
Electronic Communications of the EASST
Volume 65 (2014)

Proceedings of the
International Workshop on

Software Quality and Maintainability
(SQM 2014)

Comparing communication and development networks for predicting file
change proneness: An exploratory study considering process and social

metrics

Igor Scaliante Wiese, Douglas Nassif Junior, Reginaldo Re, Igor Steinmacher, Marco Aurelio
Gerosa

15 pages

Guest Editors: Lodewijk Bergmans, Tom Mens, Steven Raemaekers
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Comparing communication and development networks for
predicting file change proneness: An exploratory study considering

process and social metrics

Igor Scaliante Wiese1, Douglas Nassif Junior2, Reginaldo Re3, Igor Steinmacher4,
Marco Aurelio Gerosa5

1 igor@utfpr.edu.br, 2 nassifrroma@gmail.com, 3 reginaldo@utfpr.edu.br, 4

igorfs@utfpr.edu.br
Department of Computing - Federal University of Technology - Parana (UTFPR)

Campo Mourao, PR, Brazil
5 gerosa@ime.usp.br http://lapessc.ime.usp.br/

Department of Computer Science - University of Sao Paulo (USP)
Sao Paulo, SP, Brazil

Abstract: Previous studies have shown that social factors of software engineering
influence software quality. Communication and development networks represent the
interactions among software developers. We explored the statistical relationships
between file change proneness and a set metrics extracted from the issue tracker
and version control system data to find the relative importance of each metric in
understanding the evolution of file changes in the Rails project. Using hierarchical
analysis, we found that code churn, number of past changes, and number of develop-
ers explain the evolution of changes in the Rails project better than Social Network
Analysis (SNA) metrics. Considering the relative importance of each predictor, we
got the same results. We also conducted a factor analysis and found that social met-
rics contribute to explain a group of files different from those explained by process
metrics.

Keywords: Social Network, Social Metrics, Evolution of changes, Prediction Change
Proneneness, Github

1 Introduction

Prediction models enable the identication of files that change more often during software evolu-
tion. These files may require more attention from the developers [Sch00]. Researchers have been
using process and social metrics to build their prediction models. Previous studies have shown
that social factors in software development influence software quality [BNG+, SHAJ12, BH13].
Mailing lists, issue/bug trackers and version control systems are some of the most common tools
used as part of the infrastructure to support interaction among developers. The data extracted
from the history of these tools can be used to better understand the change proneness of artifacts
in software development.

Developers cooperate asynchronously, changing files during software evolution. Understand-
ing the structure of this cooperation may tell us a lot about the quality of the software [MWSO08].

1 / 15 Volume 65 (2014)

mailto:igor@utfpr.edu.br
mailto:nassifrroma@gmail.com
mailto:reginaldo@utfpr.edu.br
mailto:igorfs@utfpr.edu.br
mailto:gerosa@ime.usp.br
http://lapessc.ime.usp.br/


Comparing communication and development networks for predicting file change proneness: An

exploratory study considering process and social metrics

Moser et al.[MPS08], for example, used code change metrics such as code churn, number of
developers, and number of past changes to build prediction models. Their findings show that his-
torical data about le changes contain discriminatory and meaningful information about software
quality [MPS08]. Several types of socio-technical networks were used to build prediction mod-
els [MWSO08, WSDN09, BNG+, BBC11], but they present controversial results [HBB+12].
For example, Bird et al. [BNG+] report better predictive performance when social metrics are
used as an element within a socio-technical network. On the other hand, Ostrand et al. [WOB07]
report that social metrics do not improve predictive performance.

Considering these controversial results regarding social metrics, we want to explore different
types of social networks to compare process and social metrics in consideration of file changes.
We did not consider source code metrics, as we were more interested in collaborative aspects of
software engineering. Besides, Rahman and Devanbu [RD13] showed that process metrics lead
to better results than source code. We investigated two research questions: RQ1: What are the
differences when process and social metrics related to communication and cooperation networks
are used to predict file change proneness? and RQ2: What is the relative importance of each
metric to predict file change proneness?

To conduct this study, we gathered data from three semesters of the Rails project1 and built the
communication and built communication and development networks to calculate betweenness
centrality, closeness centrality, and degree centrality. In addition, we also considered the number
of developers as part of our set of social metrics. Our set of process metrics comprised code churn
and number of past file changes. We performed a hierarchical analysis using a multiple linear
regression (MLR) model to build the prediction models using the process and social metrics. We
also used the relative importance to compare them.

The rest of the paper is organized as follows. In Section 2, we present the study design. Section
3 describes the results obtained from the hierarchical analysis for each network. In Section 4,
we compare the relative importance of each metric to predict file change proneness. In Section
5, we present related work. In Section 6, we discuss threats to validity. Conclusions and future
work are presented in Section 7.

2 Study Design

The goal of this study is to explore different kinds of social networks and compare social network
metrics with process metrics to understand file change proneness. In this sense, we conducted
an exploratory study on the Rails project. One of the reasons for choosing Rails is its influential
nature [TBLJ13].

We implemented a tool2 to gather the data and build the communication and development
networks. We performed a multicollinearity analysis comparing the metrics pairwise using the
data of our dataset. Then, we followed the hierarchical approach used by Bettenburg and Hassan
[BH13] to evaluate each prediction model. We studied each beta value, verifying whether the
relation had a positive or negative effect, in order to understand the evolution of file change.

