 

among modules commonly emerges, resulting in code that is 

difficult to change, not reusable, and that does not communicate 

its intention [7].  As a result, software evolves increasingly 

slower and its maintenance cost turns to account for a large 

portion of the total production costs [5, 24]. 

Researchers and practitioners have long employed static analysis 

techniques to assess design degradation [1, 4, 10, 14, 15, 18, 27]. 

Such techniques often rely on an evaluation of successive 

versions (e.g., revisions, snapshots, or releases) of a software 

system over time. While these techniques have acknowledged 

benefits, they also have some drawbacks. Firstly, the input to the 

static analysis techniques is the source code. Consequently, part 

of the process necessarily includes parsing such code, which 

implies that the analysis is not programming language agnostic, 

i.e., it depends on the specific language in which the subject 

system was written. This can be a problem itself, since analyzing 

codebases written in different languages may require different 

tools and thus lead to more complex analysis processes. This 

should be true for a company that needs to maintain different 

projects written in different languages. Another example includes 

software projects that have components written in different 

languages, such as a service-oriented system in which 

components are written in different languages and exposed as 

web services. 

More recently, software repository mining researchers have 

developed methods, techniques, and tools to uncover rich 

historical information stored in software repositories, such as 

version control systems (VCSs), bug-tracking systems, and 

communication archives (e.g., discussion forums and mailing 

lists) [13]. In order to complement existing static techniques and 

deal with their drawbacks, we conceived an approach to asses 

design degradation that relies almost exclusively on commit 

metadata. Some advantages of our approach include: (i) it is 

programming language agnostic; (ii) its computation is 

lightweight; and (iii) its results are based on the actual history of 

the project. The only requirement is the existence of a VCS (e.g., 

CVS, Subversion, Git, Mercurial) with enough system 

development history. 

As a first endeavor, our approach focuses on the assessment of 

two particular design degradation smells introduced by Martin 
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[20]: rigidity and fragility. Rigidity refers to the tendency for 

changes in a module to cause a cascade of subsequent changes in 

the dependent modules. In turn, fragility refers to the tendency 

for software to break in many different places every time a single 

change is performed. The reason our approach relies on commit 

metadata is because the definitions of rigidity and fragility are 

intrinsically connected to the notion of change results. More 

specifically, in our approach we define metrics that operate on 

commit metadata to measure rigidity and fragility. Furthermore, 

since the notion of degradation embeds a temporal aspect, we 

calculate such metrics for every commit included in the 

development period and analyze their statistical distribution. If 

we recognize an increase in the values of such metrics, we then 

infer that design rigidity and fragility are also increasing (i.e., the 

design is degrading). Therefore, our hypothesis is that 

information mined from commit metadata is able to reveal design 

degradation. 

In this paper, we introduce our approach and evaluate it by means 

of an exploratory study. The exploratory study concerned 

applying the approach to the core of Apache Maven 1.x, whose 

design degraded so intensively that the development team 

decided to perform a complete rewrite of the project, which led 

to Apache Maven 2.0. The goal of such study were twofold:  (i) 

assess the overall feasibility of our approach, and (ii) discover 

whether our approach is able to show symptoms of increasing 

rigidity and fragility in Maven 1.x. 

The remainder of this paper is organized as follows. In Section II, 

we introduce the concept of design degradation and present our 

set of metrics. In Section III, we present the research method we 

conducted in our study. In Section IV, we present the results of 

such study. In Section V, we discuss the results we obtained. In 

Section VI, we present the threats to the validity of our study. In 

Section VII, we discuss related work. Finally, in Section VIII we 

state our conclusions and plans for future work. 

2. DESIGN DEGRADATION 
Martin argued that if dependencies among modules are not 

adequately managed, then the software starts to rot, just like “a 

piece of bad meat” [20]. In this scenario, code becomes difficult 

to be maintained and controlled, the reuse rate and testability 

decrease, and the effort required to implement new features 

continually increases. When a design starts to reveal such 

symptoms, it is said to be degrading or, more informally, rotting. 

Although similar to the code smells introduced by Fowler [8], 

these smells are defined at a higher level of abstraction and they 

impregnate all or great part or the software structure (instead of a 

localized piece of code). 

Martin coined some terms to denote design smells that often 

appear throughout software development: rigidity, fragility, 

immobility, and viscosity. In the following subsections, we 

describe the two particular design smells we are going to deal 

with in this paper: rigidity and fragility. For each of the concepts, 

we show the metric we conceived to operationalize it and the 

rationale behind such operationalization. 

2.1 Rigidity 
The definition of rigidity given by Martin is as follows. Rigidity 

is the tendency for software to be difficult to change, even in 

simple ways. A design is rigid if a single change causes a 

cascade of subsequent changes in dependent modules. The more 

modules that must be changed, the more rigid the design is. Most 

developers have faced this situation in one way or another." 

[20]. 

Operationalization of Concept. Software design presents the 

symptom of rigidity when a single change requires a cascade of 

subsequent changes in dependent modules. In other words, the 

more modules one needs to change, the more rigid the design is. 

