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ABSTRACT 
Context: Software projects involve technical and managerial activities, including software 

estimation. Inaccurate estimates are harmful and improving estimation methods is not enough: 

we need to understand more of the factors that impact estimates. Objective: Our study aims 

to identify the existing evidence about the factors that affect estimates in software projects 

when using expert judgment. Method: We executed a Systematic Literature Mapping (SLM) 

based on database and snowballing searches, selecting papers by first reading their titles and 

abstracts and later reading the full text. Results: Researchers investigated a wide range of 

different factors employing mostly laboratory research strategies and relying primarily on 

differences of estimates and participants’ perceptions to measure the factors' effects. 

Resulting from our analysis, we present the SEXTAMT (Software Estimates of eXperts: A Map 

of influencing facTors), a map of factors affecting estimates built on three dimensions: 

project/iteration phase, stakeholders, and type of effect. Conclusion: Over the years, 

researchers have investigated a varied set of factors. Many of them were explored in different 

studies, employing diverse research strategies. Such studies provide compelling evidence on 

the elements that influence expert judgment estimates, which can be used to assess and 

improve everyday estimation in the software industry.  
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1. Introduction 

An estimate is a quantitative assessment of a variable’s likely outcome, such as project costs, 

resources, effort, or duration [164]. Estimating tasks and projects is a critical part of developing 

and maintaining software, and researchers devoted a significant amount of effort to creating 

and assessing software estimation methods [79]. One such method is expert judgment: it is 

the preferred estimation method in the industry [121,149]. In agile software development, 

Planning Poker — based on expert judgment — is the most applied method [153]. Expert 

judgment is also on the rise as a research topic in software effort estimation [137].  

Expert judgment differs from other estimation methods because the quantification step 

for generating the estimate is judgmental rather than mechanical [36]. That is, experts use 

their human mind as a measurement instrument [84].  Therefore, the processes that we use 

for arriving at a prediction are largely unconscious [37]. Discovering and understanding the 

factors that affect expert judgment estimates is crucial for reducing errors and improving our 

accuracy when using such a method, and research on these factors is also a trend [137]. In 

addition, research and practice in other domains where evaluations and predictions rely on 

expert judgment have shown that countless triggers can drive variability in judgments, leading 

to bias, noise — and consequently, to error, unfairness, and losses [85]. For instance, in the 

seemingly exact science of forensic fingerprint analysis, where professionals have to decide 

whether fingerprints collected in crime scenes match exemplar fingerprints, researchers found 

that examiners can be misled by contextual information, such as eyewitness recognition [86]. 

This led forensic laboratories to change their practices, sequencing information to which 

examiners are exposed before they analyze fingerprints.  

Likewise, getting a comprehensive perspective of the factors researched in software 

estimation so far can guide researchers willing to build on the existing body of knowledge, to 

propose and assess new practices that minimize error and enhance the software estimation 

process. In addition, it can also help practitioners willing to identify the factors relevant to their 

context, to identify the good practices to adopt. In this article, we provide such perspective of 

factors through a Systematic Literature Mapping (SLM) using the guidelines of Kitchenham, 

Budgen, and Brereton [92] and Petersen et al. [131].  

We found 131 relevant articles in our SLM, reporting 235 different factors — a myriad 

of diverse elements that somehow influence estimation results using expert judgment. Most 

of them (166 factors) was reported in one article and are provided as part of our supplementary 

material [114]. Still, understanding the remaining 69 factors investigated in two or more articles 

is challenging. Therefore, we propose an instrument for researchers and practitioners to 
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navigate the seas of factors affecting estimates: the SEXTAMT (Software Estimates of 

eXperts: A Map of influencing facTors).  

Typically, a sextant is an instrument to aid overseas navigation by measuring the angle 

between the horizon and a celestial reference object like the sun, planets, or stars. The 

celestial object chosen as a reference depends on the period of the day the observer will take 

a sight. The observer can use the sun during the day or planets and stars during dawn or 

night. The measured angle serves as input for calculations that allow for identifying positions 

with the aid of nautical charts, thus supporting navigation overseas. The time the observer 

took the sight is also a necessary input [46]. 

 Likewise, the SEXTAMT uses reference points in the form of dimensions, which the 

interested reader can use to navigate these wide seas of factors. A temporal dimension 

alludes to the importance of time for calculating correct positions when using the physical 

sextant. In the SEXTAMT, it refers to a software project or iteration phases: initiating, planning, 

executing, monitoring and controlling, and closing — which we borrowed from the PMBOK 

(Project Management Body of Knowledge) group processes [163]. Most of the factors we 

found group at the planning and the executing phases. That is understandable because 

estimates emerge primarily at the planning phase, and the dynamics of project execution also 

affect our perceptions of accuracy and error of estimates.  

 Instead of finding a celestial object as a reference point, we included a stakeholder 

dimension to the SEXTAMT. The reader can define a stakeholder of interest to investigate 

only the factors associated with them, either because it relates to a task that the stakeholder 

is responsible for or because that stakeholder directly causes the factor. In some situations, 

the factor impacts the stakeholder somehow. Most factors are related to the estimator role, 

which is natural since stakeholders playing this role are responsible for estimating. However, 

we found factors associated with clients and users, higher management, project managers, 

requirement engineers, software developers, and testers. We also discovered factors that 

applied to the entire software team or no specific stakeholder at all. 

 The SEXTAMT also has a dimension regarding the type of effect of the factors. 

According to the direction of the effect, we had four types: positive direction for accuracy 

factors, negative direction for error factors, and neutral direction for value adjusting 

characteristics and empirical influence factors. If the reader wants to identify only the factors 

that increase accuracy when present, they can navigate the accuracy factors. Additionally, we 

grouped the factors in categories that represent the larger oceans and some smaller seas of 

our map.  
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2. Background 

In this section, we present the relevant concepts for the context of our study (Section 2.1) and 

the related work Section (2.2), including two previous related reviews we found. 

2.1. Software estimation 

Software estimates are predictions about a variable, like the software project effort, cost, or 

duration [115]. Given the importance of software estimation for industry, one critical concern 

is to devise improved methods to estimate software projects. More than 60% of research 

papers about estimation before 2007 proposed and evaluated estimation methods [79]. 

Boehm classifies these methods as algorithmic models, expert judgment, analogy-based, 

Parkinson, price-to-win, top-down, and bottom-up [14]. Our SLM focuses on expert judgment 

estimation, as it is the most used method in the industry [149]. To delineate what we mean by 

expert judgment-method, we used the guideline of Halkjelsvik and Jørgensen [36]: if the 

quantification step of the estimation method is judgmental, then the method is categorized as 

expert-judgment-based. If this step is mechanical, then the method is categorized as model-

based.  

 Another critical concern of software project estimation is the predicted variable, either 

size, effort, schedule, or cost of features [116]. For instance, the functions of algorithmic 

models use size as their input [60]. Then, considering software size estimates and productivity 

assumptions, estimators can generate effort estimates. From effort estimates and the project 

resources, estimators can generate estimates about cost, features, and duration (in calendar 

days), which project stakeholders use to establish the project commitments [116].  

Nevertheless, many of the relationships among these software project variables are 

unstable and change from one context to another [65], hampering the creation of a universal 

model of estimation. This instability may also explain why complex estimation models are not 

necessarily more accurate than simpler ones [65]. Despite this, many of the existing estimation 

methods can be applied to any software project variables [117]. Therefore, in our SLM, we are 

not excluding studies based on the project variable. 

2.2. Related Work 

Researchers have been investigating factors affecting estimates such as the anchoring bias 

[5], the impact of the development method [124], the influence of using checklists [154], and 

others. In one of the related works, Halkjelsvik and Jørgensen [36] present a review of studies 

about factors affecting judgment-based predictions of performance time, integrating results 

from the areas of psychology, engineering, and management science. Their review later 

inspired writing a more recent book about time predictions in general [38]. Given the 
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multidisciplinary nature of their review, they opted to term performance time predictions as an 

equivalent for effort estimation. The authors described (i) the characteristics of estimates 

presented in the primary studies (ii) the details about the processes and strategies used in 

estimation, and (iii) the influence of task characteristics, estimators’ characteristics, and 

contextual factors on estimates.   

Halkjelsvik and Jørgensen [36] included in their review studies correlational, quasi-

experimental, and experimental designs. They excluded studies based on questionnaires and 

interviews describing respondents' opinions about reasons for estimation errors and biases 

because the authors affirm that they do not have a suitable method to evaluate their validity. 

Also, they have included gray literature, like reports and unpublished manuscripts, bringing 

back the practice perspective and the practitioners’ voice to their results that otherwise would 

be lost because of the exclusion of studies based on questionnaires and interviews.  

In another related work, Basten and Sunyaev [10] conducted an SLM focused on 

factors affecting software effort estimation accuracy. The authors presented four categories of 

factors affecting estimates: (i) factors related to the estimation process, (ii) factors related to 

the estimators’ characteristics, (iii) features of the project to be estimated that may affect the 

estimates, and (iv) factors related to the external context, more specifically associated with 

the client. Although Basten and Sunyaev [10] published their SLM in 2014, they only included 

papers written up to 2010. Also, their search strategy consisted of a manual search and 

snowballing procedures [10]. An automatic search may provide additional papers. Diverging 

from Halkjelsvik and Jørgensen [36], Basten and Sunyaev [10] included papers reporting 

opinions from software experts, as they may indicate potentially influential factors.  

Thus, we foresaw a need for an update and an expansion of such reviews. We 

executed our SLM on the scope of software engineering, including articles up to 2020, to 

satisfy this. On the one hand, our SLM differentiates from the review from Halkjelsvik and 

Jørgensen [36] by applying a systematic mapping method and focusing on the software 

engineering domain alone. On the other hand, our SLM differentiates from the review of 

Basten and Sunyaev [10] by extending the timeline of included papers, focusing on expert 

judgment only, and by including automated search instead of manual.   

3. Research method 

We started the SLM by defining a systematic mapping protocol, following the guidelines 

presented by Kitchenham, Budgen, and Brereton [92] and Petersen et al. [131], and by 

collectively inspecting it. The remaining of this section presents our research questions. It also 

presents our search, selection, extraction, and analysis procedures. 
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3.1. Research questions 

Our primary research question is: RQ 1 – How have researchers investigated the factors 
that affect expert judgment software estimation? As we want to explore different aspects 

of the existing evidence about the factors, we further refined our primary research question in 

the following set of secondary research questions: 

● SQ 1.1 – What are the factors that affect expert judgment software estimation?  
● SQ 1.2 – How was the impact of the factors over the expert judgment estimates 

measured? 

● SQ 1.3 – What are the software project estimate variables investigated?  

● SQ 1.4 – When and where are published the studies about factors affecting 
expert judgment software estimates? and 

● SQ 1.5 – What research strategies and methods are used to investigate factors 
that affect expert judgment software estimation?  

3.2. Search and selection 

We started the search process by defining a known set of papers, which we used as an oracle 

to validate our search string’s outcomes. Our oracle had 25 papers2. Our next step was 

defining the search string. The results of automated searches are highly dependent on the 

search string's quality [131,162]. We defined ours based on the extraction of the keywords of 

the titles and abstracts from the articles in our known set of papers, as Petersen et al. [131] 

recommend. 