1 Data available on http://github.com/rails/rails
2 The tool is available at https://github.com/douglasjunior/DouglasJuniorTCC

Proc. SQM 2014 2 / 15



ECEASST

Finally, we used the relaimpo package3 to report the relative importance of each metric. In the
following subsections, we present the study design in greater detail.

2.1 Data Collection

We collected data from the Ruby on Rails project, hosted by GitHub. Ruby on Rails4 is a full-
stack Model-View-Controller (MVC) framework for database-backed web applications. The
Rails project had, in November 2013, 40.203 commits made by 2.498 contributors and repre-
senting 169.688 lines of code.

We used the GithubAPI5 to gather the data. We extracted the history of the source code
versioning system and issue tracker from the project. We filtered the data to include only source
code-related artifacts, excluding files such as images and documents. We split the data into three
intervals of 6 months, from July 2011 until December 2012. We chose these three intervals
because they represent the most active periods in terms of contributions. We used a timeframe
of 6 months following the approach of previous work conducted by Hong et al. [HKCB11] and
[BNG+].

2.2 Process Metrics and Social Networks Analysis

To compare the relative importance of predictors, we collected two process metrics commonly
used in the literature (number of past changes and code churn), the number of developers, and
three social network metrics computed from communication and development networks (be-
tweenness, closeness, and degree). Process metrics have been used as predictor variables in
several studies in the literature [SHAJ12, DLR12] and have been shown to present better results
than source code metrics [RD13].

We calculated the number of changes and code churn using commit data from the Git version
control system. We also computed the number of developers. To build the development network,
we used the number of distinct developers that had made at least one commit on the file. For the
communication network, we considered the number of developers that commented on an issue.

We calculated the number of developers, number of past changes, and code churn for every
file F that changed during semester S. For each file F, we counted the number of changes in the
subsequent interval (S+1). The number of changes was used as the dependent variable. This
method is based on the studies conducted by Bird et al.[BNG+] and Bicer et al.[BBC11].

We considered the comments of the issue tracker to build the communication network, and
the commits gathered from the source code history to build the development network. For the
first network, we assumed a relationship between two developers if both commented an issue
in which a given file was changed. To create the second network, we assumed that developers
who committed the same file during the period of analysis are linked. The relationships among
developers were represented as an undirected graph, in which an unweighted edge was used to
represent a link between two developers. Using both communication and development networks,

3 http://cran.r-project.org/web/packages/relaimpo/
4 Data available on http://www.ohloh.net/p/rails
5 Available on developer.github.com/v3/

3 / 15 Volume 65 (2014)



Comparing communication and development networks for predicting file change proneness: An

exploratory study considering process and social metrics

we computed three different Social Network Analysis (SNA) metrics: degree, closeness, and
betweenness centrality [HR05]. JUNG API 6 was used to calculate these metrics.

Betweenness centrality represents the number of shortest paths from all nodes to all others that
pass through a given node. Betweenness centrality is useful for explaining the importance of a
node in a network [HR05]. Wolf et al. [WSDN09] suggest that people with high betweenness
are considered to have more interpersonal influence in the network.

The closeness centrality of a node is the number of steps required to access every other node
from a given node. A higher value for a node means it is easier for the node to spread information
through the network. Lower values indicate that the node is farther away from all others [HR05].
Degree is the number of edges connected to a node. In this case, a developer’s degree is equal to
the number of other developers with whom he/she worked or communicated.

The SNA metrics were computed for each developer. To apply these metrics to perform the
hierarchical analysis, we used file-based metrics, or metrics calculated on a per-file basis. We
adapted the approach proposed by Meneely et al. [MWSO08] to convert a developer-based
network metric into a file-based metric. Each file-based metric should reflect the network metrics
of developers who changed (committed) the file throughout the semester, or who commented an
issue in which the file was changed. To calculate file network metrics, we listed all distinct
developers who changed or commented on the file, and calculated the maximum and average
value for each developer metric over the semester. For example, the maximum of closeness of
file F is the maximum of all developer closeness values for the developers who changed the file
F. Values are calculated per-developer, not per-change, so if a developer changed a file twice,
his/her metrics would only be used once.

Our set of metrics comprised nine metrics. We classified code churn and number of past
changes as process metrics, like [MPS08, DLR12]. In some previous works [SHAJ12, DLR12],
the number of developers was considered an organizational metric, or part of the process metric
set. We considered the number of developers as a social metric in our dataset.

Instead of adopting number of defects, faults, or bugs as the dependent variable, as some
studies have done, we decided to use the number of changes as our dependent variable. We chose
this method because bug-tracking systems can also be used to report new features [HJZ13].

In the following subsection, we present details of how we conducted the hierarchical analysis
and how we evaluated our models.

2.3 Hierarchical Analysis

The hierarchical analysis applied here was based on statistical models used to investigate the
relationship among metrics and to explain the number of future number of changes. Multiple
linear regression (MLR) analysis was used to investigate the relationship among the metrics (in-
dependent variables) to predict the number of future changes (dependent variables). Regression
analysis leads to understand how the value of the dependent variable changes when any indepen-
dent variable also changes.