Therefore, it becomes natural to measure the intensity of rigidity 

by calculating the number of modified modules per atomic 

software change. We operationalize that by calculating the 

number of changed files per commit, and we refer to this measure 

as commit density. 

2.2 Fragility 
The definition of fragility given by Martin is as follows. Fragility 

is the tendency of a program to break in many different places 

when a single change is made. Often, the new problems are in 

areas that have no conceptual relationship with the area that 

was changed. Fixing those problems leads to even more 

problems, and the development team begins to resemble a dog 

chasing its tail [20]. 

Operationalization of Concept. Software design presents the 

symptom of fragility when the software starts to break in many 

different places every time a single change is performed. In other 

words, measuring fragility implies identifying and reasoning 

about the places where changes took place. Therefore, we 

operationalize fragility by calculating the distance (in the 

directory tree) among file paths included in a commit. We refer 

to this measure as commit dispersion. 

Consider the example depicted in Figure 1. In this figure, shaded 

nodes denote all existing directories, leaf nodes denote all source 

code files in the repository tree, and nodes X, Y and Z denote the 

files that were changed in a specific commit. To calculate commit 

dispersion, we first calculate the distance between each pair of 

files in the commit. For example, the distance from Y to Z is 6: 2 

steps to go from Y to A, plus 4 steps to go from A to Z. Commit 

dispersion is then given by the average of the distances, i.e., the 

sum of pair-wise distances (X to Y, X to Z, and Y to Z) divided 

by the number of pairs (3). The result for this example is (3 + 7 + 

6) / 3 = 5.333. 

 

Figure 1. Commit dispersion calculation example 

In Listing 1, we show a pseudocode that describes the algorithm 

for calculating fragility: 

Routine: calculateCommitDispersion 

Parameters: commit 

01. totalDistance  0 

02. commitDispersion  0 

03. filePairs  0 

04. numFiles  commit.getNumFiles() 



 

 

05. for (i = 0; i < numFiles; i++) 

06.   for (j = i + 1; j < numFiles; j++) 

07.     //Obtains the leaf nodes       

08.     lfNodeA  commit.getFile(i) 

09.     lfNodeB  commit.getFile(j) 

10.     //Obtains the Lowest Common Ancestor(LCA) 

11.     lca  obtainLCA(lfNodeA, lfNodeB 

12.     //Calculates distance between leaf nodes 

13.     distance  calcDist(lfNodeA,lfNodeB,lca) 

14.     totalDistance  totalDistance + distance 

15.     filePairs  filePairs + 1 

16.   end-for 

17. end-for 

18. //Calcs avgDistance between nodes in commit 

19. if (filePairs > 0) 

20.   commitDispersion  totalDistance/filePairs 

21. end-if 

22. return commitDispersion  

Listing 1. Commit Dispersion Algorithm 

The distance between two leaf nodes (line 13) is calculated by 

summing the distance of each node to their common lowest 

ancestor node (LCA) in the tree. Clearly, the LCA is always a 

directory node. 

3. RESEARCH METHOD 
In this section, we describe the exploratory study we conducted.  

We first searched for a software system whose design presented 

acknowledged symptoms of rigidity and fragility. After having 

found such system, we mined its version control system using 

XFlow [25] and then calculated the metrics we conceived for 

measuring design degradation. Our goal was to investigate the 

feasibility of our approach and check whether we would indeed 

find an increase in the metric values throughout the considered 

development period of the system. 

3.1 The Subject System: Apache Maven 1 
For this study, we needed a software project that satisfied all of 

the following requirements: (i) to present evident symptoms of 

design degradation; (ii) to be hosted on a Subversion (SVN) 

repository with anonymous read access; (iii) non-academic; (iv) 

to have a non-small development history. The first requirement 

arises from the very nature of the goal of our study. The second 

requirement exists due to practical constraints on the tools at our 

disposal. The third requirement was raised because we wanted to 

evaluate the metrics on a real-world software project, which 

could be either an industrial software or a free/libre open source 

software (FLOSS). The fourth and last requirement exists 

because we want to conduct our evaluation on a software system 

with enough development history. 

The project we selected was (the core of) Apache Maven 1.x. 

Maven is a tool aimed at supporting project management and 

providing build automation. Although Maven functionalities are 

roughly similar to those of the software Ant, it is based on 

different concepts. In particular, Maven relies on the concept of 

Project Object Model (POM), and thus is able to manage a 

project's build, reporting, and documentation from a centralized 

piece of information. Maven is currently an Apache Software 

Foundation (ASF) top-level project. 

Regarding the first requirement, Apache Maven 1.x evolved until 

a complete rewrite was needed due to signs of design 

degradation. Indeed, in the Maven 1.x project website, the 

authors wrote that “the latest version of Maven is the 2.0 tree, 

which is a complete rewrite of the original Maven application.” 

In the release notes of Maven 2.0, there is also a similar 

statement made by the authors “Maven 2.0 is a rewrite of the 

popular Maven application to achieve a number of new goals, and 

to provide a stable basis for future development.” We surveyed 

few Maven developers by email and the answers received reveal 

that Maven 1.x was monolithic and hard to maintain. A developer 

said it was “unmaintainable” and another one highlighted that 

“build scripts were getting too complex”. They also reported that 

rigidity and fragility highly influenced Maven redesign. 