We executed the automated search restricting the search to title, abstract, and 

keywords whenever possible. Our sensitivity3 goal for the automated search was 70%, as 

Zhang et al. [162] recommended. After the first search round, we got a sensitivity of 60%—

below our goal of 70%. We ran a trial search without restricting the search to title, abstract, 

and keywords, but the high number of results made this change prohibitive4. We refined the 

search string, leading us to the second and final version, presented in Table I. 
Table I - Second version of the search string 

(“effort estimation” OR “effort estimate” OR “cost estimation” OR “cost estimate” OR “duration 

estimation” OR “duration estimate” OR “schedule estimation” OR “schedule estimate” OR “size 

estimation” OR “size estimate”) AND (factor OR reason OR cause OR “anchor” OR “impact” OR “risk 

identification” OR “customer collaboration”) AND (software OR system) 

 
2 The final list with the known set of papers is in the supplementary material, together with more details 
of the search and selection procedures [114].  
3 Number of relevant studies retrieved divided by the total number of relevant studies and then multiplied 
by 100 [162]. The number of papers in the known set is the number of relevant studies. 
4 For ACM alone we had over 480,000 results. 
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We carried out the automated search on ACM, IEEExplore, Scopus, and El 

Compendex (Engineering Village), as illustrated in Figure 1 (Step 1), resulting in 5,113 articles 

and a sensitivity of 84%, satisfying our goal of more than 70%. We did not include other 

publisher-specific databases, like SpringerLink and ScienceDirect, as they would probably 

yield a larger number of duplicates, according to Dyba et al. [23].  

 
Figure 1 - Search and selection results 

 After eliminating duplicates from the 5,113 articles, we came to a total of 3,654 articles 

(Figure 1, Step 2). Next, we executed the selection procedures, considering the following 

inclusion criteria: IC01 – The paper presents an empirical study that investigates factors that 

affect software project estimates related to expert judgment. We also selected the papers 

based on the exclusion criteria that we present in Table II. Additionally, Table II presents the 

relationship between each exclusion criteria and the filter in which we applied it mostly: Filter 

1 (title and abstract) and/or Filter 2 (full-text). 
Table II - Exclusion criteria and their relationship with the selection filters. 

ID Exclusion criteria description Filter 
EC01 The paper presents a systematic mapping/review, lessons learned, 

or opinion paper, rather than an empirical study on factors that affect 

software project estimates related to expert judgment. 

1, 2 

EC02 The paper focus on factors affecting estimates related to estimation 

methods other than expert judgment. 

1, 2 

EC03 The paper presents non-peer-reviewed results. 1 

EC04 The paper is not written in English. 1 

EC05 The paper is not accessible in full-text online. 1 

EC06 The study is published as a book or grey literature. 1 

EC07 The paper is a duplicate or a previous version of another already 

selected paper. 

2 

EC08 The paper does not describe the factors to allow for categorization 2 
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To reduce bias during the selection process, we independently selected a random 

sample of the articles retrieved by the search by reading their titles and abstracts. We 

calculated the researchers' level of inter-rater agreement on this sample of articles through 

the kappa coefficient [92]. We got a kappa level of 0.83, which is very good, according to 

Kitchenham et al. [92]. So, we considered the kappa level adequate, and we proceeded with 

the selection, getting to a total of 173 papers selected based on title and abstract (Figure 1, 

Step 3). After reading the full text of all the 173 articles, we selected 81 that satisfied the 

inclusion criteria and that we could not eliminate with our exclusion criteria (Figure 1, Step 4). 

The final set of papers selected from the database search formed the start-set for 

backward and forward snowballing [158]. We aimed for a sensitivity of 100% after the 

snowballing step. We got to a total of 5,413 articles through backward and forward snowballing 

(Figure 1, Step 5), and to 2,618 after removing duplicates (Figure 1, Step 6). We selected a 

total of 234 of them based on their metadata - title, authors, and venue - and on their citation 

context on the original articles in the case of backward snowballing (Figure 1, Step 7). We 

read their abstracts, reducing the number to a total of 70 articles (Figure 1, Step 8). Following, 

we read their full text, leading to the inclusion of 50 articles (Figure 1, Step 9). Therefore, the 

final list of articles included in our SLM contains 131 articles, and we satisfied our goal of 100% 

sensitivity of papers from our known set of papers. 

3.3. Data extraction 

We extracted the data using a form5 created and later refined after a pilot data extraction over 

the known set of papers. We extracted the following data: 

● Title, authors and their affiliation, venue and year of publication; 

● research strategy, according to the classifications of Stol and Fitzgerald [141] and 

Storey et al. [142],  and research method; 

● observations and context; 

● factors and discussion about them; 

● project variables that were the focus of estimation. These variables could be either 

size, effort, cost, productivity, or duration; 

● how authors measured the impact of the factors over the estimates. 

3.4. Data analysis  

In Figure 2, we provide an overview of our data analysis. After reading the full text of all 

selected articles and extracting text and data to our extraction form, we created codes to 

 
5 The form, as well as the complete extraction data are in the supplementary material [114]. 
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summarize the findings from the primary studies6, supporting the aggregation of data into 

factors later during the analysis process. 

 
Figure 2 - Overview of the analysis 

 

Most of the codes we generated followed the structure we show in Figure 2, with some 

variations. The candidate factor was the label that the original study authors provided. The 

quantitative results summarized whether the authors found significant results, sometimes 

informing p-values or other relevant information. It was optional, once only quantitative studies 

needed such data. The brief description of effects highlighted whether the candidate factor 

was a reason for accuracy, a reason for errors, an effort predictor, among others. 

 Next, we created mind maps aggregating similar candidate factors under a final factor 

label. We chose the final label to reflect the core of the candidate factors. In some situations, 

we had an intermediary factor label, reflecting essential variations of the core factor. We held 

regular meetings to review the mind maps with the categories, candidate factors, and codes. 

We analyzed the factors through the lenses of a few dimensions we considered relevant to 

interpret the results. The categories we used to organize the data relate to three dimensions, 

shown in Figure 3. 

 
Figure 3 - SEXTAMT dimensions 

 

 The temporal dimension regards the phase of a software project/iteration that a factor 

is likely to happen or to cause an impact, based on the PMBOK project phases [163]. The 

stakeholder dimension informs one stakeholder or a group responsible for a task or process 

 
6 All factors with their categories and codes are in the supplementary material [114]. 
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to which the factor is linked or that directly causes the factor. In some situations, the factor 

impacts the stakeholder. The type of effect dimension indicates the nature of the impact of the 

factor over the estimates, considering the results of the primary studies: (i) error factors are 

negative when present; (ii) accuracy factors lead to improvements in estimates' accuracy 

when present; (iii) value adjusting characteristics lead to a need for a higher or lower value of 

estimate and are inputs to estimation; and (iv) empirical influence indicate factors whose 

impact on the estimates are not definitely negative, positive, or leading to a need to a higher 

or lower value: it varies in direction and nature. Some of the factors under this label can lead 

to improvements in accuracy in some circumstances, but to inaccuracies in others. For 

instance, the client’s expectation factor has an empirical influence over the estimates. If, by 

chance, such expectations are realistic, their impact are on the direction of making the 

estimate more accurate. Otherwise, they may lead to estimation error.  

Finally, we created the SEXTAMT. We used the dimensions as the cornerstone for the 

navigation through the factors. However, we excluded from the SEXTAMT all the factors 

reported in only one article due to space restrictions, reporting them in our supplementary 

material. In the next section, we explore our results. 

4. Results 

In this SLM, we aim to answer the following primary research question: RQ 1 - How have 
researchers investigated the factors that affect expert judgment software estimation? 

In this section, we explore our results, considering each secondary research question 

presented in Section 3.1. 

4.1. SQ 1.1 – What are the factors that affect expert judgment software 

estimation? 

After analyzing all papers, we found 235 factors in total, from which we report the 69 that were 

explored in more than one research article. We present the 69 factors in Table III, with an ID 

code in parenthesis, and the articles with the evidence about them. 
Table III - List of factors 

Factor Articles 
Diligence (Dili) [9] [99] 

Anchoring effect (Anch) [138] [5] [105] [56] [73] 
Effect of more and/or irrelevant information (EMII) [72] [152] [55] [30] 

Optimism (Opti) [71] [109] 
Sequence effects (Sequ) [31] [69] [75] [50] 

Time frame size (TFSi) [74] [35] 
Unit effects (UnEf) [69] [47] 

Size (PrSi) [21] [153] [152] [94] [95] [140] [41] [157] 
[151] 
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Factor Articles 
Complexity (Comp) [21] [154] [108] [127] [101] [140] [160] 

[143] [1] 
Integration and dependencies (InAD) [17] [108] [153] [101] 

Platform (Plat) [94] [45] [1] 
Programming language (Prog) [41] [45] 

Collaboration and communication (CCAC) [99] [151] [100] [123] 
Availability of knowledgeable/competent clients (AKCC) [113] [32] 

Client’s expectations (ClEx) [72] [81] 
Clarity of client's needs (ClCN) [99] [113] 

Cultural diferences (CuDi) [17] [1] 
Tool support and avaliability (TSAv) [101] [57] 

Use of historical data (UHDa) [159] [110] [99] [21] [101] [24] [57] [133] 
[139] [100] 

Padding (Padd) [110] [99] [57] [100] [26] [97] 
Anticipation of project' participants' skills (APPS) [159] [132] [99] [152] [100] 

Use of checklists (UsCh) [154] [24] [57] 
Combination strategy of individual estimates (CSIE) [77] [111] [25] [40] [126] [125] 

Involvement of technical staff (ITSt) [159] [99] [3]  
Informal basis for estimating (IBEs) [153] [96] [91] 

Impact of early estimates (IEEs) [70] [80] 
Reestimation and revision of estimates (REEs) [152] [94] [95] 

Standards in estimation (StEs) [159] [110] [99] [133] [3] [100] 
Enough effort and resources spent on estimation (EERE) [159] [70] [99] [57] [73] [133] 

Overall experience (OvEx) [17] [153] [127] [109] [113] [57] [90] 
Technical experience (TeEx) [21] [39] [1] 

Experience with similar/previous projects/tasks (ExSP) [57] [151] 
Familiarity with the product (FWTP) [101] [22] 

Estimation experience (EsEx) [133] [1] 
Manager experience (MgEx) [127] [2] 

Monitoring and control (MACo) [159] [127] [57] [32] [91] 
Risk assessment (RiAs) [159] [127] 

Pressure (Press) [159] [99] [109] [161] [91] [26] 
Price-to-win issues (PTWI) [159] [153] [109] [57] 
Goals and targets (GATa) [110] [109] 

Negotiations games in estimates (NGIE) [109] [26] 
Use of flexible/agile development model (UFAM) [124] [93] [18] 

Resources dependencies (ReDe) [21] [152] [95] 
Simplicity (Simp) [57] [73] 

Project flexibility (PrFl) [57] [32] 
Similarity with previous tasks/projects (SWPP) [57] [73] 

Task size (TaSi) [154] [43] 
Business area (BuAr) [41] [45] 
Type of project (TyPr) [41] [1] 

Longer projects (LoPr) [94] [41] 
Familiarity with the technology (FWTT) [9] [101] [24] [73] [91] 

Clear requirements specification (CRSp) [159] [99] [21] [153] [24] [57] [32] [2] [161] 
[7] 

Changes to requirements or scope (CTRS) [159] [153] [152] [95] [32] [160] [7] [91] 
[100] [99] [113] [57] 
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Factor Articles 
Misunderstanding of requirements (MiRe) [21] [109] [113] [57] [73] [91] 

Non-functional requirements (NFRe) [153] [101] [140] [151] 
Familiar problem or requirements (FPRe) [95] [73] 

Dependencies between user stories/backlog items (DUBI) [21] [1] 
Technical skill (TeSk) [71] [24] [57] [53] [91] 

Estimation skills (EsSk) [110] [91] 
Training in Estimation (TrEs) [159] [133] 

Team Size (TeSi) [21] [94] [140] [41] [45] [1] [43] 
Team Collaboration and communication (TCAC) [159] [17] [152] [113] [1] 

Turnover (Turn) [99] [102] [108] [153] [103] 
New team members (NTMe) [159] [21] [91] 

Team Stability (Stab) [153] [140] 
Team Skill (Skil) [17] [153] [151] 

Overlooked and unplanned tasks (OUTa) [99] [21] [24] [109] [57] [73] [100] 
Incorrect assumptions (InAs) [21] [24] [73] 

Occurrence of unforeseen problems (OUPr) [159] [21] [73] 
 

 In Section 5, we detail the factors, presenting them as part of the SEXTAMT. We also 

organized the factors considering the dimensions we described in Figure 3.  