In our work, we used the following way to model the number of future changes:
numberFutureChanges( f ile f )= β0+β1.CodeChurn+β2.NumberO f Developers+β3.NumberPastChanges+

6 Documentation available on jung.sourceforge.net/doc/

Proc. SQM 2014 4 / 15



ECEASST

β4.BetweenessAV E +β5.ClosenessAV E +β6.DegreeAV E +β4.BetweenessMAX +β5.ClosenessMAX +β6.DegreeMAX +
ei

The intercept of the model is represented by β0. The intercept corresponds to the mean value
of numberFutureChanges when all of the independent variables are equal to 0. All the values of
βx, with ”x” ranging from 1 to 6, are called the regression coefficients. A regression coefficient
represents how much the dependent variable is expected to increase (if the coefficient is positive)
or decrease (if the coefficient is negative). The last part of the formula (1) ei is the residual error
between the value observed to futureChanges of file F collected during semester s+1 and the
value predicted to file F using the MLR formula.

We followed a hierarchical modelling approach to create the MLR models. We started with a
baseline model using code churn, a classical defect predictor, and process metrics [BH13]. We
then built subsequent models in which we, step-by-step, added our metrics. The metrics that
were removed fewer times during the multicollinearity analysis were included first in the model.
For each model built, we report the adjusted coefficient of determination R2. The adjusted R2

indicates how well the data points fit a line or curve, penalizing the value of R2 as extra variables
are included in the model. An adjusted R2 of 1 indicates that the regression line perfectly fits the
data.

Due to a relatively high amount of skew and kurtosis found in our dataset, we applied a log
transformation to each metric, following the same approach applied by [BH13, RD13]. We
computed the variance of inflation (VIF) of each metric. In multiple regression, VIF is used as
an indicator of multicollinearity. VIF is defined as the reciprocal of tolerance 1

1−R2 . The value of
10 has been recommended as the maximum level of VIF and this value was adopted in this paper
[JBBA09]. To conduct the comparison among metrics, we used relaimpo, an R package that
provides several metrics for assessing relative importance in linear models. The metric is lmg,
which provides a decomposition of the model-explained variance to compare the contribution of
each predictor. In the following section, we present the results of this analysis.

3 Results

We collected and analyzed data from 3 semesters of the Rails project. We built 15 models to
analyze development networks and 13 models to analyze communication networks. For each
network, we found different results when we performed multicollinearity analysis using VIF.

3.1 Communication Network

To analyze how the communication network can contribute to explain file change proneness,
we started our analysis by computing the VIF analysis. To measure the multicollinearity, we
needed a complete model, using all metrics together. We removed from the model the metric
that presented the highest value for VIF. We chose VIF instead of correlation among pairs of
predictors because the pairwise correlations could be small, yet a linear dependence could exist
among three or even more variables.

Table 1 presents the values of VIF to the communication network. We begin by showing the
complete model (M1) for each semester. We removed from the model the metric that presented

5 / 15 Volume 65 (2014)



Comparing communication and development networks for predicting file change proneness: An

exploratory study considering process and social metrics

the highest VIF. We conducted this procedure when the metrics presented values higher than 10.
Values highlighted in bold show the highest VIF value for each interaction.

Table 1: VIF Analysis of Communication Network in Rails Project
VIF Analysis: Communication Network

2011.2 2012.1 2012.2
log(Yi) M1 M2 M3 M4 M1 M2 M3 M4 M5 M1 M2 M3 M4 M5
Churn 3.4 3.4 3.3 3.3 5.32 5.32 5.22 5.21 2.44 2.54 2.53 2.52 2.50 2.49

Developers 24.9 21.9 - - 23.35 21.30 21.27 9.31 7.86 20.18 18.94 8.21 3.02 2.75
PastChanges 7.1 7.0 5.9 5.8 10.95 10.82 10.67 10.67 - 3.12 3.10 3.05 3.04 3.03

btwAve 89.4 14.5 10.2 2.9 644.89 86.37 18.53 5.65 5.65 161.60 143.80 - - -
dgrAve 56.6 15.0 14.9 - 466.79 115.14 73.03 - - 115.07 104.44 28.58 - -
clsAve 4.1 4.1 3.4 1.6 19.94 12.54 11.70 2.76 2.67 15.07 14.81 14.10 3.84 3.28

btwMax 150.0 - - - 914.22 - - - - 382.53 - - - -
dgrMax 80.3 11.2 3.77 3.6 647.67 145.5 - - - 167.56 20.74 20.73 19.70 -
clsMax 3.0 3.0 2.3 2.3 105.81 102.59 19.34 10.24 9.95 73.39 36.54 17.51 17.17 2.96

We observed that four models were necessary to remove the metrics with VIF higher than
10 for the period of 2011.2. Three metrics were removed from our model in the following
sequence: maximum value of betweenness (btwMax), number of developers (developers), and
average of degree (dgrAVE). In the following semester (2012.1), we removed four metrics from
the model. We removed the maximum betweenness (btwMax), maximum degree (dgrMax),
average of degree (dgrAVE), and number of past changes (PastChanges). The only difference
between the first and second semester was that we removed btwAve instead of PastChanges. For
each semester - considering communication - we did not find a VIF larger than 7.86.

After conducting the multicollinearity analysis, we started our hierarchical analysis with a
baseline model (MB). We added the number of distinct developers (NDEVS) and number of
past changes (PastChanges). We then added the three average SNA metrics (btwAve, clsAve,
dgrAve), and, finally, we included the maximum SNA metrics (btwMax, clsMax, dgrMax). For
every stepwise model, we report the regression coefficient for each metric, the 1

1−R2 adjusted, the
sum of square, and the delta of the sum of square in Table 2.

