

Preliminary empirical identification of barriers faced

by newcomers to Open Source Software projects

Igor Steinmacher, Ana Paula Chaves

DACOM – UTFPR

Campo Mourão, PR – Brazil

{igorfs, anachaves}utfpr.edu.br

Tayana Conte

IComp – UFAM

Manaus, AM – Brazil

tayana@icomp.ufam.edu.br

Marco Aurelio Gerosa

DCC – IME – USP

São Paulo, SP – Brazil

gerosa@ime.usp.br

Abstract— When newcomers try to join an open source soft-

ware (OSS) project, they face many barriers that hinder their

first contribution, leading in many cases to their dropping out.

Many projects leverage the contribution of outsiders, and the

sustainability of the project relies on retaining some of these new-

comers. This research aims to identify the barriers that hinder

newcomers' onboarding to OSS projects. Our method consisted

of a qualitative study conducted with data obtained from four

different sources: (i) systematic literature review; (ii) feedback

from nine graduate and undergraduate students after they tried

to join OSS projects; (iii) 24 responses to a questionnaire sent to 9

OSS projects; and (iv) semi-structured interviews with 36 sub-

jects from 14 different projects, including newcomers and experi-

enced members. The method to select the candidate papers in the

systematic literature review was querying four digital libraries

and backward snowballing. The data obtained from the practi-

tioners from all three sources, and the primary studies obtained

in the systematic review were analyzed using used procedures of

Grounded Theory's open and axial coding. The analysis resulted

in a conceptual model composed of 58 barriers, grouped into six

different categories: cultural differences, newcomers' characteris-

tics, reception issues, orientation, technical hurdles, and docu-

mentation problems. We could observe recurrent barriers evi-

denced in different data sources. We could notice that the

onboarding process of a newcomer to an OSS can be a tough

task. This research brings empirical support relying on data from

different sources, organizes and discusses the existing common

wisdom about barriers faced by newcomers to OSS projects,

which deserve attention from researchers and OSS communities.

Keywords—newcomers, onboarding, open source software,

qualitative analysis, systematic literature review

I. INTRODUCTION

Many Open Source Software (OSS) projects leverage con-
tributions from distributed volunteers. A continuous influx of
newcomers is necessary for their survival, long-term success,
and continuity. According to Qureshi and Fang [1], it is essen-
tial to motivate, engage, and retain new developers in order to
promote a sustainable community in a project. Some studies
report that newcomers are a source of innovation, new ideas,
and work procedures [2].

However, newcomers usually face many difficulties to
make their first contribution to an open source project. Dage-
nais et al. [3] compare software project newcomers to explorers
who need to orient themselves in a hostile environment. In OSS
projects, newcomers are usually left to learn on their own [4].
A major challenge for OSS projects is to provide ways to sup-
port newcomers’ joining.

We claim that joining a project is a complex process com-
posed of different stages influenced by forces that push new-
comers towards or away from the project. We split the joining
process into two different stages: onboarding and contributing,
since there are different emphases in each one of them. While
the onboarding stage is highly impacted by a steep learning
curve as well as reception and expectation breakdowns, longer-
term forces influence the contributing stage. Moreover, not
every developer wants to become a contributor, committer, or a
core member [5], although all of them are subject to the prob-
lems of onboarding before making their first contribution.

In a previous work [6], we defined a “developer joining
model” representing the stages that are common to and the
forces that are influential to newcomers being drawn or
pushed away from a project. We consider that joining an OSS
project is a process influenced by four different forces. Motiva-
tion and project attractiveness are the forces that draw the out-
sider to contribute to a project. While motivation persists as an
ongoing force, various barriers and retention forces influence
onboarding, contribution, and members’ permanence [6]. Un-
derstanding developer motivation and project attractiveness are
well-explored topics in the literature [7–10]. However, little is
known about the barriers that newcomers face when onboard-
ing a project, a process that still presents open issues [11].

When developers decide to support an OSS project, they
need to learn social and technical aspects of the project before
placing a contribution. During this learning period, newcomers
face barriers that can result in their decision to give up contrib-
uting. Karl Fogel, in his book [12], states that “if a project
doesn't make a good first impression, newcomers may wait a
long time before giving it a second chance.” OSS projects can
benefit from more contributions if they offer the right support
to newcomers during their onboarding. To achieve this, it is
necessary to understand what barriers affect newcomers to OSS
projects during their onboarding.

The goal of our research was to identify and organize the
barriers for newcomers’ onboarding to OSS projects. To pro-
vide a broader set of barriers, we conducted a qualitative study
relying on four different sources: (i) a systematic literature
review (SLR) aimed at identifying and organizing the barriers
evidenced by the literature [13]; (ii) the feedback from 9 stu-
dents after they contributed to OSS projects; (iii) 24 answers to
an open-question sent to 9 OSS projects; and (iv) semi-
structured interviews with 36 developers from 14 different
projects, including newcomers, dropouts, and experienced
members. To analyze the data we used procedures of Grounded

Theory [14]. From these sources, we obtained three different
models that were compiled and organized in one single model.
The resulting model comprises 58 barriers organized in six
categories.

This paper is structured as follows. Section II introduces the
related research; Section III, the research method; Section IV,
the results; and Section V, the conclusions and future work.

II. RELATED WORK

Newcomers’ onboarding is not an issue exclusively faced
by OSS. Many studies in the literature deal with newcomers
joining process in collective production communities, including
studies on Wikipedia [15], [16] and on OSS projects [17–21].
Dagenais et al. [3] and Begel and Simon [22] present studies
regarding newcomers joining process in software projects, but
their focus is in industrial settings.

Von Krogh et al. [20] analyzed interviews with developers,
emails, source code repository, and documents of the FreeNet
project. The authors proposed a joining script for developers
who want to take part in the project. Nakakoji et al. [23] stud-
ied four OSS projects to analyze the evolution of their commu-
nities. They presented eight possible roles for the community
members and structured them into a model composed of con-
centric layers, like the layers of an onion. Although these pa-
pers deal with the evolution of members’ participation in OSS
communities, they focus on newcomers after the onboarding.