4.2. SQ 1.2 – How was the impact of the factors over the expert 

judgment estimates measured? 

This question's motivation was to identify how researchers evaluate the impact of the 

factors over the estimates. Table IV presents the associations between the strategy that 

researchers used for impact measurement with each article. Each article could have multiple 

different ways to measure impact.  
Table IV - Impact measurement strategy by article. 

Impact measurement 
strategy 

Article 

Difference of estimates [31] [70] [130] [138] [5] [72] [71] [155] [63] [122] [76] [62] [94] 
[80] [29] [105] [8] [61] [56] [150] [74] [81] [55] [30] [118] [69] [18] 
[143] [45] [144] [139] [58] [53] [75] [47] [66] [35] [147] [78] [43] 
[126] [50] [74] [125] 

Participants’ perception [159] [132] [17] [70] [130] [110] [82] [99] [21] [102] [154] [108] 
[153] [148] [152] [42] [145] [101] [80] [109] [120] [140] [98] [113] 
[57] [32] [73] [133] [134] [136] [2] [151] [3] [160] [1] [107] [135] 
[161] [7] [68] [103] [96] [100] [26] [97] 

MRE [124] [9] [71] [33] [120] [57] [156] [73] [90] [25] [34] [40] [44] [20] 
MREBias [124] [57] [73] [64] [40] 

BRE [124] [152] [111] [27] [123] [125] 
BREBias [124] [9] [154] [152] [24] [111] [27] [125] 
Deviation [112] [70] [12] [119] [39] [103] [129] 

Absolute error [130] [25] [53] 
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Impact measurement 
strategy 

Article 

Total effort [120] [41] [157] [6] [128] [22] 
Interval of over/underrun 

(over/underestimation) 
[17] [99] [11] 

Pred(X) [9] [28] 
Confidence related [82] [77] [105] [49] [30] [73] [69] [52] [34] [83] 

Not informed/not defined [13] [15] [19] [127] [93] [91] [48] [146] [16] 
Other [130] [51] [95] [54] [104] [156] [67]  

  

Researchers’ most used strategy for investigating the impact of factors was 

participants’ perceptions: 45 articles adopted it, using either respondents or field research 

strategies. Some of these studies required participants to evaluate their companies or project 

accuracy subjectively. Another strategy widely used was assessing the difference of estimates 

between an experimental and a control group, with 44 occurrences. This is common in 

laboratory experiments, which was the most applied research strategy discussed in Section 

4.5. By analyzing the difference of estimates, researchers investigated the factors that could 

cause a shift from more realistic estimates to more optimistic ones — supposing that lower 

estimates lead to higher chances of error. Regarding more objective measures of accuracy, 

bias, and error, researchers used metrics like MRE (Magnitude of Relative Error), MREBias, 

BRE (Balanced Relative Error), and BREBias, as we show in Table V.  
Table V - Objective metrics of accuracy, bias, and error. 

Accuracy Metrics # Bias Metrics # 
MRE 13 MREBias 5 

BRE 6 BREBias 8 

 

Seven studies relied on less traditional metrics involving the estimated and actual 

values. While the critiques of MRE and MREBias focus on the use of actual values at the 

denominator of the formula — which is resolved in BRE and BREBias by using the minimum 

value between the estimated and actual values — seven studies use the estimated value at 

the denominator. We categorized these studies under the term “deviation”, since the 

researchers of such articles disagree about the best name for the metric, calling it effort 

deviation [112,129], effort overrun [70], accuracy [12], effort variance [119], overrun factor 

[39]7, or project overrun [103]. Another three studies use the absolute error (estimated - actual 

value).  

 
7 The original formula was actual duration = estimated value + estimated value*overrun factor for this 
study. Isolating the overrun factor, we get to the same formula as the other studies. 
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 A total of six studies evaluates total effort. They are either based on regression analysis 

([41,120]) or correlations of effort with other variables ([6,22,128,157]). Three studies relied on 

classifying projects according to ranges of over/underestimation or over/underruns. Two of 

them were respondent studies, and therefore the classification depended on respondents' 

memories ([17,99]). The other study was a data one ([11]). Also, two studies used pred(x) [59]. 

 

4.3. SQ 1.3 – What are the software project estimate variables 

investigated? 

 
Regarding the project variables investigated in the primary studies, we extracted the metrics 

that authors reported as within their studies’ scope. Figure 4 shows the results we obtained, 

making evident that most of the studies focus on effort estimation. 

 
Figure 4 - Variables investigated in primary studies 

Most of the studies focused on effort estimation (96 in total). Twenty-five studies 

claimed to investigate factors related to cost, while 13 focused on duration. Eight studies 

explored prediction intervals — mostly of effort — and we classified them separately to 

emphasize the importance of avoiding single values when estimating. Three studies reported 

factors associated with productivity.  Only two studies claim to investigate factors associated 

with size, probably because the focus is on other metrics when using expert judgment.  

4.4. SQ 1.4 – When and where are published the studies about factors 

affecting expert judgment software estimates? 

 
Our sample includes articles published between 1989 and 2020. The past two decades have 

been very fruitful regarding research about factors affecting estimates, as shown in Figure 5, 



15 
 

revealing an increasing interest in them. We also show a trendline reporting the moving 

average (past five years), revealing a relative degree of stability of the number of papers 

published regarding factors affecting expert judgment estimates since 2016. 

 
Figure 5 - Research about factors affecting the estimates over the years 

 Error! Reference source not found. shows all the venues concentrating three or 

more studies about factors affecting estimates. In total, we represent 65 articles in Table VI.  
Table VI - Top venues 

Venue # citations 

Journal of Systems and Software 15 

IEEE Transactions on Software Engineering 10 

Information and Software Technology 8 

Euromicro Conference on Software Engineering and Advanced Applications 5 

International Conference on Evaluation and Assessment in Software Engineering 5 

IEEE Software 4 

Empirical Software Engineering 4 

International Symposium on Empirical Software Engineering and Measurement 4 

International Conference on Product Focused Software Process Improvement 4 

International Journal of Project Management 3 

International Software Metrics Symposium 3 

 

 There is a balance between publishing in conferences (63 occurrences) and journals 

(68 occurrences). The Journal of Systems and Software, IEEE Transactions on Software 
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Engineering and Information and Software Technology, concentrated the highest number of 

articles. 

4.5. SQ 1.5 – What research strategies and methods are used to 

investigate factors that affect expert judgment software estimates? 

To answer SQ 1.5, we classified the studies considering the taxonomies proposed by Storey 

et al. [142], which is focused on human factors of software engineering, identifying four 

research strategies: respondents, lab, field, and data, as we show in Table VII. Each article can 

report more than one study and, accordingly, could be associated with more than one research 

strategy.  
Table VII - Research strategies distribution 

Research strategy Number of studies 

Data 31 

Field 31 

Lab 51 

Respondents 33 

 

In general, the different available research strategies had been used in a balanced 

way, except for lab strategies, which detach from the others as the most used one. That is, 

most of the studies in our sample evaluate one factor in a controlled setting through hypothesis 

testing [142]. Studies investigating or reporting more than one factor generally employ 

respondent or field strategies, each one having 33 and 31 occurrences, respectively, in our 

data. In Figure 6 we show the use of the research strategies throughout the years. 

 

 
Figure 6 - Research strategies throughout the years 

  Research about factors affecting estimates became prolific after the year 2005. Since 

then, the distribution of studies using different strategies has been relatively uniform. However, 

it seems that laboratory strategies are outperforming the others in the past decade.  
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5. The SEXTAMT 

As we informed in Section 4.1, we found a total of 235 factors, of which 69 were reported in 

two or more articles. We gathered these 69 factors in one instrument: the SEXTAMT. It has 

three dimensions to allow the navigation through the seas of factors: 

1. The temporal dimension provides a view of the factors relevant for different software 

project or iteration phases. 

2. The stakeholders’ dimension focuses on the factors associated with different roles in 

the software process. 

3. The type of effect’ dimension, based on the direction of the effect of the factor.  

In Figure 7, we present the overall map of factors affecting estimates — a bird’s eye 

view of the SEXTAMT. We represent the factors as rounded rectangles, labeled with the 

factors’ codes we indicated in Error! Reference source not found.Table III. We marked some 

of them with symbols related to their stakeholders’ dimension. The size and color of each 

factor represent the number of articles investigating it. We also grouped them by major 

categories represented in the form of ellipses. We also provided an expanded view of Figure 

7 as part of our supplementary material, in which we added the studies that investigated each 

factor.
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Figure 7 - The SEXTAMT 2 
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Figure 7 shows two larger oceans, formed by categories that share common factors. 3 

The larger one contains the categories: estimation process, biases, management, experience, 4 

skill issues, team issues and project and task characteristics. It also concentrates many of the 5 

top investigated factors: the use of historical data, padding, the combination strategy of 6 

individual estimates, standards in estimation, enough effort and resources spent on 7 

estimation, overall experience, and team size.  8 

Client/customer issues, requirements, and product’ characteristics are categories that 9 

also share factors, forming another larger ocean with some of the factors that stand out: 10 

changes to requirements or scope, clear requirement specifications, misunderstanding of 11 

requirements, complexity, and product size. The map also has some categories representing 12 

smaller seas, of which political issues and unexpected events are the larger ones. Pressure 13 

and overlooked and unplanned tasks are the most investigated factors, respectively.  14 

The remaining of this section describes the factors composing the SEXTAMT in more 15 

detail, from the perspective of dimensions we presented in Figure 3. In each of the following 16 

subsections, we show the factors for each different class of stakeholders, organizing them per 17 

project phase. Therefore, the reader may easily navigate through the factors by stakeholder 18 

and by phase. We also present the type of effect for each factor.  19 

5.1. Customer/Client 20 

Figure 8 shows all the factors related to customers/clients, each one represented by a blue 21 

box. We wrote the factors using positive statements representing the presence of a factor, like 22 

in the clarity of the client's needs, representing such presence through green circles in Figure 23 

8. However, the existing evidence may refer to the absence of such an aspect, like the lack of 24 

clarity of the client’s needs, represented in Figure 8 by a red circle inside the factor box. Figure 25 

8 also presents the timeline of the typical project or iteration phases when a factor may happen 26 

or cause an impact over the estimates: the temporal dimension of the SEXTAMT. We also 27 

mapped each factor to their type of effect at the right of the figure. Some factors are 28 

organizational or overarching, and we represent them at the left of the image. We did not 29 

present their types of effects on the figure to keep it simple: we discuss it in the text only. In 30 

addition, the gray hexagons associated with each factor represent the articles that published 31 

results regarding them. The numbering of each hexagon indicates the article ID in the 32 

extraction forms (part of our supplementary material). 33 

At the planning phase, four factors stand out. Two studies report findings related to 34 

the lack of clarity of client’s needs as an error factor. Lederer and Prasad [99] present a survey 35 

where the users’ lack of understanding of their requirements is a reason for inaccuracy. Matos 36 

et al. [113] report a qualitative study where clients who do not know what they want hinder 37 

software estimation and accuracy in the context of web effort estimation. Other two studies 38 
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report that longer projects relate to higher costs [94] and that increasing calendar time will 39 

increase total effort [41]. Therefore, it is a value adjusting characteristic.  40 