We conducted the comparison using the ANOVA test. ANOVA returns the goodness-of-fit to
compare two different models. The goodness-of-fit was quantified by the sum of squares. If the
most complicated model fits worse (highest sum-of-squares) than the simplest model, then we
should clearly reject the most complicated model and conclude that the simplest equation fits
better.

We report the values of the hierarchical analysis in Table 2. To report the statistical signifi-
cance, we used this scale: p < 0.001, *** p < 0.01, ** p < 0.05, *. For reasons of space, we
report only the hierarchical analysis of 2011.2.

The MB model was chosen to be our baseline model because codechurn was used as a baseline
model in other studies, like [BH13]. We also chose codechurn because, considering all the
models we built, this metric was not removed from VIF analysis any time.

In model M1, we added the number of past changes. The results of the M1 model shows that
including PastChanges improved the R2 for file changes by 11.98%. The model M1 has a Delta-
Sum smaller than the MB (p < 0.001). The M2 model included the SNA metrics considering the
average. The difference between M2 and M1 is not high, but looking to DeltaSum we can con-
sider that M2 is a valid model and statistically signicant (p < 0.001). However, there was not a
great improvement in the values of R2 (increasing of 1.96%). The last model, M3, is statistically
significant (p < 0.001) and R2 value increased 2.4%. The best value to explain file changes was

Proc. SQM 2014 6 / 15



ECEASST

Table 2: Hierarchical Analysis of Communication Network 2011.2
Communication Network - MLR - Second Semester 2011
MB M1 M2 M3

CHURN 0.28 *** 0.06 *** 0.05 *** 0.05 ***
NDEVS removed Multicollinearity Analysis (second round)

PastChanges 0.67 *** 0.61 *** 0.36 ***
dgrAve removed Multicollinearity Analysis (third round)
btwAve -0.13 *** -0.35 **
clsAve -5.49 *** -6.49 ***

dgrMax 0.45
btwMax removed Multicollinearity Analysis (first round)
clsMax 1.59 ***

R2 adjusted 47.17% *** 59.15% *** 61.11% *** 63.51% ***
Sum of Sq 1135.2 877.43 846.09 784.84
DeltaSum 257.77 *** 31.34 *** 61.25 ***

obtained using M3 (63.51%), meanwhile the most relevant improvement was obtained from MB
to M1 (11.98%).

For the following two semesters of 2012, we found a similar explanation to predict file changes.
For the first semester, we built four models. The MB model achieved 56.90% of R2. The M1,
M2, and M3 models had R2 values of 63.85%, 67.46%, 69.31%, respectively. For the second
semester of 2012, we built five models. The VIF analysis did not remove the number of develop-
ers or past changes as observed in the previous two semesters. The MB model achieved 31.78%
of R2. Models M1, M2, M3, and M4 had R2 values of 49.70%, 67.02%, 67.84%, and 68.81%,
respectively. All the metrics used to build models for 2012.1 and 2012.2 were statistically sig-
nificant (p < 0.001).

To explain the relation of each metric, we conducted a signal analysis. Table 3 presents the
results. The positive sign (+) indicates that the metric is positively related to the amount of file
changes, while the negative sign (-) indicates a negative relation. The number zero (0) indicates a
neutral relation. Bold values and the gray color indicate that the values did not pass the signicance
test (p < 0.001).

Table 3: Signal Analysis
Signal Analysis

2011/2 2012/1 2012/2
MB M1 M2 M3 MB M1 M2 M3 MB M1 M2 M3 M4

CHURN + + + + + + + + + + 0 0 0
NDEVS + + + + + + +

PastChanges + + + + + +
dgrAve
btwAve - - + -
clsAve - - + - + +

dgrMax +
btwMax
clsMax + + -

We observed that code churn changed the positive effect to neutral when we added PastChanges
and number of developers in M2, M3, and M4 for the second semester of 2012. ClsAve and bt-
wAve used in the M2 and M3 models of 2012.1 presented a negative impact on the model when
we added the clsMax. The same behavior was not observed in M3 for 2011.2.

Finally, we computed the relative importance of each metric. Table 4 presents the values for
the last two models for each semester. We chose the last two models because they had more
variables together and we wanted to investigate how each metric contributes to the model. We
used the letters (A-F) to rank the position of relative importance. The letter A indicates better

7 / 15 Volume 65 (2014)



Comparing communication and development networks for predicting file change proneness: An

exploratory study considering process and social metrics

performance compared to the other metrics. The value VIF indicates that it was removed during
the multicollinearity analysis.

Table 4: Relative Importance - Communication Network
Relative Importance - Communication Network

2011.2 2012.1 2012.2
Model 2 Model 3 Model 2 Model 3 Model 3 Model 4

CHURN B B A A C C
NDEVS VIF VIF A B B B

PastChanges A A VIF VIF A A
dgrAve VIF VIF VIF VIF VIF VIF
btwAve C C C D VIF VIF
clsAve C F D E D E

dgrMax VIF C VIF VIF VIF VIF
btwMax VIF VIF VIF VIF VIF VIF
clsMax VIF C VIF B VIF D

Considering the communication network, the SNA metrics did not perform well when com-
pared to code churn, past changes, and number of developers. None of the SNA metric were
better than one of those three metrics. The dgrAVE and btwMAX were always removed by VIF
analysis. In the following subsection, we present the results of the development network.