Some researchers tried to understand the barriers that influ-
ence the retention of newcomers. Zhou and Mockus [24]
worked on identifying the newcomers who are more likely to
remain in the project in order to offer active support for them to
become long-term contributors. Jensen et al. [18] analyzed
mailing lists of OSS projects to verify if the emails sent by
newcomers are quickly answered, if gender and nationality
influence the kind of answer received, and if the reception of
newcomers is different in users and developers lists. Stein-
macher et al. [25] used data from mailing list and issue tracker
to study how reception influences the retention of newcomers
in an OSS project.

There are also some studies presenting tools to support
newcomers’ first steps. Čubranić et al. [26] presented Hipikat, a
tool that supports newcomers by building a group memory and

recommending source code, mails messages, and bug reports to
support newcomers. Wang and Sarma [21] present a Tesseract
extension to enable newcomers to identify bugs of interest,
resources related to that bug, and visually explore the appropri-
ate socio-technical dependencies for a bug in an interactive
manner. Park and Jensen [27] show that visualization tools
support the first steps of newcomers in an OSS project, helping
them to find information more quickly.

Mentoring is also explored as a way to support newcomers.
Malheiros et al. [19] and Canfora et al. [17] proposed different
approaches to identify and recommend mentors to newcomers
of OSS projects by mining data from mailing lists and source
code versioning systems.

As listed, there are some efforts to study newcomers to
OSS. However, we could not find any study focused on identi-
fying and organizing the barriers faced by newcomers to OSS.
In previous work, we report some preliminary results of this
research. In [13] we report the results of the systematic litera-
ture review, which is part of the current study, and in [28] we
report the results of the analysis of the feedback from students
and of the answers to an open-question sent to 9 OSS projects.
In this paper, we present a qualitative study and a model that
categorizes and describes the barriers faced by newcomers
when they are onboarding to OSS projects.

III. RESEARCH METHOD

We conducted a qualitative study relying on different data
sources to identify and understand the barriers that hinder new-
comers' onboarding to OSS projects. One source was a set of
studies identified in a systematic literature review on barriers
faced by newcomers to OSS projects. The other three sources
consisted of data obtained from: feedback from students after
they tried to onboard OSS projects; responses to an open-ended
question sent to OSS communities; and interviews with new-
comers and experienced members of OSS projects.

Three models emerged from the analysis of the data. We
compiled these models generating a model of barriers for new-
comers to OSS. Figure 1 depicts the method followed. In the
following, we detailed the method of the systematic review and
of the data collection from the practitioners.

Figure 1: Research Method

A. Systematic Literature Review

We conducted a systematic literature review (SLR) to iden-
tify the barriers faced by newcomers empirically evidenced and
reported by the literature. The goal of this study was to come
up with a list of the barriers encountered by newcomers that
can influence their first contributions to the project. Further-
more, we aggregated the problems evidenced by the different
studies in a single model.

We undertook a systematic literature Preview (SLR) based
upon guidelines established for the Software Engineering do-
main [29], [30]. In this section, we provide a summary of the
protocol used in the SLR. More details about the SLR can be
found in [13]. To perform our SLR, we defined the question:
What are the barriers that influence newcomers' onboarding to
OSS projects?

Based on the research question we built a query and re-
trieved the studies from the ACM, IEEE, Scopus, and Springer
Link digital libraries. The search was performed in April 2013.

For each selected paper obtained, we conducted snowball
sampling [31] checking if the authors of the selected studies
published other relevant studies not retrieved from the digital
libraries. We checked their profiles in ACM, IEEE, DBLP, and
personal homepages (when available).

The results of the selection and screening are as follows.
After running the query on the digital libraries systems, we got
291 candidate papers. For each paper, two independent re-
searchers analyzed title, abstract, and keywords. In a consensus
meeting, we came to 33 candidate papers. We checked other
papers published by the authors of these 33 candidate studies,
finding 20 other candidate papers. After analyzing the abstract
of these papers, we selected nine relevant papers, coming to 42
candidate papers. After further analysis, 21 papers were con-
sidered relevant and were considered to extract relevant data.

Then, we read the full documents of the primary studies
identified and applied open coding to classify the barriers. The
analysis resulted in a Literature Review Model of barriers,
which are presented in Section IV.A.

B. Data From Practitioners

This section presents the method for the analysis using data
from practitioners.

1) Data Collection
We gathered data from three different sources:

 Source 1: feedback from students that contributed to OSS

projects;

 Source 2: answers to an open question sent to developers’

mailing lists of OSS projects

 Source 3: semi-structured interviews conducted with

newcomers and members of OSS projects.

The first source (Source 1) consisted of feedback received
from four PhD candidates and five undergrad students after
contributing to OSS projects as part of a course assignment. All
the students were newcomers to the projects they were contrib-
uting. The PhD candidates were all males, experienced devel-
opers, with 30 years old or more. The undergraduate students

were four males and one female, with ages among 21 and 24
year old, and were attending the last semester of Internet Sys-
tems course, therefore, about to join the software development
industry. PhD candidates and undergrad students attended to
different courses, but received the same assignment: signifi-
cantly contribute to an OSS project. The contribution should
include bug fixes and/or new features implementation.

The students contributed to the JabRef (2 graduate/2 under-
graduate), LibreOffice (2 undergraduate), and Mozilla Firefox
(3 graduate) projects. After the conclusion of the assignment,
their feedback was collected by means of an open-ended ques-
tionnaire. We created a questionnaire and the students an-
swered it via internet. The goal of the questions was to enable
students to debrief, and provide the general problems they
faced during their onboarding. The data was collected in two
different moments: the report from graduate students was col-
lected in February 2012; and from undergrad students in Octo-
ber 2012.

The second data source (Source 2) was composed of an-
swers to a questionnaire sent to contributors of OSS projects.
The data was obtained from 24 answers to an open question
sent to developers mailing lists and forums of OSS projects.
The messages were posted and the answers received during
October 2013. We sent the message to 9 different projects:
atunes, audacity, LibreOffice, Apache OpenOffice, Mozilla
Firefox, jEdit, OpenVPN, FreePlane and emacs. We chose
projects from different business domains. It is important to
notice that none of them delivers development frameworks or
scaffolding technologies, since this kind of project usually is
generally more complex and demand higher and more specific
skills and knowledge. These characteristics could hide some
possible barriers encountered by newcomers, once these new-
comers can face complex problems related to the technology
and domain inherent to the project.