 41 
Figure 8 - Factors related to Customer/Client 42 

 43 

Eight studies declare that pressure impacts estimating, either as an error factor or as 44 

a value adjusting characteristic. Nevertheless, the articles describe pressure in varying levels 45 

and originating from different sources. It can, for example, be an overall pressure, directed by 46 

management or related to the schedule alone. Therefore, we created intermediary factors for 47 

pressure, and in this section, we explore only the customer pressure, which appears in two 48 

studies. Yang et al. [159] point out that pressure from senior managers and clients to set or 49 

change the estimation results is a reason for inaccurate estimates. Keaveney and Conboy [91] 50 

report that pressures from customers or managers result in lower estimates than would be 51 

realistically expected. 52 

The final factor at the planning phase is the client’s expectations, which have an 53 

empirical influence over the estimates. Estimators were impacted by the effort informed by the 54 

client at the specification of one experiment [81]. This result repeated even when estimators 55 

are told to disregard such information [72]. 56 

At the executing phase, changes to requirements or scope emerge as an error factor 57 

when present, with twelve studies discussing it. Some studies report that requirement changes 58 

are a reason for inaccuracies [95,153,160], and two studies indicate that frequent changes are 59 

the problem [7,99]. Others emphasize that requirement changes contribute to overruns 60 

[32,39], are a challenge [152], or a potential problem for estimation [91,100]. Finally, some 61 
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researchers identify changes in scope [95] and scope creep [57,153] as reasons for 62 

inaccuracies. When the client's needs are stable, it facilitates software estimation and raises 63 

accuracy [113], so the absence of changes to requirement or scope is an accuracy factor. 64 

Some factors intersect all phases. For instance, the availability of clients who 65 

understand the project’s business rules facilitates software estimation and accuracy [113] - 66 

therefore, the availability of knowledgeable/competent clients is an accuracy factor. Moreover, 67 

the lack of it leads to errors, as the client’s unavailability hinders software estimation and 68 

accuracy [113], and the lack of competent customers able to make decisions is a reason 69 

contributing to overruns [32]. Collaboration and communication with the customer and users 70 

is an additional factor trespassing all phases. Researchers report that good collaboration with 71 

customers, facilitated by frequent communication, was associated with projects that 72 

experienced a lesser magnitude of effort overruns [123]. Also, researchers found that 73 

insufficient user-analyst communication and understanding was a potential cause of 74 

estimating problems in a case study [100], confirming it is a reason for inaccuracy later on in 75 

a survey [99]. Additionally, in the agile context, customer communication is an effort predictor 76 

[151]. Thus, collaboration and communication with the customer and users is an accuracy 77 

factor and a value adjusting characteristic. When absent, it is also an error factor.  78 

5.2. Estimator 79 

Figure 9 presents all the factors related to anyone assuming the role of an estimator. Only one 80 

factor is related only to the initiating phase: early estimates - two studies indicate that they 81 

impact estimates in later phases [70,80]. In one of them, project leaders believed that pre-82 

planning estimates impacted detailed estimates, although they could not express the extent 83 

of the impact. In a laboratory experiment later, the researchers confirmed the existence of the 84 

effect [80]. In a field experiment about project bidding, companies providing early price 85 

indications based on limited and uncertain information gave higher estimates in the next 86 

bidding round. Such findings surprised the researchers, who expected the early estimates to 87 

act as anchors, leading to lower bids. Next, they carried out a laboratory experiment to explore 88 

further this finding, concluding that early estimates act as anchors to final estimates only when 89 

estimators have nothing to lose [70].  90 
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 91 
Figure 9 - Factors related to Estimators 92 

All the other factors mapped to estimators concentrate on the planning phase. Many 93 

of them are biases, such as the anchoring effect, which is our tendency to be influenced by 94 

values presented to us before the estimation activity [105]. In a field study it is reported to 95 

hinder the creation of a meaningful estimate [133] and, thus, is an error factor. Many laboratory 96 

experiments also report that the anchoring effect impacts software estimation [5,56,105,138]  97 

— therefore providing evidence of its empirical influence over the estimates. Aranda and 98 

Easterbrook [5] found a statistically significant impact of numerical anchors on time estimates. 99 
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Jørgensen and Grimstad [56] also found a significant impact of numerical anchors over 100 

estimates, reporting a medium to large effect size. They also found a small to medium effect 101 

size when using a textual anchor: putting the same requirements specification as a “minor 102 

extension” work led to lower estimates than putting it as “new functionality” work. Løhre and 103 

Jørgensen [105] found a slight tendency for a larger anchoring effect with interval anchors 104 

compared to single value anchors when dealing with numerical anchors. Additionally, they 105 

expected the expertise — defined as the length of experience — of the anchor's source would 106 

act as a moderator for the anchoring effect. Surprisingly, they found that the receiver’s 107 

expertise that acted as such. Beyond investigating anchoring itself, Shepperd, Mair, and 108 

Jørgensen [138] discovered that raising awareness about anchoring reduces the impact of 109 

high anchors on productivity estimations but does not eliminate the effect. 110 

Another relevant factor for estimators is the effect of more and/or irrelevant information 111 

over the estimates. Usman et al. [152] found that the availability of more detailed information 112 

may increase underestimation bias by increasing estimator’s optimism. Grimstad and 113 

Jørgensen [30] report that specifications with irrelevant information lead to higher estimates in 114 

laboratory experiments. Jørgensen and Grimstad [72] explored different aspects of irrelevant 115 

and misleading information that have an effect over the estimates: (i) the client's cost 116 

expectations, (ii) the wording of the specification (words associated with small and simple 117 

tasks lead to underestimation, while words associated with complex and large tasks lead to 118 

overestimation), (iii) the suggestion of future opportunities for work contingent on performance 119 

in current projects (lead to underestimation), and (iv) the amount of information, even when 120 

they are irrelevant (more information leads to overestimation). Asking people to highlight 121 

relevant information or strike irrelevant ones is not enough to eliminate the observed impact 122 

[72]. Additionally, in a field experiment, Jørgensen and Grimstad concluded that informing that 123 

the customer required development in a short period with start-up several months ahead also 124 

led to lower estimates, though supposedly this information is irrelevant to estimation [55].  125 

Optimism is an additional error factor, leading to estimates' unintentional distortions, 126 

for instance [109]. Jørgensen, Faugli, and Gruschke [71] measured general optimism in 127 

varying ways in an experiment. They discovered that explanatory style, life orientation, and 128 

higher self-assessed level of optimism are all weakly connected with optimistic predictions. 129 

Also, merely asking estimators whether they assess themselves to be more or less optimistic 130 

seems to be enough as an indicator of optimistic predictions - instead of using more complex 131 

measures of optimism as the scales for explanatory style or life orientation [71]. 132 
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Estimators should also be aware of sequence effects relative to the order of estimation 133 

of tasks and projects with different sizes8. Grimstad and Jørgensen [31] showed a statistically 134 

significant difference when starting estimation with a small task, compared with starting with a 135 

large one first. Jørgensen [50] also investigated the estimation of a large and a small system, 136 

with a significant result when inverting the reference task's order — that is, the one estimated 137 

first. When estimating projects of similar sizes in a sequence, estimators tend to estimate the 138 

target project as more extensive compared to the reference project [50]. Another set of 139 

experiments reverberated that for differently sized tasks the estimate is biased to become 140 

more similar to the one of the previous task in the sequence. In contrast, for similarly sized 141 

tasks, the estimation is biased to become more different than the previous one [75].  142 

Two articles address the time frame size: shorter time frames tend to lead to more 143 

optimistic estimates than larger ones [35,74]. Another two articles investigate unit effects: 144 

asking for estimates using a lower granularity time unit led to lower estimates compared with 145 

using a higher granularity one [47,69]. Therefore, both time frame size and unit effects are 146 

error factors. 147 

A comprehensive set of factors affecting estimates relates to the estimation process's 148 

particularities, such as the use of historical data. A field study connected it with a lesser 149 

magnitude of effort overruns [24]. A relevant number of studies also reported that the lack or 150 

no use of historical data is related to errors and problems in estimating — with evidence 151 

coming from respondent studies [99,159], laboratory studies [139], and field studies 152 

[21,57,100,110,133].  153 

The combination strategy of individual estimates rose as a factor in our SLM, either for 154 

combining single values or interval estimates — with minimum and maximum values. We 155 

found evidence for three strategies regarding single values: statistical combination, 156 

unstructured group estimates, or Planning Poker. Three articles report evidence in favor of 157 

estimating in groups over averaging: unstructured group estimates [126] and Planning Poker 158 

(a structured approach) [25,125] led to less optimistic estimates compared with the average 159 

of individual estimates. When combining interval estimates, the results also favor group 160 

discussion over averaging [77]. Mahnic and Hovelja [111] found the same result for Planning 161 

Poker estimates compared with the statistical combination, but only when the participants in 162 

their experiments were software professionals. They found the opposite effect when students 163 

were estimating. In another study, the results suggested that planning poker is more accurate 164 

when the team has previous experience from similar tasks compared to unstructured group 165 

 
8 The use of the word size here is for simplicity. A task or project is larger in the sense that it requires 
more effort to be executed/implemented compared to others. 
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estimation sessions [40]. In summary, there is evidence in favor of estimating in groups over 166 

averaging estimates in general and in favor of Planning Poker more specifically.  167 

Padding also impacts estimates' accuracy. The inclusion of a large buffer to deal with 168 

unexpected events and/or changes in the specification is a reason for accurate estimates [57]. 169 

The greater the preference for projects completed within the estimates, the greater the 170 

padding frequency [97]. More evidence about it comes from the fact that the removal of 171 

padding by management is related to estimating problems [100,110] and is a reason for 172 

inaccuracies [99]. Nevertheless, it is reported as an intentional increase in estimates aimed at 173 

the holding back reserves, which gives it a negative denotation [26].  174 

The anticipation of project’ participants skills emerged as a relevant factor for 175 

estimators. The inability to anticipate the team members’ skills, abilities, or characteristics is a 176 

problem for estimating [100] and a reason for inaccuracies [99,159]. The knowledge about 177 

who will execute testing allows for the definition of testing effort [132]. However, one study 178 

suggests that the team's knowledge of who will work on the project may increase 179 

underestimation bias  [152]. It might be the case that anticipating the project participants’ skills 180 

may not work for all contexts.  181 

Another essential aid is the use of checklists, leading to a lesser magnitude of effort 182 

overruns [24]. A field study indicates that using a personalized checklist during the estimation 183 

process reduces the underestimation bias [154]. Such evidence indicates that the use of 184 

checklists is an accuracy factor. Also, the lack of checklists is a reason for estimation error 185 

[57], meaning that its absence is an error factor. 186 

The lack of involvement of technical staff during estimating is a reason for inaccuracies 187 

in three respondent studies [3,99,159]. Other three studies [91,96,153] also reported that an 188 

informal basis for estimating is an error factor. Lederer and Prasad [96] considered informal 189 

bases for estimating, comparing similar, past projects based on personal memory, guessing, 190 

and intuition as reasons for inaccuracies. The other two studies emphasized the lack of 191 

formality of the estimation process as a reason for inaccurate estimates [91,153]. 192 

Four factors associated with estimators regard their experience and skills. The first one 193 

is the estimation experience. It is an effort predictor in the context of mobile development [1], 194 

and its absence hinders the creation of a meaningful estimate [133]. The second is experience 195 

with similar/previous projects/tasks, which is also an effort predictor [151] and a reason for 196 

accurate estimates [57]. The third factor is the lack of estimation skills, an estimation inhibitor 197 

[110] that can cause estimation problems [91]. The fourth is the lack of training in estimation, 198 

which hinders creating a meaningful estimate [133] and is a reason for inaccurate estimates 199 

[159]. 200 

The final factor related to estimators at the planning phase is enough effort and 201 

resources spent on estimation, which is an accuracy factor and, when lacking, an error factor. 202 
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On the one hand, a respondent study reports that spending enough time on estimating is a 203 

reason for accurate estimates [57]. On the other hand, making quick, rough estimates is not 204 

motivating and hinders creating a meaningful estimate [133]. Also, insufficient time, effort, or 205 

resources for estimating is a reason for inaccurate estimates [57,73,110,159].  206 