3.2 Development network

We conducted the same experiments to compare the metrics using the development network.
Table 5 presents the values of VIF for each semester analyzed.

Table 5: VIF Analysis for Development Network from Rails Project
VIF Analysis: development network

2011.2 2012.1 2012.1
log(Yi) Model 1 Model 2 Model 3 Model 4 Model 1 Model 2 Model 3 Model 4 Model 1 Model 2 Model 3
Churn 2.01 2.01 2.01 2.00 2.24 2.20 2.17 2.08 2.21 2.21 2.19

Developers 12.93 12.91 11.64 9.00 12.85 12.53 8.96 8.77 8.06 4.06 4.04
PastChanges 9.83 9.83 9.61 9.21 6.94 6.94 6.93 6.83 3.84 3.84 3.74

btwAve 65.94 31.22 22.54 - 112.42 110.33 - - 49.94 - -
dgrAve 42.70 15.05 11.78 2.09 34.09 33.59 33.58 2.80 34.93 33.87 -
clsAve 74.53 - - - 59.81 59.81 32.23 - 41.04 31.44 1.87

btwMax 45.21 39.45 - - 919.97 - - - 33.04 6.91 6.89
dgrMax 48.82 25.90 3.53 1.71 658.55 69.13 12.63 4.45 12.06 11.88 4.07
clsMax 5.53 2.34 1.79 1.29 42.45 9.24 8.77 5.76 12.01 11.62 8.29

We built four models to remove metrics with VIF greater than 10. Three metrics were re-
moved: average of closeness (dgrAVE), maximum betweeneness (btwMax), and average of be-
tweeneness (btwAve). For the following semester (2012.1), we removed btwMax, clsAve, and
btwAve. For 2012.2, we removed only two metrics: btwAve, and dgrAve. The highest VIF value
was 9.21.

The results of the hierarchical analysis are presented in Table 6. Due to space restriction we
only report the values for the hierarchical analysis from the 2011.2 development network.

Model MB is a baseline model. M1 includes the number of past changes. The results of
the M1 model show that including number of developers improved the explanation (R2) of file
changes of the model in 14.04%. The M1 model has small value for DeltaSum and the model
was statistically significant (p < 0.001). The M2 model added past changes. The difference
between M2 and M1 was 5.91%. When we included the past changes, the number of developers
ceased to be significant for the model. The model did not improve its performance when we

Proc. SQM 2014 8 / 15



ECEASST

Table 6: Hierarchical analysis for Development Network 2011.2
Hierarchical analysis from Communication Network 2011.2

MB M1 M2 M3 M4
CHURN 0.36 *** 0.18 *** 0.11 *** 0.11 *** 0.10 ***
NDEVS 0.93 *** -0.13 -0.09 0.05

PastChanges 1.03 *** 1.02 *** 0.98 ***
dgrAve 0.12 . 0.42 ***
btwAve removed Multicollinearity Analysis (second round)
clsAve removed Multicollinearity Analysis (third round)

dgrMax -0.38 *
btwMax removed Multicollinearity Analysis (first round)
clsMax -6.16 ***

R2 adjusted 39.90% *** 53.94% *** 59.15% *** 59.31% *** 60.22% ***
Sum of Sq 745.36 570.88 506.01 504.99 493.68
DeltaSum 174.48 *** 64.87 *** 1.02 *** 11.31 ***

included the dgrAve. The same happened when we included clsMax and dgrMax.
For the first semester of 2012 (2012.1), we built 5 models. MB achieved 35.36% for R2. M1,

M2, M3, and M4 had R2 values of 52.06%, 52.36%, 54.86% and 54.93%, respectively. For
the second semester of 2012 (2012.2), we also built five models. MB achieved 32.23% to R2.
M1, M2, M3, and M4 R2 values of 54.20%, 62.50%, 63.05% and 63.44%, respectively. All the
models built for 2012.1 and 2012.2 had statistical significance (p < 0.001).

During the signal analysis, we observed that code churn changed the signal for M2, M3, and
M5 during the 2012.2 period. A similar pattern was observed in the communication network:
code churn changeed its effect from positive to neutral when we added past changes and number
of developers.

SNA metrics computed for development networks presented negative effects when predicting
change proneness. However, the beta coefficient values for them often presented no statistical
significance. This behavior indicates that these metrics do not increase the values of R2 when
they are added to a model.

Table 7 presents the relative importance of each predictor using the development network.

Table 7: Relative Importance for Development Network
Relative Importance - development network

2011.2 2012.1 2012.2
Model 3 Model 4 Model 3 Model 4 Model 2 Model 3

CHURN B C C C C C
NDEVS B B A A B B

PastChanges A A B B A A
dgrAve D D VIF VIF VIF VIF
btwAve VIF VIF VIF VIF VIF VIF
clsAve VIF VIF D D D D

dgrMax VIF F VIF F VIF G
btwMax VIF VIF VIF VIF VIF D
clsMax VIF D VIF D VIF D

No metric calculated using the networks performed better than code churn, number of past
changes, and number of developers. DgrAVE and btwMAX were always removed by VIF anal-
ysis. The same pattern was observed for the communication networks.