Regarding the second requirement, Apache Maven 1.x was 

hosted in a Subversion code repository. Regarding the third 

requirement, Maven was (and has been) maintained by the 

Apache Software Foundation (ASF), which is a non-profit 

organization that has developed nearly a hundred distinguishing 

software projects that cover a wide range of technologies and 

address several problems from diverse contexts. With relation to 

the fourth and last requirement, we used XFlow to mine history 

information from the project and we discovered that it involved 

37 developers who performed 6,753 commits in total. The 

development history encompassed approximately 6 years (from 

February 2002 to February 2008). In particular, according to the 

categorization proposed by Levine and Moreland [17], small 

teams are groups of 5 to 15 individuals. Hence, in light of such 

categorization, the selected project fully satisfies the pre-

established criterion of development team size. 

3.2 Main Steps 
In this subsection, we describe the main steps we followed in our 

study. 

Data collection and pre-filtering. Interacting with remote 

version control systems is usually both troublesome and slow. 

Furthermore, to make things even more complicated, ASF has a 

single SVN repository that hosts all of its projects and comprises 

more than 1.3 million commits. Given these two aspects, we 

decided to mirror the whole ASF SVN repository and then 

interact with it locally. After having finished the time-consuming 

mirroring process, we used XFlow to parse Maven 1 commits and 

store its metadata into a MySQL database. Since we are 

interested in evaluating design degradation, we only considered 

java files when doing the commit parsing (i.e., all other kinds of 

files were discarded). Commits having no java files were simply 

discarded. Furthermore, we were interested in all commits done 

in branches, tags, and trunks. Therefore, we considered java files 

inside the root folder “/maven/maven-1/core”. As a final remark, 

we highlight that all these filters were easily applied on-the-fly 

during data collection thanks to the flexibility provided by XFlow 

[25]. 

Post-filtering. The approach we conceived to calculate rigidity 

and fragility operates directly on commit metadata. 

Consequently, we needed to exclude commits that referred 

crosscutting changes, such as applying or changing software 

license, doing repository merge operations, and fixing code 

styling issues. Hence, after data collection, we applied some 

heuristics to exclude these non-wanted commits. For this 

particular project, we discarded commits that included the words 

“cvs2svn’, “ASL”, “license header”, and “m2 code style” in their 

comments. We also discarded those commits whose comments 

started with “Initial revision”. We came up with this set of 

keywords by applying the following strategy. We first discovered 

which were the largest commits (in terms of commit density), 



 

 

selected three to five of those, and then manually inspected their 

metadata (focusing on the list of changed files and the author 

comments). As a result, we conceived a filtering keyword and 

tested it to check whether it was able to select the commits we 

wanted. In case it selected more commits than it should, we 

inspected the additional commits and adjusted the keyword 

accordingly. In fact, in some situations the keyword spot more 

commits than we had initially identified. Once the keyword was 

deemed ok, we repeated the whole process until only desired 

commits were left. We emphasize that we were not able to come 

up with a simple keyword to capture commits that referred to 

repository merge operations. In such case, the strategy was to 

discover all commits that included the word “merge” in their 

comments, inspect their metadata, and decide which ones were 

actually related to repository merge operations. 

Data analysis perspectives. Once we finished the data collection 

process, we defined which data analysis perspectives we would 

employ. After reasoning about the project characteristics, we 

decided to follow a top-down approach by (i) first analyzing the 

development period as a whole, then (ii) diving the development 

period into three slots with each containing the same amount of 

commits, and finally (iii) dividing the development period into 

three slots with each referring to a major release of the software. 

Given the Maven release history depicted in Table 1, we defined 

the three perspectives as follows: 

- Whole development period: This period goes from the start of 

development (19/02/2002) until the end of development 

(03/02/2008). 

Table 1. Apache Maven Release History 

Version Date (dd/mm/yyyy) 

[Start of Development] 19/02/2002 

Maven 1.0 Beta 5 12/08/2002 

Maven 1.0 Beta 6 20/08/2002 

Maven 1.0 Beta 7 30/09/2002 

Maven 1.0 Beta 8 12/02/2003 

Maven 1.0 Beta 9 08/04/2003 

Maven 1.0 Beta 10 14/07/2003 

Maven 1.0 RC 1 29/09/2003 

Maven 1.0 RC 2 23/03/2004 

Maven 1.0 RC 3 19/05/2004 

Maven 1.0 RC 4 28/06/2004 

Maven 1.0 13/07/2004 

Maven 1.0.1 10/11/2004 

Maven 1.0.2 07/12/2004 

Maven 1.1 Beta 1 17/06/2005 

Maven 1.1 Beta 2 09/09/2005 

Maven 1.1 Beta 3 02/08/2006 

Maven 1.1 RC 1 11/05/2007 

Maven 1.1 25/06/2007 

[End of Development] 03/02/2008 
 

- Three commit groups of equal size: The data collection 

procedure resulted in 2145 commits. Hence, the first commit 

group comprised commits 1-715, the second commit group 

comprised commits 716-1430, and the last commit group 

comprised commits 1431-2145. In this case, the goal was to 

divide all the contribution volume chronologically into three 

equal-sized blocks and check whether the metrics values would 

change from block to block.  