The questionnaire delivered to the community members
comprised two questions to profile the contributor (project and
contribution time), and an open question: “In your opinion,

what are the main difficulties faced by newcomers when they
want to start contributing to this project? (Consider technical
and non-technical issues).”

We received 24 complete answers to the questionnaire,
from contributors of eight different projects, as presented in
Table 1. Regarding how long they had been contributing to the
project, the distribution is presented in Table 2. We received
answers from people that contributed to 6 different projects,
and that contributed to the projects for different periods (rang-
ing from newcomers to experienced members).

Table 1. Project to which participants mainly contribute
Project Count Percentage

LibreOffice / 6 25.00%

Apache OpenOffice 3 12.50

aTunes 3 12.50%

Mozilla Firefox 3 12.50%

Audacity 2 8.33%

jEdit 1 4.17%

OpenVPN 1 4.17%

FreePlane 1 4.17%

Emacs 1 4.17%

Did not inform 3 12.50%

Table 2. Period of contribution for questionnaire respond-

ents
For how long have you being contributing to the project? Count Percentage

Less than 6 months 7 29.17%

Between 6 months and 1 year 3 12.50%

Between 1 year and 3 years 6 25.00%

More than 3 years 8 33.33%

The final data collection (Source 3) was done by means of
semi-structured interviews with practitioners. Semi-structured
interviews include a mixture of open-ended and specific ques-
tions, designed to elicit not only the information foreseen, but
also unexpected types of information [32]. The reason to con-
duct interviews was to complement the findings gathered from
sources 1 and 2, deepening and broadening the understanding
about the barriers faced by newcomers.

We recruited subjects that belong to four different groups:

 Experienced members: project owners, managers, or de-
velopers allowed to commit code directly to the software
repository for more than one year.

 Newcomers that succeeded: participants that started to
contribute to the project less than one year before the in-
terview.

 Dropout Newcomers: volunteers that tried to contribute
to the project, but gave up;

 Onboarding Newcomers: volunteers that were trying to
place their first contributions.

The participants were recruited primarily through mailing
list and forums from 14 different projects. We also invited the
different types of newcomers directly, identifying them by
mining and following projects’ mailing lists and issue trackers.
Only adults 18 years of age and older were eligible to partici-
pate in this study. We made no distinction related to gender or
nationality. Participants should had software development ex-
perience, because we were interested in the barriers to onboard
a project and not to learn how to program. Participants are also
required to understand and speak English since the interviews
were conducted in English.

We interviewed 36 participants from 14 different projects
(Pardus, TextMate, zxing, Gephi, Hadoop, jEdit, Moodle, Inte-
grade, Noosfero, OpenOffice, cogroo, etherpad, JabRef, and
LibreOffice), including 11 experienced members, 16 newcom-
ers that succeeded, 6 dropout newcomers, and 3 newcomers
that were still trying to place their first contributions. Table 3
shows the profile of the interviewees. The interviews were
conducted from October 2013 to March 2014.

We used a semi-structured format, in which a script (inter-
view guide) supported the interviewing process. We started
with pilot interviews with a five developers involved in Open
Source Software Development to adjust the script. After that,
we recruited the subjects and conducted the interviews. All the
interviews were conducted using textual based chat tools, like
Google Talk. We chose this mean because it is an usual mean
of communication the participants use in their work, and it
facilitates data collection and interviews scheduling.

Each interview was individually conducted and the data
was saved in a local computer. Interviews began with a short
explanation of the research, followed by some questions to
profile the interviewees regarding their technical experience,
and main occupation. After that, we conducted the interviews

according to the script. The questions served to guide the inter-
view, and were not necessarily asked directly.

Table 3. Profile of the participants
 Time spent per

week in OSS

First

Project?

Profile Country Years of

experience

in the project

P1 less than 5 hours N experienced France 8

P2 from 5 to 10 hours Y experienced Germany 3

P3 from 10 to 20 hours N experienced Germany 3

P4 from 5 to 10 hours N experienced Canada 10

P5 from 5 to 10 hours N experienced Germany 15

P6 more than 20 hours N experienced Hungary 10

P7 more than 20 hours N experienced Australia 5

P8 more than 20 hours N experienced Brazil 5

P9 more than 20 hours N experienced Turkey 8

P10 from 5 to 10 hours N experienced Brazil 15

P11 less than 5 hours N experienced Brazil 7

P12 less than 5 hours Y newcomer Germany 0

P13 less than 5 hours Y newcomer Brazil 0

P14 from 5 to 10 hours Y newcomer India 1

P15 from 5 to 10 hours Y newcomer India 0

P16 less than 5 hours Y newcomer Germany 0

P17 less than 5 hours N newcomer USA 0

P18 less than 5 hours Y newcomer USA 0

P19 more than 20 hours Y newcomer Greece 0

P20 less than 5 hours Y newcomer Brazil 0

P21 less than 5 hours Y newcomer Brazil 0

P22 less than 5 hours Y newcomer Brazil 0

P23 N/I N newcomer UK 0

P24 from 10 to 20 hours N newcomer Brazil 1

P25 from 5 to 10 hours Y newcomer Brazil 1

P26 N/I Y newcomer France 0

P27 from 5 to 10 hours N newcomer Germany 0

P28 from 5 to 10 hours N dropout USA 0

P29 less than 5 hours Y dropout India 0

P30 less than 5 hours N dropout Germany 0

P31 less than 5 hours Y dropout Brazil 0

P32 less than 5 hours Y dropout India 0

P33 less than 5 hours Y dropout India 0

P34 less than 5 hours N onboarding China 0

P35 from 10 to 20 hours Y onboarding India 0

P36 less than 5 hours Y onboarding Greece 0

2) Data Analysis
We qualitatively analyzed the data using procedures of

Grounded Theory (GT) [14]. According to Seaman [32], a
grounded approach enables the identification of new concepts,
making it a valid choice for software engineering research. GT
is based in the concept of coding. Coding means attaching
codes, or labels, to pieces of text which are relevant to a partic-
ular theme or idea, grouping and examining the ideas to explain
a phenomena [32]. Coding can be divided into three steps: open
coding, where concepts are identified and their properties and
dimensions are discovered; axial coding, where connections
among codes are identified and grouped according to their
properties to represent categories; and selective coding, where
the core category (that integrates the theory) is identified and
described. We applied just the open and axial coding, because
our goal was to identify barriers. The coding was performed
using the ATLAS.ti

1
 tool.