4 Comparing Communication and Development Networks

In this paper, we investigated two research questions: RQ1: What are the differences when
process and social metrics related to communication and cooperation networks are used to predict

9 / 15 Volume 65 (2014)



Comparing communication and development networks for predicting file change proneness: An

exploratory study considering process and social metrics

file change proneness? and RQ2: What is the relative importance of each metric to predict file
change proneness?

4.1 RQ1: What are the differences when process and social metrics related to
communication and cooperation networks are used to predict file change prone-
ness?

We performed analyses comparing the relation among process and social metrics considering the
evolution of changes for each network. We presented in Subsections 3.1 and 3.2 more details
about the relation of each metric set for each kind of network. We provided a multicollinearity
analysis using VIF, the results of each hierarchical analysis conducted during a semester, and the
signal analysis.

Table 8 presents the results of the hierarchical analysis using MLR models to summarize RQ1.
The table presents the worst result and the best result for each network. The results compare the
baseline model with the last model created. The last model contains all the variables that have
VIF smaller than 10. The diff column shows the difference between worst and best models in
each semester.

Table 8: Summarizing the Hierarchical Analysis of Communication and Development Networks:
Worst and Best Results

Summarizing the adjusted coefficient of determination of Hierarchical analysis
worst result better result diff

Communication 2011.2 47.1 63.5 16.4
2012.1 56.9 69.3 12.4
2012.2 31.7 68.8 37.1

Development 2011.2 39.9 60.2 20.3
2012.1 35.3 54.9 19.6
2012.2 32.3 63.4 31.1

Considering the communication networks, the difference between the baseline model (worst
result) and the last model built (best result) was smaller to the values obtained from development
networks.

The hierarchical analysis using communication networks showed that past changes and num-
ber of developers improved the R2 from 6.95% to 17.92% to create a new model. When we
added the SNA metrics, the improvement to R2 was smaller, from 0.86% to 3.61%. Considering
the development network, past changes and number of developers, R2 increased from 5.21% to
21.97%. The SNA metrics increased R2 from 0.07% to 2.50%.

Process metrics (code churn and number of past changes) and the social metric (number of
developer) performed better than SNA metrics to predict the evolution of file changes. The hi-
erarchical analysis showed that the number of changes and number of developer always increased
the values of R2. The contribution of SNA metrics to the models was smaller.

4.2 RQ2: What is the relative importance of each metric to predict file change
proneness?

To assess the impact of each predictor individually, we used the package relaimpo. We ran the
analysis using the metric lmg, congured to generate the bootstrap of a 95% confidence interval for
R2 in the MLR and to present a ranked comparison of each predictor and its relative importance.

Proc. SQM 2014 10 / 15



ECEASST

Table 9: Ranking Comparison between Communication and Development Network
Ranking Comparison

Communication Contribution
A B C D E VIF A B C D E VIF

CHURN 2 2 2 0 0 0 0 1 5 0 0 0
NDEVS 1 3 0 0 0 2 2 4 0 0 0 0

PastChanges 4 0 0 0 0 2 4 2 0 0 0 0
dgrAve 0 0 0 0 0 6 0 0 0 2 0 4
btwAve 0 0 3 1 0 2 0 0 0 0 0 6
clsAve 0 0 1 2 2 0 0 0 0 4 0 2

dgrMax 0 0 1 0 0 5 0 0 0 0 0 3
btwMax 0 0 0 0 0 6 0 0 0 1 0 5
clsMax 0 1 1 1 0 3 0 0 0 3 0 3

Code churn was not excluded from the VIF analysis. This led us to choose this metric as
the base model. Number of developers and number of past changes were removed twice for the
communication network. However, they were not removed from the development network.

Considering the SNA metrics, using the average aggregation, degree average (dgrAVE) was
always excluded in VIF analysis. Degree value was always very close to the number of develop-
ers, which probably excluded this metric during multicollinearity analysis. The metric btwAVE
was excluded more times than clsAVe, however btwAve was more relevant when it was used in
the models.

Looking at the relative importance, betweeness average explained 10.94% of evolution of
changes for 2011.1 using the communication network. It was able to explain 4.44% for 2012.1.
Closeness average explained 9.56% and 1.63% respectively for 2012.1 and 2012.2.

The maximum aggregation presented better result than average metrics. However, they were
excluded more often during VIF analysis. Considering communication networks, drgMAX and
clsMAX could explain 12.76% and 11.34% of evolution of changes for 2011.1. clsMax could
explain 30.01% for 2012.1 and 5.28% for 2012.2. SNA metrics had lower performance using
the development network. All metrics presented at least two exclusions (VIF analysis). None of
them could explain more than 6.78% of the changes in files.

The relative importance of code churn ranged between 18.1% and 45.4% in both networks.
Number of developer achieved 22.92% to 46.76% using communication networks, and 30.06%
to 38.64% using development networks. Finally, the number of past changes contributed to
explain 32.66% to 53.41% in communication networks and 29.39% to 45.52% in development
networks.

To provide a better understanding of each metric, we conducted another multivariate analysis.
This enabled us to explain the specific contribution of each metric. Factor analysis is a statistical
method used to describe variability among variables (metrics). We can use factor analysis when
it is necessary to know about underlying factors. When variables are numerical, it is possible
perform a factor analysis using PCA (Principal Components Analysis) [HLP10].