- Three distinct development periods: The first development 

period goes from the start of development (19/02/2002) until the 

release of Maven 1.0 Beta 5 (12/08/2002). The second 

development period goes from the day after the release of Maven 

1.0 Beta 5 (20/02/2002) until the release of Maven 1.0.2 

(07/12/2004). The last development period goes from the day 

after the release of Maven 1.0.2 (08/12/2004) until the end of 

development (03/02/2008). In this case, we the goal was to check 

whether metric values would change from release to release. 

Data analysis procedures. We organized data according to each 

of the aforementioned analysis perspectives and imported it into 

MS Excel and Minitab. From these tools, we calculated 

descriptive statistics, plotted graphs, and discovered trends. In 

particular, we tried to understand how our measures of rigidity 

and fragility changed over time, i.e., we studied their statistical 

distribution. 

3.3 Supporting Tools 
XFlow. Mining repositories studies usually require extensive tool 

support due to large and complex data that need to be collected, 

processed, and analyzed [2]. XFlow is an extensible and 

interactive open source tool whose general goal is to provide a 

comprehensive analysis of software projects evolution process by 

mining software repositories and taking into account both 

technical and social aspects of the developed systems [25]. 

Rigidity and Fragility Calculator. We implemented a Java 

standalone prototype tool to calculate rigidity and fragility for 

every commit of the subject system. 

Microsoft Excel, Minitab, and R. These tools supported all 

statistical analyses we performed. The statistical tests were 

performed in Minitab (except for the Augmented Dickey–Fuller 

test and the Powerlaw test, which were available only in R). 

4. RESULTS 
In this section, we show the results we obtained by applying our 

approach to the core of the Apache Maven 1 project. 

4.1 Rigidity 
 

4.1.1 Whole development period 
Table 2 depicts the descriptive statistics for commit density when 

considering the whole development period. 

Table 2. Descriptive Statistics for Commit Density 

N Mean StDev Min Q1 Med. Q3 Max Skew Kurt. 

2145 2.60 5.46 1 1 1 2 79 7.81 78.42 
 

Given the values of Q1 and Q3, it follows that the lower and 

upper whiskers of the data corresponding boxplot are 1 and 3 

respectively. In other words, usual commit density values range 

from 1 to 3. Indeed, in terms of cumulative percentage, commits 

with 1, 2, and 3 files comprise 86% of all data. This can be easily 

seen in the frequency histogram for commit density depicted in 

Figure 2.  

We tried to identify the data distribution by performing goodness 

of fit tests against the following known distributions: Normal, 

Normal after Box-Cox Transformation, Lognormal, 3-Parameter 

Lognormal, Exponential, 2-Parameter Exponential, Weibull, 3-

Parameter Weibull, Smallest Extreme Value, Largest Extreme 

Value, Gamma, 3-Parameter Gamma, Logistic, Loglogistic, 3-



 

 

Parameter Loglogistic, and Powerlaw. The only good fit we 

found was for the PowerLaw distribution (as somehow suggested 

by the histogram depicted in Figure 2). In all other cases, we 

could always reject the null-hypothesis with high confidence. 
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Figure 2. Histogram for Commit Density 

Figure 3 shows a time-series plot for commit density.  Analyzing 

the distribution, we noticed that 80.7% values are below mean 

(first threshold), 95.6% are below mean + 1*StdDev (second 

threshold), and that 97.4% of the values are below mean + 

2*StdDev (third threshold). It is interesting to notice, however, 

that most part of the values above the third threshold occur in the 

second-half portion of the commits (i.e., from commit 1073 

onwards). 

2140192617121498128410708566424282141

80

70

60

50

40

30

20

10

1

Commit Index

C
o

m
m

it
 D

e
n

s
it

y

Mean + 2*StdDev

Mean + 1*StdDev

Mean

 

Figure 3. Time Series Plot for Commit Density 

We performed a trend analysis for commit density and tried four 

different regression models: linear, quadratic, exponential 

growth, and s-curve (Pearl-Reed logistic). For each model, we 

computed three accuracy measures: Mean Absolute Percentage 

Error (MAPE), Mean Absolute Deviation (MAD), and Mean 

Squared Deviation (MSD). The results we obtained were as 

follows: 

Table 3. Trend Analysis for Rigidity 

#Trend Model MAPE MAD MSD 

Linear 116.22% 2.24 29.74 

Quadratic 115.99% 2.24 29.69 

Exponential 53.47% 1.75 30.80 

S-Curve 39.61% 1.68 31.46 
 

By analyzing the results, we notice that the S-curve model had 

the best fit (even though it showed the worst MSD). In this curve, 

the first commit scored 1.14 and the last one scored 1.33, which 

indicates a negligible trend of increase for the commit density 

metric. 