Two factors intersect all the phases. One of them is the overall experience of the 207 

estimator. In one study, experts’ experience (including total experience, company experience, 208 

project experience, and the number of projects expert has participated) predicted estimation 209 

performance, leading to less estimation error [90]. Therefore, the presence of overall 210 

experience improved accuracy. Additionally, other studies indicate that the lack of overall 211 

experience is an error factor, leading to unintentional distortions of software estimates in 212 

varying directions - reducing or increasing them [109], hindering software estimation and 213 

accuracy [113], being a reason for estimation error [57].  214 

The other factor affecting all phases is standards in estimation. All evidence about it is 215 

related to its shortage, and all results point to it as an error factor. It has many facets, in any 216 

case. For instance, in one case study, participants revealed that the lack of methodology or 217 

guidelines and the lack of setting and review of standards is a potential cause of estimating 218 

problems [100]. A follow-up survey confirms that these are reasons for inaccuracies [99]. Also, 219 

no development of estimation standards and no record-keeping of estimates and actual results 220 

make it difficult to capitalize on lessons learned [110], and no documented estimation 221 

procedure hinders the creations of a meaningful estimate [133]. Researchers also report that 222 

the lack of appropriate software cost estimation methods and processes [159] and the lack of 223 

clear guidance for estimating [3] are reasons for the inaccuracy of estimates. 224 

5.3. Management roles 225 

We present the factors regarding management roles — including higher management, project 226 

managers, and the Software Engineering Process Group (SEPG) — in Figure 10. We explored 227 

some of them thoroughly in previous sections: longer projects (Section 5.1), enough effort and 228 

resources spent on estimation (Section 5.2), and standards in estimation (Section 5.2). We 229 

explore all the others in the current section. 230 
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 231 
Figure 10 - Factors related to Managers 232 

At the planning phase, pressure came up as an error factor. Yang et al. [159] report 233 

that the company's survival pressure and the business pattern are reasons for inaccurate 234 

estimates. Another facet of pressure is work pressure, which Altaleb, Altherwi, and Gravell 235 

report as an effort predictor [1]. Yang et al. [159] also inform that the senior manager's 236 

pressure to set or change the estimation results is a reason for inaccurate estimates - a finding 237 

that echoes in other studies [99,161]. It leads people to change their estimates intentionally 238 

[109], to cave in to people with more power [26], resulting in lower estimates than would be 239 

realistically expected [91]. A final facet is schedule pressure, which leads to more effort in test 240 

tasks [140] - and thus is a value adjusting characteristic. 241 

Risk assessment is another factor in the planning phase. Systematic risk assessment 242 

related to lower error in duration estimates [127], and the lack of it is a reason for inaccurate 243 

estimates [159]. Surprisingly, some laboratory experiments' results indicate that identifying 244 

more risks immediately before software estimation leads to increased over-confidence [62]. 245 

Nevertheless, the authors stress that they have not investigated a complete risk management 246 

process - only the impact of simple risk identification. 247 

Low technical skills also are among factors related to managers. One study report that 248 

Project managers not skilled in planning multi-disciplinary projects are reasons for estimation 249 

error [57]. Other studies also report technical skill issues but concerning the team, and we 250 

describe them further in Section 5.5. 251 

At the executing phase, the only factor is the reestimation and revision of estimates. 252 

In a large company with two estimation points in its process, the reestimation at the analysis 253 

stage improves the accuracy of the effort estimates [152]. In a data study, more budget 254 
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revisions were related to higher costs [94] - and therefore, we considered it a value adjusting 255 

characteristic. Nevertheless, in another data study, more estimation updates were connected 256 

with larger errors in effort estimates [95]. Regarding the last result, the authors explain that 257 

more extensive features had more frequent estimation updates. Another possible explanation 258 

is that projects already in trouble may undergo more estimation updates. 259 

The only factor at the monitoring and control phase is its homonym and is an 260 

accuracy factor. One field study reports that good cost control is a reason for accurate 261 

estimates [57]. One a respondent study reports that adequate project administration is a 262 

reason for the prevention of overrun [32]. 263 

The factor that intersects all phases is the manager's experience. For instance, the 264 

number of projects previously managed correlates with duration error — more projects 265 

managed leads to lower error [127]. It is, therefore, an accuracy factor. Also, when the 266 

estimates used for the project contract are based on the project manager's previous 267 

experience only, it requires the developers to work over their capacity, which is a reason for 268 

low accuracy [2]. 269 

5.4. Technical roles 270 

We found factors related to technical roles: requirement engineers, software designers, 271 

developers, and testers. Figure 11 brings such factors to the surface. None of them apply to 272 

all phases. We explained two of them in Section 5.1: changes to requirements or scope and 273 

pressure — including the factor associated with the tester role. 274 

 275 
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 276 
Figure 11 - Factors related to people in technical roles 277 

 We found four factors related to requirements at the planning phase, which we 278 

associated with the requirements engineer role. One of them is a clear requirements 279 

specification. Some studies present results in more general terms, indicating that poor, 280 

unclear, or ill-defined requirements are one reason for inaccuracies [32,57,99,153,159,161]. 281 

Other studies emphasize specific facets that make requirements poor, like the redundancy of 282 

user stories [21], missing requirements [153], weak or ambiguous requirements [24], 283 

incomplete requirements [57], and the user’s lack of understanding of their requirements [7]. 284 

All this evidence indicates that the lack of clear requirements specifications is an error factor.  285 

Familiar problems or requirements was also classified as an error factor when they are 286 

absent. Layman et al. [95] report that unfamiliar feature requirements are a reason for 287 



11 
 

estimation inaccuracy. Jørgensen and Gruschke [73] report that too little knowledge about the 288 

problem is a reason for estimation inaccuracy.  289 

The third factor associated with the requirements engineer is dependencies between 290 

user stories/backlog items. Conoscenti et al. [21] found that links to other stories serve as 291 

indicators for a possible inaccurate estimation. Altaleb, Altherwi, and Gravell [1] found that 292 

dependency between backlog items is an effort predictor in the mobile development context.  293 

The fourth factor we found regards studies reporting that non-functional requirements 294 

are an effort predictor or a cost driver [151,153]. We also found studies reporting that specific 295 

non-functional requirement types are associated with higher effort, like the high legal or 296 

regulatory impact of the code [101], the required level of performance, and the required 297 

security level [140]. So, we classified it as a value adjustment characteristic.  298 

 Still in the planning phase, three factors emerge for the developer role. One of them 299 

is integration and dependencies. One study report that technical dependencies are an effort 300 

predictor in agile global development [17]. Another one considers that integration issues are 301 

a cost driver, also in the context of agile development [153]. In the context of corrective 302 

maintenance of object-oriented systems, a high level of code/system dependencies leads to 303 

higher effort [101]. Therefore, the integration and dependencies factor is a value adjustment 304 

characteristic. Another study informs that integration complexity is an estimation challenge 305 

[108], suggesting it is also an error factor.  306 

 The other factor regarding developers is the platform. In the context of mobile 307 

development, the supported Platform type (IOS/Android./Win./etc.) and the supported device 308 

(phone, tablet, smartwatch) are both effort predictors [1]. Other two studies report that the type 309 

of platform impacts software costs [94] and that the interaction of team size and development 310 

platform has a significant impact on productivity [45].  311 

 Finally, the developer’s familiarity with the product is a value adjustment characteristic. 312 

When low, it leads to more need for effort [101]. In another study, the programmer's familiarity 313 

in the number of months of experience with the system was a significant predictor of debugging 314 

effort (more experience leads to less effort) [22].  315 

 Two data studies inform the programming language's importance as an empirical 316 

influence over the estimates related to the developer role at the executing phase. It has a 317 

significant impact on the effort needed [41] and on time-to-market [45]. Huang, Sun, and Li 318 

[45] also report that team size and language type interaction significantly impact productivity. 319 

 The technical experience related to the developer role is an additional factor we found. 320 

Altaleb, Alterwhi, and Gravell [1] evidence that developer implementation experience is an 321 

effort predictor. Also, developers' lack of experience leads to estimation inaccuracy [21], and 322 

the lack of technology experience leads to a higher probability of effort overrun [39]. 323 
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5.5. Team 324 

Some of the factors we found regarded the whole software team. We show them in Figure 12. 325 

We thoroughly discussed two of these factors in previous sections: involvement of technical 326 

staff in estimating and experience with similar/previous projects/tasks – both at Section 5.2. 327 

 328 

 329 
Figure 12 - Factors related to the team 330 

 At the planning phase, familiarity with the technology is a value adjustment 331 

characteristic because when it is low, it leads to a higher need for effort [101]. Other studies 332 

also indicate that the use of new or little-known technology is a reason for estimation 333 

inaccuracies [9,24,73] and a significant threat to estimates [91]. Also, many studies report 334 

results regarding how the misunderstanding of requirements leads to estimation inaccuracy 335 

and errors [21,57,73,91,113]. It also causes unintentional distortions of software estimates in 336 

different directions: either as increases or decreases of estimates [109].  337 

The team’s skill is a value adjustment characteristic at the executing phase once 338 

three studies present it as either an effort predictor or a cost driver [17,151,153]. Another more 339 

specific factor is the technical skill, which we partially addressed in Section 5.3. The presence 340 

of unskilled members in the team is a reason for inaccurate estimates [153]. Lack of technical 341 
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skills [24] and technical expertise in a particular area [91] lead to estimation inaccuracies. Less 342 

software development skill is weakly connected with optimistic predictions too [71]. More 343 

specifically, Jørgensen, Bergersen, and Liestol [53] reported that lower programming skills 344 

connect with higher over-optimism in larger tasks, higher over-pessimism in smaller tasks, and 345 

higher over-estimation in smaller tasks.  346 

Two respondent studies report how diligence issues may impact estimates negatively. 347 

Lack of diligence by systems analysts and programmers is a reason for inaccuracy [99]. Also, 348 

the delay of decisions concerning requirements due to team members’ lack of responsibility 349 

and motivation is a reason for a higher need for effort than estimated [9]. So, lack of diligence 350 

is an error factor. 351 

Many studies report findings regarding a range of issues related to team’s size and 352 

stability issues. The team’s size is an effort predictor [1,45], and larger teams connect with 353 

higher effort and costs [41,94,140]. It is, therefore, a value adjustment characteristic. One of 354 

these studies also suggests that the interaction of team size and language type and the 355 

interaction of team size and development platform significantly impact productivity [1,45]. 356 

Interestingly, two studies suggest that multiple developers' involvement in a story or a task 357 

may lead to over or underestimations [21,43]. So, larger team size also is an error factor.  358 

The last three factors of the executing phase are intricately connected. Turnover is a 359 

reason for inaccuracies in estimates [99,103,153] and estimating problems [100]. The loss of 360 

organizational knowledge due to high turnover is an estimation challenge [108]. The existence 361 

of new team members leads to estimation inaccuracies [21] and a higher need for effort than 362 

estimated [9]. Another study reports that the introduction of new people is a major threat to 363 

accurate estimates [108] - and therefore, we classified it as an error factor. Finally, regarding 364 

team stability, one study reports it as a cost driver [153], while another one stresses that team 365 

continuity leads to less effort in the context of testing tasks [140]. Therefore, team stability is 366 

a value adjustment characteristic that estimators should account for when estimating.  367 

Two factors impact all phases. The team's overall experience is one of them — and 368 

we explored some of its facets in Section 5.2. Three studies report it as more specifically 369 

connected with the team. Two respondent studies put the team’s overall experience as an 370 

effort predictor or a cost driver [17,153]. Another respondent study indicates that low team 371 

experience correlates with duration error, with less experience leading to more error [127]. 372 

The other factor related to all phases is collaboration and communication. The 373 

communication process and the communication model are effort predictors [1,17]. On the one 374 

hand, team collaboration facilitates software estimation and accuracy [113]. On the other 375 

hand, the lack of stakeholder collaboration is a reason for inaccurate estimates [159]. Also, 376 

inherent difficulties related to communication and coordination present in multi-site 377 

arrangements lead to higher effort overruns [152]. 378 
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5.6. No specific role 379 