Figure 1 depicts the PCA analysis of the communication network for 2011.1. On the left side,
we present the samples plotted. They represent the TOP-60 files that changed during the period.
On the right side, we present the metrics. Each vector represents one metric. If the angle between
two vectors is small, this indicates a high correlation between the metrics.

Figure 1 shows that the average closeness (clsAve) is important to explain a group of files that
no other metric could explain. For example, sample (file) 57 presented the highest closeness to
the dataset. On the other hand, only two developers touched the file. Files close to sample 57

11 / 15 Volume 65 (2014)



Comparing communication and development networks for predicting file change proneness: An

exploratory study considering process and social metrics

Figure 1: PCA analysis to communication network 2011.1

presented the same behavior. This means that there is a group of files affected by the number of
developers and another group of files affected by the value of clsAve. We can see that the files
that present a greater number of developers tend to have lower value of clsAve and vice-versa.
Although, most of the variability of the files was explained by the number of developers, clsAve
could explain another particular group of files. It is important to determine the contribution of
clsAve to explain the file changes.

We also determined that maximum degree, closeness, and betweeness are highly correlated
to each other, which explains why they were frequently removed from the hierarchical analysis.
The average of betweenness and degree were less correlated, but they explained no group of files.
We also observed some outliers, for example, sample 55.

We performed the same factor analysis to observe each semester, and the development net-
works. We found that metrics bear influence in different ways, because the vectors (metrics)
point in various directions, and we did not observe a single pattern.

5 Related Work

The modication of a file by several developers may make that file prone to change and harder to
modify. A change that touches a file that has been modified by many different developers can
have more risk [SHAJ12].

Bettenburg and Hassan[BH13] found that statistical models based on social information have
a similar degree of explanatory power as traditional models (source code metrics and process
metrics). They studied Mozilla and Eclipse projects and collected data from issue tracking and
version control repositories. Some studies use communication and development networks. They
compute social network metrics and use these metrics as input to build prediction models. Me-
neely et al. [MWSO08] examined the development network derived from code churn informa-
tion. They conducted a case study, and found that there is a significant correlation between
file-based development network metrics and failures. Wolf et al. [WSDN09] reported results in-
dicating that developer communication plays an important role in software quality. They predict
build failure on IBM’s Jazz project yielding recall values between 55% and 75%, and precision
values between 50% to 76%. Bird et al. [BNG+] evidence the influence of combined sociotech-

Proc. SQM 2014 12 / 15



ECEASST

nical software networks on the fault-proneness of individual software components. They reported
results using precision and recall around of 85%. Bicer et al. [BBC11] created models to predict
defects on IBM’s Jazz project and Drupal. Their results revealed that compared to other met-
rics such as churn metrics, social network metrics either considerably decreases high false alarm
rates.

The studies presented in this section use a different set of metrics, different ways to build the
networks, and used different projects. They showed that social metrics can be good predictors,
but it is hard to know in which conditions it is possible to use these metrics. Many of these
projects are commercial, where one expects a better organization of the software process used.

6 Threats of Validity

In this section, we discuss various factors that may have influenced this work.
Set of metrics: our set of metrics is small compared to other papers. We considered just two

process metrics, the number of developers that commented on an issue or committed a file, and
three different SNA metrics. However, we included in our process set the churn metric that is
usually used as a baseline model. This work is our first effort to compare process metrics and
SNA metrics. As the results are encouraging, some other metrics can be included to explain the
evolution of file changes, as well to test our findings in a large-scale setting.

Building Network: We built social networks using undirected edges and without weight.
Some SNA metrics may have performed better if we used weighted edges and directed graphs.
We intend to investigate this in future work.

Intervals selection: We used 6 months as the interval with which to compute the metrics. We
know that different intervals of analysis can lead to different results. We checked the correla-
tion between commits and number of developers and we found that there is strong correlation
between these two measures for 2011.2 (0.72) and 2012.1 (0.86). For the last semester, a weak
correlation (0.26) was identified. Since we are interested in studying the evolution of changes,
instead of defects, we realize that file can undergo a considerable number of changes in a six-
month interval. In the Rails project, we observed that our dataset doubled the amount of change
from one semester to another, including the TOP-100 files that were most changed. We ran a
correlation between number of commits and number of developers. We found a high correlation
for 2011.2 and 2012.2, but we found a weak correlation for 2012.2.

Generalizability: This study aimed to explore the use of metrics and statistical techniques for
predicting file change proneness. Additional studies are necessary to generalize the results.

7 Conclusions and further work

In this paper, we explored statistical relations to compare process and social metrics consider-
ing file change proneness. We used a set of metrics to compare the results using two different
networks: communication and development.

We found that code churn, number of past changes, and number of developers could explain
the change proneness for the Rails project better than SNA metrics. Considering the SNA met-
rics, the best results were obtained using communication networks. Using the average of betwee-

13 / 15 Volume 65 (2014)



Comparing communication and development networks for predicting file change proneness: An

exploratory study considering process and social metrics

ness (btwAve) we could explain 10.64% of change proneness. Using development networks, we
found that average of closeness (clsAve) was the best SNA metric, explaining 6.7%. However,
when we added SNA metrics during the hierarchical analysis, the value of R2 did not increase
significantly. We also conducted a factor analysis using PCA to show that some files can be
influenced by social metrics, even if they have not added great improvement to build new mod-
els during the hierarchical analysis. In the future work, we plan to extend the analysis to other
projects and investigate in-depth the influence of social metrics to explain software evolution -
for example, to explain the social of predicting pull requests for specific group of files.