Finally, we ran the Augmented Dickey-Fuller test, which tests for 

a unit root in a time series sample. The results are summarized 

below and indicate that we can reject the null hypothesis, which 

states that the time series has a unit root. In other words, 

according to the test, the sample can be deemed trend-stationary. 

Augmented Dickey-Fuller Test 

data:  rigidity 

Dickey-Fuller = -12.3017, Lag order = 12,  

p-value = 0.01 

alternative hypothesis: stationary 

4.1.2 Three commit groups of equal size 
Table 4 depicts the descriptive statistics for commit density when 

considering three commit groups of equal size. 

Table 4. Descriptive Statistics for Commit Density  

(three groups of equal size) 

#ID N Sum Sum% Mean StDev Min Max Skew Kurt. 

G1 715 1643 29.5% 2.30 4.13 1 52 6.70 56.71 

G2 715 1757 31.6% 2.46 4.92 1 72 8.77 97.11 

G3 715 2166 38.9% 3.03 6.92 1 79 6.84 57.68 
 

An analysis of the data shows that the sum of the number of files 

per commit increases from group to group. Consequently, there is 

a minor increase in the mean values (2.30, 2.46, 3.03). 

Furthermore, the maximum value also increases (52, 72, 79). 

However, from the perspective of rigidity analysis, these results 

do not mean much given the high standard deviation values.  

We performed a quartile analysis (Table 5) and we noticed that 

the quartile values and upper whisker were identical for the three 

groups. On the other hand, we noticed an increase in the number 

of outliers from group to group (we say that a value is an outlier 

when it exceeds the upper whisker). Furthermore, the sum of the 

values of the outliers also increased. Therefore, although we did 

not find any striking evidence for the increase of rigidity in the 

previous analyses, this last result shows that at least the 

occurrence of large commits increased over time. 

Table 5. Quartile Analysis for Commit Density 

(three groups of equal size) 

#ID N Q1 Med. Q3 
Upper 

Whisker 
#Outliers %Outliers 

Sum of  

Outliers 

G1 715 1 1 2 3 96 13.4% 858 

G2 715 1 1 2 3 99 13.8% 925 

G3 715 1 1 2 3 105 14.7% 1358 
 

Finally, Figure 4 depicts a time-series plot for commit density 

that highlights the division of commit into groups. 

4.1.3 Three distinct development periods 
Table 6 depicts the descriptive statistics for commit density when 

considering the release periods. 

Table 6. Descriptive Statistics for Commit Density 

(per release period) 

#ID N N% Sum Sum% Mean StDev Min Max Skew Kurt. 

G1 888 41.4% 1952 35.1% 2.20 3.81 1 52 7.08 64.67 

G2 1132 52.8% 3218 57.8% 2.84 6.40 1 79 7.58 69.63 

G3 125 5.8% 396 7.1% 3.17 5.97 1 38 3.91 15.95 
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Figure 4. Time Series Plot for Commit Density 

(three groups of equal size) 
 

An analysis of the data shows that the third group is considerably 

smaller than the other two (in terms of the number of commits). 

Despite this difference, we again notice a minor increase in the 

mean values (2.20, 2.84, 3.17) from group to group. As in the 

previous section, these results do not mean much given the high 

standard deviation values.  

We performed a quartile analysis and the results are summarized 

in Table 7. As in the previous section, quartile values and upper 

whisker were identical for the three groups. On the other hand, 

despite the different sizes of the groups, we noticed a percentage 

increase of outliers from group to group. Therefore, although we 

did not find any striking evidence for the increase of rigidity in 

the previous analyses, this last result again shows that at least the 

occurrence of large commits increased (proportionally) over 

time. 

Table 7. Outlier Analysis (per release period)  

#ID N Q1 Med. Q3 
Upper  

Whisker 
#Outliers %Outliers 

Sum of 

Outliers 

G1 888 1 1 2 3 114 12.8% 964 

G2 1132 1 1 2 3 167 14.8% 1921 

G3 125 1 1 2 3 19 15.2% 256 
 

Finally, Figure 5 depicts a time-series plot for commit density 

that highlights the division of commits according to the release 

periods we previously defined. 
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Figure 5. Time Series Plot for Commit Density  

(per release period) 

4.2 Fragility 

4.2.1 Whole development period 
Table 8 depicts the descriptive statistics for commit dispersion 

when considering the whole development period. 

Table 8. Descriptive Statistics for Commit Dispersion 

N Mean StDev Min Q1 Med. Q3 Max Skew Kurt. 

2145 2.11 4.44 0 0 0 2 21 2.63 6.51 
 

Given the values of Q1 and Q3, it follows that the lower and 

upper whiskers of the data corresponding boxplot are 0 and 5 

respectively. In other words, usual commit dispersion values 

range from 0 to 5. Indeed, in terms of cumulative percentage, 

commits with dispersion from 0 to 5 comprise 87% of all data. 

This can be easily seen in the frequency histogram for commit 

dispersion depicted in Figure 6.  

As in the case of rigidity, we tried to identify whether commit 

dispersion followed any known statistical distribution. In all the 

tests we performed, we could always reject the null-hypothesis. 