Although the purpose of the GT method is the construction
of substantive theories, its use does not necessarily need to
remain restricted only to researches with this goal. According
to Strauss and Corbin [14], a researcher may use only some of
its procedures to meet one’s research goals.

1 http://www.atlasti.com

We split our analysis in two steps. The first (preliminary)
step (QS1) consisted of the analysis of data from Sources 1 and
2, open coding and axial coding this data. In the second step
(QS2), the codes and categories found in QS1 were used as
seeds for the coding of data from Source 3. During open cod-
ing, we assigned codes to sentences, paragraphs, or revisions.
This procedure overlapped the axial coding, in which we iden-
tified connections between the categories. We executed open
and axial coding several times to refine the emerging codes and
categories.

For the first step, the open coding process was conducted in
parallel by three researchers. Each researcher quoted and coded
the documents independently. After coding, the researchers
discussed the quotes and codes until they came to a consensus
for the whole set of documents. This was done to mitigate the
bias eventually caused by the participation of a single research-
er in the coding process. After coding, we discussed the quotes
and codes until coming to a consensus for the whole set of
documents. After the discussion, we started some iterations of
axial coding, followed by discussions and changes in codes and
categories. The result of this step was a Preliminary Qualitative
Model of the barriers faced by newcomers to OSS.

For the second step, we analyzed the data obtained from the
interviews. The process of analysis was similar to the one ap-
plied in the first step. However, we used the codes and catego-
ries identified in the first step as seeds to the open coding.
Moreover, only one researcher conducted open and axial cod-
ing. Some iteration with other two other researchers were con-
ducted in order to discuss and review the codes and categories.
As the work progressed, new categories and codes appeared
and some codes were merged, because the researchers’ com-
prehension evolved and new information sprang up.

We provide more details on the collection and analysis of
data from practitioners in a technical report available at
http://www.igor.pro.br/publica/TR/SBES2014_TR.pdf.

IV. RESULTS AND DISCUSSION

In this section, we report each model separately, and then,
the resulting combined model.

A. SLR Model

During the SLR, we analyzed 21 studies. From these stud-
ies, we identified 16 barriers, grouped in five categories: Social
Interactions, Newcomers’ Previous Knowledge, Finding a Way
to Start, Documentation Problems, and Code Issues. Table 4
shows the barriers identified for each category and the studies
that evidenced them. The categories are briefly described in the
following.

Social interaction issues. This category grouped the barri-
ers related to the way newcomers interact with the community,
including issues related to who were the members they ex-
change messages with, the size of their contact network, how
they communicate, and how the community communicate with
them. These barriers were mostly evidenced from historical
data mined from software repositories.

Newcomers’ Previous Knowledge. This category com-
prised problems related to the experience of the newcomers

regarding the project. It includes domain, process, and technical
previous skills.

Table 4. Studies that evidence each barrier
Category Barrier Studies

Social Interaction

Issues

Socialization of newcomers and project members [1], [24], [33–37]

Newcomers do not receive (timely and proper)

response

[18], [20], [24],

[25], [38–40]

Newcomers do not send a correct/meaningful

message
[24], [38]

Finding Help - Mentor/Expert [17], [26], [39]

Newcomers’

Previous

Knowledge

Lack of domain expertise [20], [40]

Lack of previous technical experience
[20], [24], [33–

35], [38], [41]

Lack of knowledge on project processes and

practices
[41]

Finding a Way to

Start

Finding an appropriate task/issue to start with
[20], [27], [42],

[43]

Finding the correct artifacts to fix an issue [26]

Documentation

Problems

Outdated documentation [39], [40]

Code comments not clear [40]

Information overload [26], [27], [40]

Lack of documentation/diagrams [40]

Code Issues

Code complexity/instability [34], [44]

Problems to understand architecture/code struc-

ture
[26], [27], [40]

Issues setting up a local workspace [40]

Finding a way to start. Newcomers need support to find a
task and the proper artifacts to change. We found that, from
communities perspective, newcomers should be able to find the
most appropriate task themselves [20]. However, some studies
showed that the newcomers need special attention [42], [43].

Documentation Problems. Refers to needs to learn tech-
nical and social aspects of the project to be able to contribute.
A rich and up-to-date documentation is essential for newcom-
ers trying to understand a project. However, just providing a
bunch of documentation leads to information overload. Finding
outdated documentation or getting lost in a huge amount of
information can lead to demotivation.

Code Issues. Comprised the barriers related to the source
code of the products. To contribute, newcomers need to change
or interact with existing source code. Therefore, it is necessary
for the newcomers to have enough knowledge about the code to
start their contributions. The main complaint regarding code
was that its structure was hard to understand, and learning it
takes too much time. A study evidenced that newcomers had
difficulties to set up their environment [40].

The category more thoroughly studied is Social Interaction
Issues, accounting for 15 studies, followed by Newcomers’
Previous Knowledge, with eight studies. The other categories
ranged from four to six related studies each. It was possible to
notice that the literature focused on the social issues of new-
comers’ onboarding. The technical barriers, like understanding
code/architecture, dealing with versioning system, setting up
workspace, building, and standards were poorly or not studied
so far.

Due to the nature of the approach to establish the model,
there was at least one paper associated to any problem. Consid-
ering the most studied one, we found that the most evidenced
problems are newcomers’ previous technical experience and
aspects regarding social network characteristics and response
reception.

B. Preliminary Practitioners’ Model

As presented in Figure 1, the Preliminary Qualitative Model
was the result of the analysis conducted from Sources 1 and 2.

The Preliminary Qualitative Model comprised seven cate-
gories along with 33 barriers. Table 5 presents an overview of
these categories, as well as the count of the documents, quotes,
and barriers coded. The count of documents is also reported in
terms of count of feedback and of answers to the open question
in which that category appeared. In the following, we briefly
present each category, including tables that report from which
source we observed the barriers. Moreover, for Source 2, we
split the evidence according to the respondent experience.