In Figure 13, we present a whole set of factors we found that is not specifically connected with 380 

any roles. They may impact or be caused by any or all of them. 381 

 382 
Figure 13 - Factors unrelated to any specific role 383 

 During the planning phase, price-to-win issues play a role in estimation when present. 384 

Price-to-win is described as an estimate defined by the price or schedule needed to win a job 385 

[14]. An estimate strongly impacted by price-to-win is a reason for estimation error [57]. 386 

Allowing the project bidding requirements to predefine the project cost [159] or purposefully 387 

underestimating the effort to obtain a contract [153] are reasons for inaccurate estimates. 388 

Magazinius, Börjesson, and Feldt [109] also report intentional distortions of software estimates 389 

in varying directions because estimates are budget determined. Somewhat related is the goals 390 

and targets factor. In field studies, the authors report that personal goals affect the estimates 391 



15 
 

[110], and that personal or organizational agendas lead to intentional distortions of software 392 

estimates in varying directions [109]. 393 

 We identified that some of the project and task characteristics also are relevant factors 394 

for estimation, such as the similarity with previous tasks/projects. On the one hand, a task 395 

similar to the ones previously completed is a reason for improving estimation accuracy [73]. 396 

On the other hand, projects frequently different from earlier projects are a reason for estimation 397 

error [57]. The task size is also an error factor: larger tasks are more prone to effort overruns 398 

[154], and tasks with more subtasks were underestimated compared to tasks involving fewer 399 

ones [43]. Another characteristic that emerged as an effort predictor is the project type: 400 

whether it is related to a new or enhanced application in mobile development [1]. He et al. [41] 401 

also report that the enhancement projects may consume the most effort . Simultaneously, re-402 

development may need less effort than enhancement, and new development may consume 403 

even less than re-development. Therefore, the project type is a value adjustment 404 

characteristic. Finally, two studies inform that task or project simplicity is a reason for accuracy 405 

[57,73]. 406 

 A subset of the planning phase factors regards the product characteristics: the product 407 

size and complexity. Size is a value adjustment characteristic since many studies report it as 408 

a cost driver, effort predictor, or as correlated to effort [41,151,153,157] — with larger project 409 

sizes leading to more effort [94]. Size is also an error factor. For instance, Conoscenti et al. 410 

[21] report that user story size serves as an indicator for a possible inaccurate estimation. In 411 

a data study, more extensive features correlated to larger errors in effort estimates [95]. 412 

Finally, a field study indicates that smaller product customizations tend to be overestimated, 413 

while larger ones tend to be underestimated [152].  414 

 Complexity is a factor with many facets. Requirements complexity [140] and high 415 

technical complexity [101,140,143] leads to more effort. In the context of mobile development, 416 

one study points out that application form complexity is an effort predictor [1]. Therefore, 417 

complexity is a value adjustment characteristic. Some studies report technical complexity 418 

[108,127,154,160] and feature complexity [21,108] as estimation challenges or as related to 419 

inaccuracies, delays, and under or overestimations. 420 

 Overlooked and unplanned tasks is another impacting error factor: it is a challenge for 421 

estimation [100] and a source of inaccuracies and errors [21,24,57,73,99,109]. Unplanned 422 

tasks or re-work also is a reason for estimation error [57]. Closely relate4d, incorrect 423 

assumptions when estimating is also an error factor that may be related to the code [73], 424 

functionality [21], or complexity [24,73].  425 

At the execution phase, distributed development issues also play a role when they 426 

are present. Two studies report cultural differences as an effort predictor [1,17]. Thus, 427 
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estimators should consider it a value adjustment characteristic if there are multiple 428 

development sites with differing cultures. 429 

 The use of flexible/agile development models is an accuracy factor regarding project 430 

and task characteristics. Moløkken-Østvold and Jørgensen [124] report that flexible models 431 

are associated with lower effort overruns than sequential models. Koch and Turk [93] also 432 

report that the use of agile methods is related to less effort deviation from estimate than rigid 433 

models. However, Brown et al. [18] inform that software developers give lower estimates when 434 

the development method is agile than when the development method is a waterfall, suggesting 435 

their estimates were optimistic.  436 

 Resources dependencies also stood out as one factor affecting estimates. Depending 437 

on external resources may lead to delays and/or higher effort that should be considered when 438 

estimating [63]. Also, dependencies (such as for code reviews) on specific human resources 439 

(e.g., product architects) introduce delays [152], and developer resource constraints and 440 

external commitments are a reason for estimation inaccuracy [95]. 441 

 Project flexibility is another relevant accuracy factor: a high degree of flexibility in 442 

implementing the requirement specification is a reason for accurate estimates [57]. Another 443 

study reports that project flexibility to reduce the scope (functionality/quality) in order to meet 444 

plan and budget is a factor more frequent in projects with lower overrun (less than 20% 445 

overrun) compared to projects with higher overrun (more than 20% overrun) [32].  446 

 The occurrence of unforeseen problems is a factor that impacts estimates negatively. 447 

The occurrence of risks, unexpected events, or technical problems leads to a higher need for 448 

effort than estimated and estimation errors [9,21,73]. 449 

 Two of the factors affect all phases. The business area has an impact on the effort 450 

[41] and productivity [45]. The other factor is tool support and availability. Software 451 

development tools have an empirical influence over management and testing efforts [144]. 452 

Additionally, insufficient tool support for project management is a reason for estimation error 453 

[57], and the low availability of required tools leads to higher effort [101]. 454 

6. Discussion 455 

Our primary research question for this SLM was RQ 1 - What is the existing evidence about 456 

the factors that affect expert judgment software estimates? In this section, we summarize 457 

our current answer to this question and discuss our findings. 458 

6.1. The seas of factors that researchers explored the most 459 

The top-five factors in the SEXTAMT regarding the number of articles reporting them 460 

are changes to requirements or scope (12 articles), clear requirement specifications (10 461 

articles), product size, complexity, and use of historical data (9 articles each). Most factors 462 
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(40, representing around 58% of the total) were reported in three or more articles. The 463 

remaining 29 factors (around 42%) were investigated in two research articles only, indicating 464 

that they could benefit from further investigation.  465 

In addition, many of the top factors were probably investigated extensively because of 466 

their true impact on the estimates. Nevertheless, others may have been investigated because 467 

of a controversial result. Controversies possibly exist either because of differences in research 468 

design or because such factors are more sensitive to the context. Future research efforts can 469 

aim to clarify which is the case. For instance, regarding the combination strategy of individual 470 

estimates most of the results shows that group estimation led to less optimistic estimates 471 

compared with averaging. However, one study found the opposite when participants were 472 

students [111]. It is unclear whether this controversial result is due to the difference in choice 473 

of participants (software professionals or students) or whether experience interacts with the 474 

combination strategy to define which one will bring superior results (more on this in Section 475 

6.5).  476 

Also, if a factor is shown to influence estimates through the employment of varied 477 

research strategies, we can more confidently believe that such an effect exists. Each research 478 

strategy has its inherent limitations and strengths [141]. Also, each one has the potential to 479 

maximize one research quality criteria at the expense of others. For instance, respondent 480 

strategies have the potential to maximize generalizability; field strategies can maximize 481 

realism; laboratory strategies can maximize control; and data strategies can maximize 482 

precision [142]. Therefore, we evaluated the existing evidence for the factors in the SEXTAMT 483 

by considering the research strategies that researchers employed to investigate them.  484 

Figure 14 represents only the factors investigated in five or more articles — 21 factors 485 

in total, represented by the light gray edges surrounding the top of the circle. We also mapped 486 

the factors to the research strategies that researchers employed to investigate them, 487 

represented at the bottom of the circle: respondent (R, in dark red), field (F, in blue), data (D, 488 

in dark gray), or laboratory (L, in orange). Next, we discuss the type of evidence derived from 489 

such studies, considering all these research strategies. 490 
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 491 
Figure 14 - Top factors and the studies' research strategies 492 

 First, six factors have been investigated employing at least three different research 493 

strategies: product size (1 R, 4 F, 4 D), complexity (4 R, 4 F, 1 D), use of historical data (2 R, 494 

5 F, 1 D, 1 L), overall experience (4 R, 2 F, 1 D), team size (1 R, 2 F, 4 D) and turnover (2 R, 495 

2 F, 1 D). Most of them were investigated through a combination of research, field, and data 496 

strategies — suggesting the generalizability, realism of context, and precision of data 497 

regarding the supporting findings. Some of these factors are classic cost drivers, such as 498 

product size and complexity, and software companies may not have much control over them. 499 

Other factors are more controllable but may not be so easy to implement. Still, software 500 

practitioners and organizations can organize themselves to use historical data when 501 

estimating, increase their overall experience, regulate team sizes to keep them small, and 502 

reduce turnover. 503 
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All the remaining factors in Figure 14 were investigated using two different research 504 

strategies. In summary, these factors indicate that improving the estimation process is 505 

necessary, but not enough to get better results. Practitioners need to enhance the 506 

requirements engineering and management process. For example, we need to work on 507 

getting clear requirements specifications (6 R, 4 F). Moreover, human and social aspects play 508 

a crucial role, as highlighted by factors pertaining to the categories of political issues (such as 509 

pressure — 5 R, 3 F), experience (familiarity with the technology — 3 R, 2 F), skill issues 510 

(technical skill —3 F, 2 L), biases (anchoring — 1 F, 4 L), and team issues 511 

(team communication and collaboration — 4 R, 1 F). Unexpected events also have their 512 

role: overlooked and unplanned tasks (3 R, 4 F). Reducing such events is necessary — 513 

possibly with the use of checklists, another factor from SEXTAMT. 514 

 The SEXTAMT factors excluded from Figure 14 were reported in four or fewer articles 515 

and investigated through no more than two research strategies. They can further enrich our 516 

understanding of the impact of the requirements and the estimation process, for instance. 517 

Nevertheless, they expand our perspectives to other directions as well, such as the impact of 518 

product characteristics, client and user issues, environment, attitudes and maturity, and testing 519 

and rework. 520 

In any case, software organizations and practitioners aiming to diagnose the factors 521 

more relevant to their context to improve their estimation results can use the SEXTAMT factors 522 

to guide what to include in internal surveys, for instance. Practitioners can also use the 523 

SEXTAMT factors (especially those classified as value adjusting characteristics) to build 524 

internal checklists. For instance, Usman et al. [154] proposed a process to build checklists to 525 

support expert judgment estimation, and the first step is to understand the estimation context. 526 

This step has the objective to elicit the factors that should be included in the checklists by, for 527 

instance, surveying the literature on the search for effort or cost drivers. The SEXTAMT 528 

already provide a map of such factors, and practitioners can save time by using it instead of 529 

surveying the literature themselves — a process that involves high costs. 530 

In addition, some of the SEXTAMT factors can be helpful in the debiasing strategy that 531 

Kahneman, Sibony, and Sunstein [87] proposed to help improve judgments in general: 532 

decision observers, i.e., people in charge of observing others making judgments in real-time 533 

to identify and alert on the occurrence of biases. Decision observers use checklists to 534 

accomplish their tasks, which should be adapted to their specific domain. The SEXTAMT 535 

factors can guide such adaptation to the software estimation domain. Particularly, the factors 536 

from the bias and the estimation process seas at SEXTAMT can provide valuable items. 537 

Also, practitioners can use the SEXTAMT factors as input for risk analysis for their 538 

projects, improving their project planning, monitoring, and control. For instance, projects 539 

planned to deliver more extensive or more complex products, with less experienced software 540 



20 
 

teams, or where estimators cannot anticipate the participants’ skills when estimating run a 541 

larger risk of estimating error and, therefore, of failing to meet their commitments. Thus, project 542 

managers of such projects need to be especially caring for monitoring these factors. 543 

Takeaway message 1: There is solid evidence for the factors in the SEXTAMT, with 40 of 

them reported in three or more articles. A few of those — six in total — were investigated 

by applying at least three different research strategies. The remaining 29 factors were 

reported in two studies each, suggesting they can benefit from further investigation.  