In other words, commit dispersion did not fit any known standard 

statistical distribution. 
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Figure 6. Histogram for Commit Dispersion 

Figure 7 shows a time-series plot for commit dispersion.  

Analyzing the distribution, we concluded that 76.8% of the 

values are below mean (first threshold), 88.0% are below mean 

+ 1*StdDev (second threshold), and that 92.6% of the values 

are below mean + 2*StdDev (third threshold). Interestingly, 

commit dispersion becomes much higher from commit 1233 

onwards. 
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Figure 7. Time Series Plot for Commit Dispersion 



 

 

We performed a trend analysis for commit dispersion and tried 

the same regression models from Section 4.1 (except for 

exponential growth, which requires all values to be positive). The 

results we obtained were as follows: 

Table 9. Trend Analysis for Fragility 

#Trend Model MAPE MAD MSD 

Linear 52.69% 2.87 19.12 

Quadratic 53.50% 2.87 19.11 

S-Curve 223.89% 9.06 91.95 
 

The linear model had the best fit. In this curve, the first commit 

scored 2.30 and the last one scored 3.42, which indicates a slight 

trend of increase for the commit dispersion metric. 

As we did for the rigidity metric, we ran the Augmented Dickey-

Fuller test. The results are summarized below and indicate that 

we can reject the null hypothesis, which states that the time series 

has a unit root. In other words, according to the test, the sample 

can be deemed trend-stationary. 

Augmented Dickey-Fuller Test 

data:  fragility 

Dickey-Fuller = -9.7536, Lag order = 12,  

p-value = 0.01 

alternative hypothesis: stationary 

4.2.2 Three commit groups of equal size 
Table 10 depicts the descriptive statistics for commit density 

when considering three commit groups of equal size. 

Table 10. Descriptive Statistics for Commit Dispersion  

(three groups of equal size) 

#ID N Sum Sum% Mean StDev Min Max Skew Kurt. 

G1 715 854.6 18.9% 1.20 2.65 0 14 2.90 8.36 

G2 715 1546.0 34.1% 2.16 4.53 0 20 2.67 6.67 

G3 715 2127.8 47.0% 2.98 5.49 0 21 1.99 2.92 

 

An analysis of the data shows that the sum of the commit 

dispersion increases substantially from group to group. 

Consequently, there is an increase in the mean values (1.20, 2.16, 

2.98). Furthermore, the maximum value also increases (14, 20, 

21). However, from the perspective of fragility analysis, these 

results should be interpreted with care because of the high 

standard deviation values.  

To further investigate the situation, we performed a quartile 

analysis. Differently from rigidity, the results shown in Figure 8 

indicate that fragility increased from group to group. In 

particular, the third quartile increased from 1.73 to 2.0 to 3.33 

and the upper whisker increased from 4.0 to 5.0 to 8.0. 

Table 11 depicts an analysis of outliers. We noticed an increase 

in the absolute number (and consequently, in the percentage of) 

outliers from group to group. Furthermore, the sum of the values 

of the outliers also increased. This provides more evidence that 

fragility increased over time. 

Table 11. Outliers Analysis 

(three groups of equal size) 

#ID N 
Number of 

Outliers 

Percentage of  

Outliers 

Sum of 

Outliers 

G1 715 56 7.8% 518.0 

G2 715 87 12.2% 1131.4 

G3 715 108 15.1% 1590.0 
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Figure 8. Boxplots for Commit Dispersion  

(three groups of equal size) 

Finally, Figure 9 depicts a time-series plot for commit dispersion 

that highlights the division of commits into groups. In particular, 

we analyzed their distribution using Minitab and we concluded 

that none of the three groups follows any known standard 

statistical distribution (including common transformations). 
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Figure 9. Time Series Plot for Commit Dispersion 

(three groups of equal size) 

4.2.3 Three distinct development periods 
Table 12 depicts the descriptive statistics for commit dispersion 

when considering the release periods. 

Table 12. Descriptive Statistics for Commit Dispersion  

(three groups of equal size) 

#ID N N% Sum Sum% Mean StDev Min Max Skew Kurt. 

G1 888 41.4% 1006.6 22.2% 1.13 2.52 1 14 3.02 9.39 

G2 1132 52.8% 3268.6 72.2% 2.89 5.45 1 21 2.07 3.21 

G3 125 5.8% 253.2 5.6% 2.03 3.49 1 17 2.14 4.61 

 

An analysis of the data shows that the third group is considerably 

smaller than the other two (in terms of the number of commits). 

The mean value increases from the first group to the second, and 

then decreases from the second to the third.  

We performed a quartile analysis and the results shown in Figure 

10 indicate that fragility increased from group to group. In 

particular, the third quartile increased from 1.71 to 3.0 to 3.33 

and the upper whisker increased from 4.0 to 7.5 and then stayed 

the same for the third group. 
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Figure 10. Boxplots for Commit Dispersion  

(per release period) 

Table 13 depicts an analysis of outliers. We noticed an increase 

in the absolute number and in the percentage of outliers from the 

first group to the second group. Furthermore, the sum of the 

values of the outliers also increased from the first group to the 

second. The third group had only 125 outliers, which corresponds 

to 6.4% of all observations in this group. This provides more 

evidence that fragility increased over time and that it was more 

evident in the second release of the project. 