Acknowledgements: The authors of this work thank Fundacao Araucaria and NAWEB for the
financial support. Marco Aurelio Gerosa receives individual grant from the Brazilian National
Research Council (CNPq) and FAPESP. Igor Wiese and Igor Steinmacher receive grants from
CAPES (Process BEX 2039-13-3 and BEX 2038-13-7).

Bibliography

[BBC11] S. Bicer, A. B. Bener, B. Cauglayan. Defect prediction using social network anal-
ysis on issue repositories. In Proceedings of the 2011 International Conference on
Software and Systems Process. ICSSP ’11. 2011.

[BH13] N. Bettenburg, A. E. Hassan. Studying the impact of social interactions on software
quality. Empirical Software Engineering 18(2):375–431, 2013.

[BNG+] C. Bird, N. Nagappan, H. Gall, B. Murphy, P. Devanbu. Putting It All Together:
Using Socio-technical Networks to Predict Failures. In Proceedings of the 2009
20th International Symposium on Software Reliability Engineering.

[DLR12] M. D’Ambros, M. Lanza, R. Robbes. Evaluating defect prediction approaches: a
benchmark and an extensive comparison. Empirical Software Engineering 17(4-
5):531–577, 2012.

[GBL+13] A. Guzzi, A. Bacchelli, M. Lanza, M. Pinzger, A. v. Deursen. Communication in
open source software development mailing lists. In Proceedings of the 10th Working
Conference on Mining Software Repositories. MSR ’13. 2013.

[HBB+12] T. Hall, S. Beecham, D. Bowes, D. Gray, S. Counsell. A Systematic Literature
Review on Fault Prediction Performance in Software Engineering. Software Engi-
neering, IEEE Transactions on 38(6):1276–1304, 2012.

[HJZ13] K. Herzig, S. Just, A. Zeller. Its not a bug, its a feature: how misclassification
impacts bug prediction. In Proceedings of the 2013 International Conference on
Software Engineering. ICSE ’13. 2013.

[HKCB11] Q. Hong, S. Kim, S. C. Cheung, C. Bird. Understanding a developer social network
and its evolution. In Proceedings of the 2011 27th IEEE International Conference
on Software Maintenance. ICSM ’11, pp. 323–332. 2011.

Proc. SQM 2014 14 / 15



ECEASST

[HLP10] F. Husson, S. Lê, J. Pagès. Exploratory Multivariate Analysis by Example Using R.
Chapman & Hall/CRC, 2010.

[HR05] R. A. Hanneman, M. Riddle. Introduction to Social Network Methods. 2005.

[JBBA09] J. F. H. Jr, W. C. Black, B. J. Babin, R. E. Anderson. Multivariate Data Analysis.
Volume 7 edition. 2009.

[LB85] M. M. Lehman, L. A. Belady (eds.). Program evolution: processes of software
change. 1985.

[MPS08] R. Moser, W. Pedrycz, G. Succi. A comparative analysis of the efficiency of change
metrics and static code attributes for defect prediction. In Proceedings of the 30th
international conference on Software engineering. ICSE ’08. 2008.

[MWSO08] A. Meneely, L. Williams, W. Snipes, J. A. Osborne. Predicting failures with devel-
oper networks and social network analysis. In SIGSOFT FSE. Pp. 13–23. 2008.

[NMB08] N. Nagappan, B. Murphy, V. R. Basili. The influence of organizational structure on
software quality: an empirical case study. In International Conference on Software
Engineering (ICSE). Pp. 521–530. 2008.

[RD13] F. Rahman, P. T. Devanbu. How, and why, process metrics are better. In ICSE.
Pp. 432–441. 2013.

[Sch00] N. F. Schneidewind. Software quality control and prediction model for mainte-
nance. Volume 9(1-2). 2000.

[SHAJ12] E. Shihab, A. E. Hassan, B. Adams, Z. M. Jiang. An industrial study on the risk of
software changes. In SIGSOFT FSE. P. 62. 2012.

[TBLJ13] F. Thung, T. F. Bissyande, D. Lo, L. Jiang. Network Structure of Social Coding
in GitHub. 2011 15th European Conference on Software Maintenance and Reengi-
neering, pp. 323–326, 2013.

[WOB07] E. J. Weyuker, T. J. Ostrand, R. M. Bell. Using Developer Information As a Factor
for Fault Prediction. In Proceedings of the Third International Workshop on Pre-
dictor Models in Software Engineering. PROMISE ’07. IEEE Computer Society,
Washington, DC, USA, 2007.

[WSDN09] T. Wolf, A. Schroter, D. Damian, T. Nguyen. Predicting build failures using social
network analysis on developer communication. In Proceedings of the 31st Interna-
tional Conference on Software Engineering. ICSE ’09. 2009.

15 / 15 Volume 65 (2014)


	Introduction
	Study Design
	Data Collection
	Process Metrics and Social Networks Analysis
	Hierarchical Analysis

	Results
	Communication Network
	Development network

	Comparing Communication and Development Networks
	RQ1: What are the differences when process and social metrics related to communication and cooperation networks are used to predict file change proneness?
	RQ2: What is the relative importance of each metric to predict file change proneness?

	Related Work
	Threats of Validity
	Conclusions and further work