Takeaway message 2: Practitioners can use the SEXTAMT factors (i) to help diagnose the 

factors more relevant to change in their contexts, in software process improvement 

initiatives; (ii) to build supporting checklists for their estimation activities when using expert 

judgment; (iii) to improve their estimation results in real-time as part of debiasing 

interventions; or (iv) as input to risk analysis of software projects. 

Takeaway message 3: Practitioners interested in improving their estimation can rely on the 

existing evidence that points to the need for improving the requirements engineering and 

the estimation process, but also indicates the necessity of considering factors associated 

with political issues, the management process, experience, team issues, biases, and 

technical skills. 

 544 

6.2. Looking through the lenses of the temporal and stakeholder 545 

dimensions 546 

 547 
When it comes to the process phases in which factors cluster, the planning and 548 

executing phases are the ones that stand out. It is natural to have factors at the planning 549 

phase, because estimating occurs primarily during such stage. At the executing phase, 550 

factors emerge because the dynamics of projects impact estimating error and accuracy. For 551 

instance, our software projects have a moving target [109], and we found in our SLM that 552 

changes to requirements or scope are an error factor, especially if the original estimates are 553 

not modified to reflect the changes. Overlooked and unplanned tasks may also be revealed 554 

by project execution dynamics, leading to a higher need for effort, costs, and duration than 555 

expected.  556 

It is noticeable that only one factor emerged at the initiating phase and none at the 557 

closing phase. However, when looking for the factors reported in one article only, we can find 558 

more about such phases. For instance, bidding situations are relevant at the initiating phase, 559 

with one field experiment reporting that companies selected on the criteria of the low bid have 560 

higher cost overruns, a phenomenon known as the “winner’s curse” [54]. Therefore, estimators 561 

might need to pay special attention to the initiating phase in bidding contexts. 562 
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Additionally, more investigation on learning and feedback has the potential to shed 563 

some light on what is relevant at the closing phase. For instance, at least four studies ([57], 564 

[113], [71], and [73]) suggest that estimation error, feedback, and learning from past projects 565 

and tasks might be beneficial to reducing overconfidence and improving estimates.  566 

Regarding stakeholders, many of the factors are related to estimators, which is 567 

expected once they are the primarily responsible people for estimates. Our results also 568 

indicate the power of other roles that might not be directly involved with the estimating process, 569 

such as the client and managers. 570 

Takeaway message 4: Most factors cluster at the planning phase, because estimating 

occurs primarily at this stage. Many factors also pertain to the execution phase because 

project dynamics can alter the assumptions on which estimates were generated.  

Takeaway message 5: The initiating and closing phases are less explored, and we can 

benefit from investigating more factors regarding such phases. 

Takeaway message 6: Many factors are related to estimators, and many others indicate 

the power that people playing other roles also have over the estimates, showing that 

improvement initiatives in the industry must account for them too.  

 571 

6.3. The strategies researchers employed to explore the seas 572 

As for the project variables, most studies focused on effort, which is understandable - as 573 

McConnell [116] suggested by his flow of well-estimated projects that the effort is an 574 

intermediary estimate in software projects, ideally used as input to cost and duration 575 

estimates. Therefore, factors that impact effort estimates indirectly impact both cost and 576 

duration, and because of that, researchers may consider it more beneficial to focus on them.  577 

The mechanism for measuring the impact of the factors that researchers applied the 578 

most is rather indirect: the participants’ perceptions of reasons for errors and accuracy. 579 

Such an approach may provide rich insights into the phenomena that cause errors when 580 

estimating or promote accuracy in field settings. Considering that many participants in 581 

respondents and field studies in our SLM are experts in software development and 582 

maintenance tasks, we cannot overlook their opinions about the factors affecting estimates. 583 

Nevertheless, the approach has drawbacks also. For instance, people may attribute different 584 

meanings to the term “estimate”, even when they work at the same company [67], making it 585 

difficult to interpret the results of surveys [59]. 586 

Another widely employed mechanism for measuring the impact of factors over the 587 

estimates was the difference of estimates between groups. The difference of estimates does 588 

not provide direct evidence about accuracy, but it can evidence when a factor causes an 589 

estimate to increase or decrease for reasons beyond the estimation process. This allows us 590 
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to identify factors that can induce optimism in estimators, leading them to provide low 591 

estimates instead of realistic ones. Considering that extensive projects tend to be 592 

underestimated with a median time overrun of 20% [38], identifying such factors can be very 593 

useful.  594 

Additionally, researchers have used objective error measures, such as MRE, 595 

MREBias, BRE, and BREBias. Nevertheless, since the 90’s at least, MRE has been criticized 596 

because it has the disadvantage of weighing differently under and overestimations. 597 

Underestimations are not weighted sufficiently, leading to higher penalization of 598 

overestimations [59]. MREBias suffer from this same problem. BRE and BREBias are 599 

balanced metrics in this sense [124]. In Figure 15, we grouped MRE and MREBias under the 600 

label “Unbalanced” and BRE and BREBias under “Balanced”. It shows that, gradually, 601 

researchers are moving to the use of more balanced metrics over the years. 602 

 603 
Figure 15 - Balanced (BRE & BREBias) x unbalanced (MRE & MREBias) over the Years. 604 

 605 

Also, researchers prefer accuracy metrics over bias: with 19 occurrences for MRE and 606 

BRE together versus 15 occurrences of MREBias and BREBias. Accuracy is the average 607 

unsigned error, irrespective of whether the estimate is too high or too low; bias is the average 608 

tendency to generate too high or too low estimates [37].  609 

In any case, using MRE or BRE and similar metrics can be misleading because they 610 

depend on actual values, and work can be adjusted to fit an initial estimate [80], leading to a 611 

“moving target problem” [59] and to a distorted perception of accuracy. For instance, this 612 

makes it harder to understand exactly whether a factor contributed effectively to improving 613 

estimation accuracy, or whether a software team just took advantage of a higher project 614 

flexibility to create an illusion of accuracy. A possible solution comes from the literature about 615 

judgment in general: the measurement of noise instead of bias or accuracy. Noise is the 616 

random scatter of judgments that should ideally be identical  — or in other words, unwanted 617 

variability, a significant component contributing to judgment error, along with bias [88]. The 618 

advantage of measuring noise over bias or accuracy is that we do not need to know actual 619 
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values. One issue that emerges from this discussion is how to measure noise. A common 620 

measure from statistics is the standard deviation [89]. 621 

Nevertheless, we found very few studies discussing the variability of estimates in the 622 

software domain. Only one study explores explicitly the issue, showing a high level of 623 

inconsistency when software practitioners estimate the same task, based on the same 624 

information and under the same conditions, but at different times [33]. In addition, very few 625 

studies in our SLM report the standard deviation of estimates, when using the difference of 626 

estimates as a measurement strategy (see [138] and [130]). This reveals a low awareness of 627 

researchers in our community regarding noise, its relationship with error in expert judgment 628 

estimation, and the benefits of measuring and reducing it. Regarding software estimation 629 

practice, it is unclear whether practitioners share the perspective of researchers about this 630 

concept. In any case, software organizations can benefit from investigating how much 631 

disagreement there is among their professionals estimating the same tasks independently. 632 

Regarding research strategies, researchers employed the laboratory research 633 

strategy widely, and the respondents' strategy was quite popular too. Laboratory research 634 

strategies favor the investigation of only a few factors at once. In contrast, the articles 635 

employing respondents strategies tended to reveal much more factors in each study, 636 

contributing significantly to the wide variety of factors we found. The factors with more articles 637 

using a laboratory experiment strategy were also the ones that researchers refined the most 638 

by investigating relevant variations. For instance, researchers investigated different nuances 639 

of the anchoring effect, assessing the impact of both numerical and textual anchors [56], as 640 

well as of single and interval anchors [105]. Another refinement was the investigation of the 641 

moderating effect of the expertise of the source and of the receiver of the anchor value [105] 642 

and the impact of one intervention to reduce its effects [138]. Another example is the sequence 643 

effect, whose impact over the estimates varies with the size of the tasks estimates in the 644 

sequence [75]. Researchers perceived an assimilation effect (the estimate become more 645 

similar to the one of a previously estimated task) for tasks of different sizes, and a contrast 646 

effect (the estimate become more different than the previous one) for tasks of similar sizes. 647 

When considering the taxonomy of Stol and Fitzgerald [141] for research strategies, it 648 

is interesting to notice that the studies employing the field strategy, there are very few field 649 

experiments - a total of 10. In other words, when it comes to factors affecting estimates, 650 

researchers are more likely to enter natural settings to collect data without manipulating 651 

variables. Probably such manipulations are hard to be approved by administrative staff or to 652 

be adequately carried out. Thus, they restrict the manipulations of variables to the lab, 653 

reinforcing the need for triangulation of strategies [141] to evaluate further the impact of factors 654 

investigated.  655 
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Additionally, considering that the potential for generalizability from respondent studies 656 

and the potential for realism from field studies can be taken as proxies of the relevance of 657 

research results for practice, from all the 69 factors from the SEXTAMT, most (62) have this 658 

type of evidence. From the seven factors with no evidence from respondent or field studies, 659 

three are related to biases on estimation and were investigated through lab studies only: 660 

sequence effects, time frame size, and unit effects. The client’s expectation was a factor 661 

investigated only through lab studies. The programming language, business area, and longer 662 

projects emerged from data studies only. Nevertheless, the lack of evidence from respondents 663 

and field studies for these factors does not mean they are irrelevant. For instance, practitioners 664 

are not aware of the biases affecting them in many cases, which makes it impossible for them 665 

to point this kind of factor in respondent studies. Therefore, combining research strategies 666 

reveals complementary findings in research topics so complex as this one. This has been 667 

highlighted before in the study of reasons for software effort estimation error in one single 668 

company: combining information sources, data collection methods, and data analysis methods 669 

leads to complementary insights [57].  670 

 671 

Takeaway message 7: The participants’ perceptions can provide a rich picture of factors 

affecting estimates in practice, even though it provides a subjective perspective. For more 

objective measurements of impact, the difference of estimates between a control and an 

experimental group has been largely adopted. 

Takeaway message 8: Despite the criticism over metrics such as MRE, researchers are 

still gradually moving to use more balanced metrics such as BRE to assess the accuracy of 

estimates. 

Takeaway message 9: Researchers are not fully aware of the concept of noise and its 

contribution to estimation error, even though it can reveal estimation problems with the 

benefit that we do not need to know actual values to measure it. It is not clear whether 

practitioners are unaware of it as well. In any case, software organizations can benefit from 

noise audits as starting points to improvement initiatives and noise measurements to assess 

the effectiveness of interventions to their estimation processes. 

Takeaway message 10: Respondents strategies allowed for discovering many factors 

relevant in practice, while laboratory strategies allowed for the refinement of factors. 

Takeaway message 11: The combination of different research strategies provides 

complementary factors, allowing for a richer map of the factors affecting expert judgment 

estimates. 