Table 13. Outlier Analysis (per release period) 

#ID N 
Number of 

Outliers 

Percentage of 

Outliers 

Sum of 

Outliers 

G1 888 63 7.1% 573.7 

G2 1132 178 15.7% 2556.0 

G3 125 8 6.4% 100.4 
 

Finally, Figure 11 depicts a time-series plot for commit dispersion 

that highlights the division of commits into the groups 

corresponding to the releases. In particular, we analyzed their 

distribution using Minitab and we concluded that none of the 

three groups follows any known standard statistical distribution 

(including common transformations). 
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Figure 11. Time Series Plot for Commit Dispersion  

(per release period) 

5. DISCUSSION 
In this paper, we intended to (i) assess the overall feasibility of 

our approach, and (ii) discover whether our approach is able to 

show symptoms of increasing rigidity and fragility in Maven 1.x. 

Regarding (i), we noticed that our approach was feasible, since 

we were able to quickly calculate the metrics and obtain the raw 

results. At the same time, we had to face some issues. Firstly, we 

realized that the data needs to be pre-processed and post-

processed (Section 3.2), otherwise the metrics we proposed get 

influenced by dirty data and do not provide reliable results. 

Automating this task seems often hard, since the filtering process 

operates on contextual information. In the cases where commit 

policies are enforced, this task should become easier. Secondly, 

we noticed that an in-depth interpretation of the results require 

some statistical background on data distributions and forecasting. 

On the other hand, the rationale behind such interpretation could 

be encapsulated into the approach itself (i.e., it could be 

implemented), so that the output is given to the end-user in a 

more friendly and straightforward way. Another option would be 

to rely on reference values calculated over projects that share a 

similar context. Once either option is chosen, it should not be too 

complicated to embed such analysis into a continuous integration 

process. Regarding (ii), we applied the approach to Maven 1.x 

and obtained the results summarized in Table 14. P1 stands for 

the first perspective analysis (whole project), P2 stands for the 

second one (three commits groups of equal size), and P3 stands 

for the third one (release periods). The word increase in the table 

header means that there was an increase in the value from G1 to 

G2, and also from G2 to G3. 

Table 14. Summary of Findings 

 

 

Trend of 

Increase 

Increase  

in Med. 

Increase 

in IQR 

Increase  

in the %  

of Outliers 

Increase 

in Mean 

P1 P2 P3 P2 P3 P2 P3 P2 P3 

Rigidity          
Fragility          

 

We did not find many evidences of rigidity in the project. We 

only found an increase in the percentage of outliers and in the 

mean values, which occurred for both P2 and P3. It caught our 

attention however that this happened even though the third 

release comprises a very limited number of commits (5.8%). In 

the case of fragility, the results were stronger. We found a slight 

trend of increase using a linear regression model and we also 

found an increase in the interquartile range (for both P2 and P3). 

We believe we did not find an increase in the median because 

more than 60% of the commits include only a single file, which 

results in zero fragility according to our metric. Given the time 

series plot of fragility, we already expected to see an increase in 

the percentage of outliers and in the mean for P2. Indeed, this 

time series plot reveal that fragility increased a lot during the 

second release (G2) and started to decrease in the third release 

(G3). 

6. THREATS TO VALIDITY 
Some factors may have influenced the validity of our study. In 

the following, we present such factors. 

Construct validity. Since the concepts of rigidity and fragility 

are broad and complex, it can be that our operationalization do 

not accurately represent reality. Furthermore, mismatches can 

occur depending on how effectively commit policies are 

enforced. In particular, for projects in which different developers 

have different commit habits, our metrics may derive misleading 

results (just consider one developer that commits his changes 



 

 

very frequently and another one that only commits his changes by 

the end of his working day). To mitigate this issue, automated 

commit grouping strategies could be employed to merge related 

commits [21]. 

Internal validity. There is a threat related to the way we 

analyzed the project, since different configurations of commit 

groupings could possibly generate different results. The pre and 

post filtering processes directly influence the input to the 

approach, which means that other filtering keywords could 

possibly change the results we obtained. Furthermore, it could be 

that unknown contextual factors actually caused our metric 

values to change over time, thus disconnecting them from the 

purpose of detecting symptoms of degrading design. 

Conclusion validity. Despite the acknowledged degradation of 

Maven’s 1 design, we found no strong evidence of increasing 

rigidity throughout the project’s history. In fact, it can be that the 

design did not actually suffer from rigidity at all. We sent a 

questionnaire to the developers listed in the “Maven Team”, 

including the responsible for the redesign, to hear their opinion 

on the reasons the design degraded. We received answers from 

only four developers. They confirmed the design degradation, but 

they informed that they did not directly contribute to the redesign 

process. Unfortunately, we were not able to get the feedback 

from the key developer of Maven 1.x that was the actual main 

responsible for the redesign. 