Table 5. Overview of Categories that Emerged
Category # of documents

(feedback/

question)

quotes

(feedback/

question)

of

barriers

Social interaction issues 11 (6 / 5) 12 (8/4) 4

Newcomers’ behavior 3 (0 / 3) 3 (0/3) 2

Newcomers’ technical knowledge 12 (4 / 8) 16 (7/9) 5

Finding a way to start 11 (8 / 3) 22 (18/4) 3

Documentation problems 15 (8 / 7) 23 (15/8) 10

Code issues 15 (7 / 8) 21 (11/10) 5

Issues setting up workspace 8 (4 / 4) 15 (10/5) 4

Social Interactions Issues. In Table 6 we can observe that
social issues are reported by the students and by community
members that joined the projects recently. Two barriers evi-
denced in the SLR did not appear in these studies. On the other
hand, the other barriers confirmed the evidence found in the
SLR. Moreover, three barriers evidenced were related to the
way newcomers are received by the community, detailing a
barrier found in the SLR – Receive (timely and proper) answer.

Table 6. Social Interaction barriers quotes per data source

and time in the project
Data Source

Source 1:

Feedback

Students

Source 2: Open Questions

Background/

Time in the project

Less

than 6

months

Between 6 months

and 3 years

More than

3 years

Delayed answers •

Impolite answers •

Finding someone to

help

• •

Community uses

intimidating terms

•

Newcomers’ Behavior. From the answers to the open
question, we identified issues related to newcomers’ behavior
that can hinder their onboarding. We identified two barriers
under this category, as presented in Table 7.

Table 7. Newcomers’ behavior barriers organized by

source and profile
Data Source

Source 1:

Feedback

Students

Source 2: Open Questions

Background/

Time in the project

Less

than 6

months

Between 6

months and 3

years

More than

3 years

Lack of Commitment • •

Underestimating the

challenge

•

Newcomers’ Technical Knowledge. Reported as a barrier
in the SLR, newcomers’ technical knowledge appeared as a
category in this model. Five barriers were identified in 12 doc-
uments analyzed, detailing this category. Both newcomers and
community members recognized previous knowledge as a bar-
rier that hindered newcomers’ onboarding, as it can be ob-
served in Table 8.

Table 8. Newcomers’ Technical Knowledge barriers per

data source and time in the project
Data Source

Source 1:

Feedback

Students

Source 2: Open Questions

Background/

Time in the project

Less

than 6

months

Between 6

months and

3 years

More than

3 years

Lack of previous knowledge

on project tooling
• •

Lack of knowledge on

versioning control system

•
 •

Choosing the right devel-

opment tools

•

Lack of knowledge on

technologies used

•

Lack of knowledge on the

programming language used

•

Finding a way to start with. In this category, the barriers
found are the same as those identified in the SLR. The only
exception was the problem related to outdated list of bugs,
which was reported during students’ feedback sessions. In Ta-
ble 9, we present the evidenced barriers according to the data
sources and profiles of the respondents. We can see that stu-
dents that were onboarding to the project largely reported barri-
ers that are under this category.

Table 9. Finding a way to start barriers quotes organized

by data source and time in the project
Data Source

Source 1:

Feedback

Students

Source 2: Open Questions

Background/

Time in the project

Less

than 6

months

Between 6 months

and 3 years

More than

3 years

Finding the right

piece of code to

work with

•

•

Outdated list of bugs •

Finding a task to

start with

•
• •

Documentation problems. Problems related to documenta-
tion were recurrently reported. Unclear documentation and
spread documentation were mentioned as barriers. Lack of
documentation was specialized, resulting in seven barriers. In
total, we identified ten barriers under this category. Table 10
reports the barriers and who reported them.

Table 10. Problems with documentation per data source

and time in the project
Data Source

Source 1:

Feedback

Students

Source 2: Open Questions

Background/

Time in the project

Less

than 6

months

Between 6

months and 3

years

More than

3 years

Outdated documentation • •

Unclear documentation •

Spread documentation •

Lack of documentation • • •

Lack of documentation

on project structure

•

Lack of documentation

on setting up workspace

•

Lack of documentation

on Contribution Process

•
 •

Lack of code comments •

Lack of design documen-

tation

•

Lack of code documenta-

tion
 •

Code issues. Problems related to code were also identified
in the feedback from students and open questions. However, in
these studies, we identified different barriers from those found
in the SLR. The only exception is the cognitive barrier, related

to problems to understand the architecture/code structure.
Table 11 presents the barriers split according to the data source.

Table 11. Code issues reported per data source and time in

the project
Data Source Source 1:

Feedback

Students

Source 2: Open Questions

Background/

Time in the project

Less

than 6

months

Between 6

months and 3

years

More than

3 years

Bad code quality • • •

Codebase size • • •

Outdated code •

Problems understanding

the code

• • •

Lack of code standards •

Issues setting up the workspace. To modify the applica-
tion it is necessary to build the application locally first, what
can take time and demotivate the newcomer. Differently from
the SLR, issues setting up the workspace appeared as a catego-
ry, encompassing four barriers. This category appeared in eight
documents, and was related to the barriers presented in Table
12. In the table, it is also possible to observe the data source
from which the barriers were evidenced.

Table 12. Setting up workspace barriers per data source

and time in the project
Data Source

Source 1:

Feedback

Students

Source 2: Open Questions

Background/

Time in the project
Less than

6 months

Between 6

months and 3

years

More than

3 years

Issues setting up a

local workspace
• • •

Platform dependency • •

Difficulty to find the

correct source code
•

Library dependencies •

C. Practitioners’ Resulting Model

The result of the analysis was the emergence of 50 barriers
grouped in 6 categories. Some of them also presented subcate-
gories. The categories are briefly described in the following. As
in the previous section, for each category, we present tables
showing the profile of the interviewees who provided the evi-
dence for the barriers.

Reception Issues. The receptivity of OSS communities was
also evidenced as a barrier, which even lead newcomers to give
up. This category comprises the barriers related to the interac-
tions that occur between newcomers and the community. A
breakdown during these social interactions can lead to demoti-
vation and result in newcomers’ dropping out. We could identi-
fy four barriers, presented in Table 13. The barriers can be
compared to the barriers identified in the social interaction
categories in the previous studies.