 672 
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6.4. Into the wild – part 1: underexplored seas 673 

We excluded from the SEXTAMT a total of 166 factors reported in one research article only 674 

each9. Therefore, we consider they are in a gray area, and there is a need to execute more 675 

research to strengthen the evidence about their impact. Some of them have the potential to 676 

enlarge the territory of existing seas in the SEXTAMT. In contrast, others have the potential to 677 

reveal new seas of their own. 678 

 Such a myriad of factors shows that researchers have investigated a set of varied 679 

factors affecting expert judgment software estimates. However, this does not mean that all 680 

factors reported by unique articles are worthy of further investigation. We need some filtering 681 

on them to decide which ones are good candidates for more studies. For instance, luck is a 682 

factor reported in a respondents study. However, what does it mean? Also, the presence of 683 

other factors we identified in our SLM might explain luck to some extent: we can consider that 684 

a software project was luckier because requirements did not change, for example.   685 

 In addition, we classified some of these factors as a satellite to others, meaning they 686 

are somewhat related, even though not enough to be united to create a larger one. One 687 

example is “team process experience” and “expertise of new team members”. Although they 688 

are related, the first can relate to all team members, not only to new ones, while the latter is 689 

very specific in including only new people. Therefore, we cannot unify them to form a single 690 

factor investigated in three articles, allowing its inclusion among the SEXTAMT factors. 691 

Therefore, we kept them as part of the unique factors, marking them as satellites of each other. 692 

Another example is the case of the factor forcing to stay within the estimate. It is a 693 

satellite of one SEXTAMT factor: project flexibility. For instance, software practitioners need 694 

the flexibility to deliver less polished features when they are forced to stay within a deadline, 695 

no matter what. We can also argue that forcing to stay within the estimate is a repercussion 696 

of other factors from unique articles, such as estimates interpreted as commitments or the use 697 

of uncertain estimates as baselines. Nevertheless, researchers have not validated such 698 

relationships. In any case, we indicate the satellite factors as part of our supplementary 699 

material. 700 

 Factors investigated through laboratory research strategies are good candidates for 701 

field experiments to assess whether their impact is kept in real-life contexts. Take 702 

the format factor, for example, which is about using the traditional request format — “How 703 

much effort is required to complete X?” – versus using an alternative format — “How much 704 

can be completed in Y work-hours?”. In the laboratory, the alternative format has led to more 705 

optimistic estimates [74]. However, it is precisely the format we expect when using agile 706 

methodologies. Does it impact estimates negatively in the trenches, making them more 707 

 
9 A complete list of such factors, together with their codes and categories can be found here. 
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optimistic? Another factor whose effect is relevant in the same context is the use of Fibonacci 708 

scales that, compared to linear scales, led to lower estimates when using Planning Poker 709 

[147].  710 

Takeaway message 12: Researchers have investigated a large and varied set of factors 

affecting estimates when using expert judgment. Most of such factors were reported in one 

article only, needing more research to strengthen the evidence about their impact.  

 711 

6.5. Into the wild – part 2: validated relationships among the factors 712 

The discussion of satellite factors leads us to another underexplored issue: the relationship 713 

among different factors. Therefore, after answering the main research questions that we 714 

presented in Section 3.1, we decided to extract and analyze data for an additional question: 715 

“SQ 1.6 – What are the validated relationships among the factors affecting expert judgment 716 

expert estimates?” 717 

 Only nine articles had results regarding such relationships. We illustrate the 718 

relationships we found in Figure 16, where each light blue rounded rectangle represents one 719 

SEXTAMT factor. Each gray rounded rectangle represents one factor we did not include in 720 

the SEXTAMT because it was investigated in only one article. 721 

 722 
Figure 16 - Relationships among factors. 723 

 Figure 16 shows that overall experience moderates the impact of the combination 724 

strategy of individual estimates: more experience is connected with less optimistic estimates 725 

when using Planning Poker compared to when using a statistical combination of estimates. In 726 
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the context where estimators have less experience, the result is inverted: the statistical 727 

combination leads to less optimism [111]. This result suggests that without experience 728 

discussions lack the benefit of meaningful divergent perspectives about the task complexity, 729 

or the wisdom to recognize forgotten tasks, or other flaws in judgment. It also seems that 730 

higher experience is needed to overcome the effect of the social influence bias [106] in group 731 

discussions of the estimates. Nevertheless, we should consider this result carefully because 732 

researchers contrasted a sample of students (representing less experience) with a sample of 733 

software professionals (representing more experience).  734 

 Overall experience also reduces the impact of the anchoring effect over the estimates 735 

[105], as well as debiasing workshops [138] and the use of subsequent anchors aimed at 736 

neutralizing first impressions caused by the first anchor [76]. However, in none of these 737 

studies, the anchoring effect was completely removed: only reduced. In another study, the 738 

researchers showed that mixed-handers were more strongly influenced by anchors compared 739 

with strong-handers [58], revealing how handedness can influence estimates. 740 

 Handedness also impacts the effect of more and/or irrelevant information: mixed-741 

handers also are more impacted by irrelevant information [58]. In addition, people who score 742 

high in interdependence are also more strongly influenced by more and/or irrelevant 743 

information than people who score low [56]. Higher interdependence refers to higher 744 

connectedness to others and higher importance to social context and relationships. In addition, 745 

another study showed that higher technical skill reduces the impact of more and/or irrelevant 746 

information [72]. 747 

 Also, the time frame size moderates the impact caused by using an 748 

alternative format for requesting estimates. Smaller time frames increase the impact by 749 

leading to more optimistic estimates [35,74]. 750 

 Interestingly, many of the factors on the leftmost side of Figure 16 are related to a 751 

psychological or social bias. For instance, combination strategies of individual estimates are 752 

subject to social biases. The anchoring effect is a psychological bias. The presence of more 753 

and/or irrelevant information can also bias judgment, leading people to think the task is larger 754 

than it truly is, for example. Additionally, the moderating factors give us hints about 755 

interventions to deal with such biases. For instance, if we know estimators have low 756 

experience, it might be wiser to use the statistical combination of estimates instead of Planning 757 

Poker. Another example is composing estimating teams to include people with higher 758 

experience and technical skills whenever possible because this helps reduce the effects of 759 

psychological biases. 760 

 These results show the relevance of studying the relationships among factors. Such 761 

relationships can reveal the paths of interaction among factors and the ones that can trigger 762 

chains of negative or positive effects over the estimates. Therefore, in software process 763 
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improvement initiatives regarding the estimation process, focusing in factors mediating or 764 

moderating others can be a cost-effective strategy to improve accuracy. 765 

Takeaway message 13: Although the set of factors affecting estimates when using expert 

judgment is large and varied, we could benefit from more studies exploring the relationships 

among such factors. This investigation can help narrow down the factors to focus to keep a 

good balance of costs and benefits when dealing with estimation problems. 

 766 

7. Threats to validity 767 

We analyzed the validity threats to this SLM, considering threats to the study selection validity, 768 

threats to data validity, and threats to research validity [4]. One of the threats for study 769 

selection validity is the adequacy of initial relevant publications identification, addressed with 770 

an automatic search in known digital libraries. Another mitigation action to this threat was the 771 

use of a known set of papers to evaluate the search strategy [162]. The goal of this evaluation 772 

was to reach a sensitivity of 70% in automated search [162]. A final mitigation action to this 773 

threat was snowballing procedures to enlarge the number of retrieved relevant papers, 774 

reaching a sensitivity of 100% afterward. Another threat to study selection validity for this SLM 775 

is the study inclusion/exclusion bias, addressed through the definition of study inclusion and 776 

exclusion criteria in the research protocol. Additionally, the authors executed the selection 777 

process over a sample of the articles, discussing any inclusion or exclusion conflicts. Their 778 

agreement level was measured with the kappa statistic, leading to the refinement of the 779 

inclusion and exclusion criteria. 780 

A threat to data validity in this SLM is the data extraction bias, addressed through a 781 

pilot data extraction. The authors reviewed and discussed a pilot data extraction sample to 782 

improve the data extraction form. Another threat is the bias of classification schema. To avoid 783 

it, we relied on previous existing classifications when possible, such as the research strategies 784 

framework of Storey et al. [142]. We used the process groups from PMBOK [163] for the 785 

phases and familiar stakeholders' roles regarding the factors. We aggregated similar findings 786 

under labels that reflected the articles' original texts for naming the factors affecting software 787 

estimates. The authors held meetings for reviewing the factors and the categories in the 788 

SEXTAMT, and the types of effects of each factor. 789 

 As for research validity, there is the threat of lack of repeatability. One of the mitigation 790 

actions for this threat was involving more than one researcher during the process. Another 791 

action is to make all the SLM data publicly available, including decisions about inclusion and 792 

exclusion of papers, extracted data from primary studies, among others. Finally, we developed 793 

a research protocol to ensure replications or updates to this SLM. The protocol we developed 794 

and the discussions among the researchers involved helped mitigate the research method 795 
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bias, another threat to research validity.  796 

8. Conclusion 797 

In this article, we presented an SLM about factors affecting expert judgment software 798 

estimates. We present such factors by three dimensions: the project phase they are likely to 799 

happen or to cause an impact over the estimates; the stakeholder that is responsible for a task 800 

or process to which the factor is linked, that directly causes the factor or that is directly 801 

impacted by the effects of the factor; and type of effect the factor causes.  Some factors can 802 

have a negative effect, leading to errors when they are present, while others may have a 803 

positive or neutral effect. Such dimensions allow for easier navigation through the myriad of 804 

factors we found.  805 

 Most of the factors clustered at the planning and executing phases. It is natural to have 806 

factors at the planning phase, because estimating occurs primarily during such stage. At the 807 

executing phase, factors emerge because the dynamics of projects impact estimating error 808 

and accuracy. Moreover, most of the studies employed a research strategy of laboratory 809 

experiments, investigating one factor in a controlled setting with an experimental and control 810 

group. Also, they evaluated the difference of estimates between these groups to assess the 811 

impact of the factors. 812 

Top factors — those that emerged in a higher number of studies — revealed the 813 

importance of issues beyond the estimation process. It is also necessary to improve the 814 

requirements engineering process, to deal with political issues, to consider the product 815 

characteristics, among others. Researchers have investigated a wide and varied set of factors. 816 

Therefore, we created a map to support readers in navigation through them: the SEXTAMT. 817 

If an interested reader desires to identify all factors that affect only one project phase, we 818 

provide them a classification through this dimension. If the reader desires to identify all factors 819 

given one stakeholder, we also provide this. Finally, if the reader wants to find out a class of 820 

factors given a specific effect — for instance, all factors that lead to improved accuracy — our 821 

map also has a dimension regarding this. 822 

Our research confirms and aggregates existing results about factors affecting expert 823 

judgment estimates, a relevant contribution to move knowledge forward, especially when we 824 

organize such knowledge to facilitate understanding and future uses (for both research and 825 

practice). Also, the classification of measurement strategies is an additional relevant 826 

contribution. This enabled us to spot that our research community is missing the benefits of 827 

investigating more of noise as component of error.  828 

Therefore, the dimensional map, facilitating the navigation through them, is a valuable 829 

research contribution. It can have many valuable uses in practice and software practitioners 830 

can employ the SEXTAMT factors as part of many different initiatives, such as: 831 
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• Diagnosing improvement opportunities to their estimation processes through the 832 

investigation of the most relevant factors in their contexts, considering their types 833 

of effects; 834 

• building checklists to support estimators, considering especially the value 835 

adjustment characteristics; 836 

• adapting checklists to aid debiasing interventions, considering especially the 837 

factors from the bias and estimation process categories; 838 

• analyzing project risks by identifying the factors leading to larger risks of estimating 839 

error in their contexts and, therefore, of leading to failures to meet their 840 

commitments. 841 

 As for future work, we need to keep the SEXTAMT updated. Special care is due to the 842 

factors coming from unique articles: more investigation about them is needed. However, some 843 

philtering to identify the best candidates for more assessment is also necessary. Another 844 

critical issue is investigating the relationships among the factors to enrich the map with 845 

relevant mediation and moderation connections. A more complex framework can be helpful to 846 

identify the factors more likely to cause a more considerable impact over the estimates, 847 

focusing on them to adopt more cost-effective interventions during software improvement 848 

initiatives regarding estimation processes. 849 

   We highlight that another research issue comes from the software project dynamics 850 

that allows practitioners to adjust their work to fit an estimate when they need to, creating a 851 

“moving target” problem. This makes it harder to measure error and accuracy correctly. It also 852 

makes it harder to understand whether a factor contributed effectively to improving estimation 853 

accuracy or whether a software team just took advantage of higher project flexibility to create 854 

an illusion of accuracy. The solution to this comes from the judgment literature: measuring 855 

noise — unwanted variability from judgments that ideally should be identical [88]. 856 

Nevertheless, few studies from our SLM discuss this issue, revealing that our research 857 

community can benefit from understanding and using more of this concept. 858 
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