External validity. The findings of this study are limited to the 

evaluation of a single software system, thus constraining the 

external validity of this study. In fact, the goal of this study was 

to perform a first assessment of the feasibility and effectiveness 

of the approach. 

7. RELATED WORK 
The phenomenon of design degradation has been noted since the 

early days of Software Engineering. Along more than twenty 

years (1974-1992), Lehman and colleagues [16] proposed the 

laws (or rather empirical hypotheses) of software evolution, 

being the first ones specifically concerned with continuing 

change and increasing complexity. In 1992, inspired by the 

second law of thermodynamics, Jacobson [12] coined the term 

software entropy to refer to the increases in software disorder 

(entropy) over time. In 1994, Parnas [23] introduced the idea of 

software aging, by arguing that programs get old, just like people. 

The phenomenon of design rigidity has also been studied under 

the name of ripple effect. An early work on software ripple effect 

is that of Yau and colleagues [28], who presented a maintenance 

framework to cope with program modifications. Wilkie and 

Kitchenham [27] investigated whether classes with high CBO 

(Coupling Between Objects) metric values are more likely to be 

affected by change ripple effects. Similarly, Briand and 

colleagues [4] investigated the use of coupling measures and 

derived decision models for identifying classes likely to suffer 

from ripple effect. Interestingly, these two last studies revealed 

that highly structurally coupled classes did not always cause 

significant ripple effects. Therefore, we believe that our proposed 

rigidity metric may complement such existing approaches. For 

instance, the tool IBM Structural Analysis for Java (SA4J) tool 

offers an interactive visualization named “What If” that 

highlights ripple effects based on existing structural dependencies 

between classes (Figure 12). Conceptual coupling metrics, which 

are calculated based on semantic information obtained from 

identifiers and comments in source code, have also been 

employed to detect ripple effect [14]. 

Design fragility has also been studied under the name of Shotgun 

Surgery [8]. We highlight the work of Lanza and colleagues [15, 

19] in this area, who proposed mechanisms called “detection 

strategies” that combine different code metrics to detect code 

smells. The free iPlasma tool [18], developed by Lanza and the 

LOOSE Research Group, implements the Shotgun Surgery 

detection strategy (Figure 13) by parsing the source code of Java 

and C# projects. Gîrba and colleagues [10] proposed a similar 

approach to detect this same smell based on the identification of 

classes that have had their implementation changed together 

while maintaining their interfaces intact. While all these studies 

depend on the actual code, our proposed metric relies on commit 

metadata obtained through the parsing of the log files generated 

by the version control system. Therefore, the calculation of our 

metric is fast and does not depend on the programming language 

in which the software was written. 

 

Figure 12. IBM Structural Analysis for Java 

(“What if” Visualization) 

 

Figure 13. Shotgun surgery detection strategy [15, 19] 

Finally, in a more general context, Gall and colleagues [9] mined 

CVS repositories, collected logical dependencies (a.k.a. 

evolutionary dependencies [22]), and showed that design flaws 

such as God Classes [8] and Spaghetti Code [7] could be 

discovered without analyzing the actual source code. D’Ambros 

and colleagues developed an interactive visualization tool called 

Evolution Radar [6] that displays logical dependencies among 

modules of a software system. They showed that their tool was 

able to detect design issues that were not detectable by means of 

static analysis of code. 

8. CONCLUSIONS AND FUTURE WORK 
Mining-based approaches leverage historical data stored in 

software repositories to uncover rich evolutionary information. In 

this study, we proposed an approach that relies on a set of 

metrics that operate on commit metadata to assess design 

degradation.  The results of the evaluation involving the core of 

the Apache Maven 1.x showed that our approach is feasible and 

that the project suffered from increasing fragility. Such outcome 

suggests that mining-based approaches should be further 



 

 

developed and enhanced to complement existing structural 

analysis techniques, since the two different approaches capture 

different dimensions of software evolution. As future work, we 

believe that the approach should be further evaluated and refined 

based on the analysis of other projects. Gathering feedback from 

developers using qualitative research methods seems essential for 

a thorough evaluation of the approach. Furthermore, it would be 

interesting to compare the metric values for Maven 1.x and 

Maven 2.x, since the latter intended to avoid known problems 

from Maven 1.x and provide a “stable basis for future 

development”. Finally, building tools to automate the metrics 

calculation and results interpretation is essential for real-world 

adoption. We foresee some research opportunities: 

Technical Debt. Since our approach quantifies rigidity and 

fragility, it could be employed in the calculation of technical debt 

(design debt) [26]. 

Design immobility. Our approach could be extended to calculate 

design immobility, which is another design smell introduced by 

Martin [20] (and long known by the software development 

community). 

Candidates for refactoring. The number of times each file is 

committed seem to be a good heuristic for automatically 

detecting good refactoring candidates. For instance, Figure 14 

shows the number of commits per file in the core of Maven 1. 

The right-hand side of the chart point to highly mutable files that 

are natural candidates for refactoring, since they were committed 

much more often as compared to other files of the same system. 

 

Figure 14. Number of commits per file in Maven 
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