Table 13. Barriers that emerged from a qualitative analysis

of data categorized as “reception issues”
Barriers Dropout Newcomers Experienced

Newcomer receive an answer that was not

“newcomer friendly”

• •

Delay to receive a response • •

Not receiving an answer •

Impolite messages • •

Newcomers’ characteristics. This category comprises two
other subcategories: newcomers’ behavior, with ten barriers
(Table 14); and newcomers’ technical background (Table 15),
with five barriers. During the interviews, we identified many
barriers related to newcomers’ behavior that were not found in

the previous studies. Experienced members reported the most
part of them. Regarding newcomers’ technical background, the
interview analysis confirmed the barriers identified in other
studies.

Table 14. Barriers that emerged from a qualitative analysis

of data categorized as “newcomers’ behavior”
Barriers Dropout Newcomers Experienced

Lack of proactivity • • •

Need to be patient •

Underestimate the challenge •

Lack of commitment •

Not acknowledging/thanking answers •

Shyness •

English level •

Making useless comments in the mailing
list/forums

 •

Low responsiveness •

Not sending a correct meaningful and
correct message

 •

Table 15. Barriers that emerged from a qualitative analysis

of data categorized as “newcomers’ technical background”
Barriers Dropout Newcomers Experienced

Lack of proper knowledge in the program-

ming language

 • •

Lack of knowledge on technologies and tools

used by the project

 • •

Lack of previous knowledge on versioning
control system

 • •

Lack of experience on unit testing •

Difficulty choosing the right development
tools

 •

Newcomers Need Orientation. We found that newcomers
often face unfamiliar and rugged landscapes when onboarding
to OSS project. They need proper orientation to find their way
in the project, and correctly place their contributions. We iden-
tified at least one barrier belonging to this category in 20 inter-
views. The barrier difficulty to find a mentor was mentioned
previously (difficulty to find someone to help) under social
interaction issues category.

Table 16. Barriers that emerged from a qualitative analysis

of data categorized as “find a way to start”
Barriers Dropout Newcomers Experienced

Finding a task to start with • • •

Reproducing issues •

Finding the right piece of code to work • • •

Finding a mentor • • •

Poor “How to contribute” • • •

Newcomers don’t know what is the

contribution flow

 •

Documentation problems. Regarding documentation prob-
lems, we found ten barriers, as presented in Table 17. The
barriers identified in the interviews had been already evidenced
in other data sources.

Table 17. Barriers that emerged from a qualitative analysis

of data categorized as “documentation problems”
Barriers Dropout Newcomers Experienced

Spread documentation •

Outdated Documentation • • •

Code comments not clear •

Lack of documentation in general •

Lack of code comments •

Lack of code documentation • • •

Lack of design documentation / code struc-

ture

 •

Lack of documentation on setting up work-

space

 •

Technical Hurdles. This category presented the highest
number of barriers evidenced during the analysis. We put all
the problems faced by newcomers while dealing with the
source code in a single category. To do so, we further classified
these barriers into three subcategories: Code/architectural hur-
dles (Table 18), with seven barriers; Hurdles to submit changes
(Table 19), with four barriers; and Local environment setup
hurdles (Table 20), with four barriers.

Table 18. Barriers that emerged from a qualitative analysis

of data categorized as “code/architecture hurdles”
Barriers Dropout Newcomers Experienced

Bad design quality • •

Bad code quality •

Code complexity • •

Codebase Size • • •

Understanding the architecture/code

structure

 • •

Understanding the code • • •

Understanding flow of information •

Table 19. Barriers that emerged from a qualitative analysis

of data categorized as “hurdles to submit changes”
Barriers Dropout Newcomers Experienced

Delay to get contribution accepted/reviewed •

Getting contribution accepted • •

Lack of information on how to send a

contribution

 • •

Issue to create a patch •

Table 20. Barriers that emerged from a qualitative analysis

of data categorized as “local environment setup hurdles”
Barriers Dropout Newcomers Experienced

Building workspace locally • • •

Library dependencies •

Platform dependence •

Finding the correct source code •

Cultural Differences. Once OSS development is a case of
global software development, people from different cultures
need to collaborate. These differences can result in interaction
problems. In our analysis, three subjects reported that some
newcomers face cultural barriers while onboarding. We could
find two barriers under this category, shown in Table 21.

Table 21. Barriers that emerged from a qualitative analysis

of data categorized as “cultural differences”
Barriers Dropout Newcomer Experienced

Some newcomers need to contact a real person •

Message received is considered rude •

D. Resulting model of barriers for newcomers to OSS projects

After obtaining the model from the analysis of interviews,
we iteratively reanalyzed the models obtained from all sources,
relying on their respective data. The goal of this reanalysis was
to combine the findings to create a single model accommodat-
ing all the barriers evidenced. Once again, we merged some
barriers and reorganized the categories.

The resulting model aggregates all the barriers evidenced in
the intermediate models. The model was obtained after the
composition of the analysis of axial coding. Each leaf code is a
concept grounded in the data found during open coding.

The model presents 58 barriers, organized in 6 categories
and in several subcategories. The model is presented in Figure
2. The numbers after the name of each barrier correspond to the
amount of times (different documents) that the barrier had been
identified per source. The numbers represent in this order:

number of studies from the SLR that evidenced the barrier (out
of 21); number of students that reported the barrier in their
feedback (out of 9); number of mentions in the open questions
(out of 24); and number of interviewees that reported the barri-
er (out of 36). In parenthesis, we also provided the number of
projects in which the barriers were evidenced, considering only
the data from practitioners.

As it is possible to notice, we highlight the barriers which
evidence appeared in all four data sources, including reports
from practitioners recruited in different ways and evidence
from the current literature.

V. THREATS TO VALIDITY

Although we analyzed data from a variety of sources, and
from different projects, it is very likely that we did not reach all
possible barriers and explanation of the barriers. We are aware
that each project has its singularities, so, the level of support
and the barriers can differ according to the project. Our strategy
to consider different projects and different profiles of develop-
ers aimed at alleviating this issue, identifying recurrent men-
tions of barriers from multiple perspectives.

Another threat to the validity of the results is the subjectivi-
ty of the data classification. We used the Grounded Theory
procedures to mitigate this threat, given that the GT requires
the entire analysis to be grounded in the data collected. Addi-
tionally, the analysis process was discussed along with two
other researchers, to encourage a better validation of the inter-
pretations through the mutual agreement.

As we sent open invitations to mailing list, there should be
sampling bias in our interviewees and open question respond-
ents, namely self-selection bias and social desirability bias. But,
getting different sources and analyzing the answers in context
to identify specificities, we tried to avoid that effect.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we reported the results of a qualitative study
relying on data obtained from a systematic literature review and
from practitioners. The main contribution is a model of barriers
that hinder newcomer onboarding to OSS projects, composed
of 58 barriers grouped in six different categories. This model
organizes the existing common knowledge about barriers faced
by newcomers to OSS projects.

A fact to notice is that 50 out of 58 barriers presented in the
resulting model were identified in the data from interviews with
practitioners. We also could notice that less than 30% of the
barriers (17 barriers after reanalysis) were evidenced by the
literature. Moreover, only six barriers presented in the model
were evidenced in all the sources analyzed.

The OSS communities can benefit from these results to
provide appropriate support to newcomers. We expect to make
communities aware of the problems that can hinder the first
contributions, offering them an opportunity to think about the
reception of newcomers.

During our interviews, we found that experienced members
are interested in the results of our research to offer a better
support to newcomers. Existing members of the projects can
think about maps or signs to orient newcomers and guide them,
or, at least, warn them about the barriers they can find. We

believe that simple actions can make a great impact. By making
newcomers aware of the problems they can face and of the
strategies used by the project to support each of the categories
(or barriers), the communities can manage newcomers’ expec-
tations and projects can benefit from more contributions.

This research topic needs further exploration and can bring
fruitful results not only for OSS projects, but also for software
projects in general. We believe that our results can offer in-

sights for researching ways to facilitate the influx of newcom-
ers to OSS projects. Each of the categories presented can foster
further research and enable investigations in different perspec-
tives.

ACKNOWLEDGEMENTS
The authors would like to thank Fundação Araucária, CNPq

(477831/2013-3), FAPEAM, NAPSoL-PRP-USP, NAWEB,
CAPES (BEX 2038-13-7) and FAPESP for financial support.

Figure 2. Model of barriers for newcomers to OSS

REFERENCES
[1] I. Qureshi and Y. Fang, “Socialization in Open Source Software Projects:

A Growth Mixture Modeling Approach,” Org. Res. Methods, vol. 14, no.

1, pp. 208–238, 2011.

[2] R. E. Kraut, M. Burke, J. Riedl, and P. Resnick, “The Challenges of
Dealing with Newcomers,” MIT Press, 2012, pp. 179–230.

[3] B. Dagenais, H. Ossher, R. K. E. Bellamy, M. P. Robillard, and J. P. de

Vries, “Moving into a new software project landscape,” in 32nd
International Conference on Software Engineering, 2010, pp. 275–284.

[4] W. Scacchi, “Understanding the requirements for developing open source

software systems,” IEE Proceedings Software, vl. 149, no. 1, pp. 24-39,
2002.

[5] I. Herraiz, G. Robles, J. J. Amor, T. Romera, J. M. G. Barahona, and J.

Carlos, “The processes of joining in global distributed software projects.,”
in 2006 International Workshop on Global Software Development for the

Practitioners, 2006, pp. 27–33.

[6] I. Steinmacher, M. A. Gerosa, and D. Redmiles, “Attracting, Onboarding,
and Retaining Newcomer Developers in Open Source Software Projects,”

in Workshop on GSD in a CSCW Perspective, 2014.

[7] P. Meirelles, C. Santos, J. Miranda, F. Kon, A. Terceiro, and C. Chavez,
“A study of the relationships between source code metrics and

attractiveness in free software projects,” in 2010 Brazilian Symposium on

Software Engineering (SBES),, 2010, pp. 11–20.
[8] C. Santos, G. Kuk, F. Kon, and J. Pearson, “The Attraction of

Contributors in Free and Open Source Software Projects,” J. Strateg. Inf.

Syst., vol. 22, no. 1, pp. 26–45, Mar. 2013.
[9] S. K. Shah, “Motivation, Governance, and the Viability of Hybrid Forms

in Open Source Software Development,” Manage. Sci., vol. 52, no. 7, pp.

1000–1014, 2006.
[10] Y. Ye and K. Kishida, “Toward an Understanding of the Motivation Open

Source Software Developers,” in 25th International Conference on

Software Engineering, 2003, pp. 419–429.
[11] V. Wolff-Marting, C. Hannebauer, and V. Gruhn, “Patterns for tearing

down contribution barriers to FLOSS projects,” in 12th Intl. Conf. on
Intelligent Software Methodologies, Tools & Techniques, 2013, pp. 9-14.

[12] K. Fogel, Producing Open Source Software: How to Run a Successful

Free Software Project, First. O’Reilly Media, 2013.
[13] I. Steinmacher, M. A. G. Silva, and M. A. Gerosa, “Systematic review on

problems faced by newcomers to open source projects,” in 10th

International Conference on Open Source Software, 2014, p. 10pp.
[14] A. Strauss and J. Corbin, Basics of Qualitative Research : Techniques and

Procedures for Developing Grounded Theory. SAGE Publications, 1998.

[15] A. Halfaker, A. Kittur, and J. Riedl, “Don’t Bite the Newbies: How
Reverts Affect the Quantity and Quality of Wikipedia Work,” in 7th Intl.

Symposium on Wikis and Open Collaboration, 2011, pp. 163–172.

[16] P. Vora, N. Komura, and S. U. Team, “The n00b Wikipedia Editing
Experience,” in 6th Intl. Symposium on Wikis and Open Collaboration,

2010, pp. 36:1–36:3.

[17] G. Canfora, M. Di Penta, R. Oliveto, and S. Panichella, “Who is Going to
Mentor Newcomers in Open Source Projects?,” in 20th International

Symposium on the Foundations of Software Engineering, 2012, pp. 1-11.

[18] C. Jensen, S. King, and V. Kuechler, “Joining Free/Open Source Software
Communities: An Analysis of Newbies’ First Interactions on Project

Mailing Lists,” in System Sciences (HICSS), 2011 44th Hawaii

International Conference on, 2011, pp. 1–10.
[19] Y. Malheiros, A. Moraes, C. Trindade, and S. Meira, “A Source Code

Recommender System to Support Newcomers,” in 36th Computer

Software and Applications Conf. (COMPSAC), 2012, pp. 19-24.

[20] G. Von Krogh, S. Spaeth, and K. R. Lakhani, “Community, joining, and

specialization in open source software innovation: A case study,”

Research Policy, vol. 32, no. 7, pp. 1217–1241, 2003.
[21] J. Wang and A. Sarma, “Which bug should I fix: helping new developers

onboard a new project,” in 4th International Workshop on Cooperative

and Human Aspects of Software Engineering (CHASE), 2011, pp. 76–79.
[22] A. Begel and B. Simon, “Novice Software Developers, All over Again,”

in 4th Intl. Workshop on Computing Education Research, 2008, pp. 3-14.

[23] K. Nakakoji, Y. Yamamoto, Y. Nishinaka, K. Kishida, and Y. Ye,
“Evolution Patterns of Open-source Software Systems and Communities,”

in Workshop on Principles of Software Evolution, 2002, pp. 76–85.

[24] M. Zhou and A. Mockus, “What make long term contributors:
Willingness and opportunity in OSS community,” in Software

Engineering (ICSE), 2012 34th International Conference on, 2012, pp.

518–528.
[25] I. Steinmacher, I. Wiese, A. P. Chaves, and M. A. Gerosa, “Why do

newcomers abandon open source software projects?,” in International

Workshop on Cooperative and Human Aspects of Software Engineering
(CHASE), 2013, pp. 25–32.

[26] D. Cubranic, G. C. Murphy, J. Singer, and K. S. Booth, “Hipikat: a project

memory for software development,” IEEE Transactions on Software
Engineering, vol. 31, no. 6, pp. 446–465, 2005.

[27] Y. Park and C. Jensen, “Beyond pretty pictures: Examining the benefits of
code visualization for open source newcomers,” in 5th IEEE International

Workshop on Visualizing Software for Understanding and Analysis, 2009,

pp. 3–10.
[28] I. Steinmacher, I. S. Wiese, T. Conte, M. A. Gerosa, and D. Redmiles,

“The Hard Life of Open Source Software Project Newcomers,” in

International Workshop on Cooperative and Human Aspects of Software
Engineering (CHASE), 2014.

[29] B. Kitchenham and P. Brereton, “A systematic review of systematic

review process research in software engineering,” Information and
Software Technology, vol. 55, no. 12, pp. 2049–2075, Dec. 2013.

[30] B. Kitchenham and S. Charters, “Guidelines for performing Systematic

Literature Reviews in Software Engineering,” Keele University and
Durham University, EBSE 2007-001, 2007.

[31] S. Jalali and C. Wohlin, “Systematic Literature Studies: Database

Searches vs. Backward Snowballing,” in International Symposium on
Empirical Software Engineering and Measurement, 2012, pp. 29–38.

[32] C. B. Seaman, “Qualitative methods in empirical studies of software

engineering,” Software Engineering, IEEE Transactions on, vol. 25, no. 4,
pp. 557–572, Jul. 1999.

[33] C. Bird, “Sociotechnical coordination and collaboration in open source

software,” in 27th IEEE International Conference on Software
Maintenance, 2011, pp. 568–573.

[34] C. Bird, A. Gourley, P. Devanbu, A. Swaminathan, and G. Hsu, “Open

Borders? Immigration in Open Source Projects,” in ICSE Workshops MSR
’07. Fourth International Workshop on Mining Software Repositories,

2007, 2007, pp. 6–6.

[35] N. Ducheneaut, “Socialization in an Open Source Software Community:
A Socio-Technical Analysis,” Computer Supported Cooperative Work

(CSCW), vol. 14, no. 4, pp. 323–368, 2005.

[36] P. He, B. Li, and Y. Huang, “Applying Centrality Measures to the

Behavior Analysis of Developers in Open Source Software Community,”

in Cloud and Green Computing (CGC), 2012 Second International

Conference on, 2012, pp. 418–423.
[37] M. Zhou and A. Mockus, “Does the initial environment impact the future

of developers,” in Software Engineering (ICSE), 2011 33rd International

Conference on, 2011, pp. 271–280.
[38] V. Singh, “Newcomer integration and learning in technical support

communities for open source software,” in 17th ACM international

conference on Supporting group work, 2012, pp. 65–74.
[39] I. Steinmacher, I. S. Wiese, and M. A. Gerosa, “Recommending mentors

to software project newcomers,” in Third International Workshop on

Recommendation Systems for Software Engineering, 2012, pp. 63–67.
[40] K.-J. Stol, P. Avgeriou, and M. Ali Babar, “Identifying architectural

patterns used in open source software: approaches and challenges,” in

14th international conference on Evaluation and Assessment in Software
Engineering, 2010, pp. 91–100.

[41] A. Schilling, S. Laumer, and T. Weitzel, “Who Will Remain? An

Evaluation of Actual Person-Job and Person-Team Fit to Predict

Developer Retention in FLOSS Projects,” in 2012 45th Hawaii

International Conference on System Sciences, 2012, pp. 3446–3455.
[42] X. Ben, S. Beijun, and Y. Weicheng, “Mining Developer Contribution in

Open Source Software Using Visualization Techniques,” in 2013 Third

International Conference on Intelligent System Design and Engineering
Applications (ISDEA), 2013, pp. 934–937.

[43] A. Capiluppi and M. Michlmayr, “From the Cathedral to the Bazaar: An

Empirical Study of the Lifecycle of Volunteer Community Projects,” in
1st International Conference on Open Source Systems, 2007, pp. 31–44.

[44] V. Midha, P. Palvia, R. Singh, and N. Kshetri, “Improving open source

software maintenance,” Journal of Computer Information Systems, vol.
50, no. 3, pp. 81–90, 2010.

