
Empirical Software Engineering manuscript No.
(will be inserted by the editor)

Code and Commit Metrics of Developer Productivity: A
Study on Team Leaders Perceptions

Edson Oliveira · Eduardo Fernandes ·
Igor Steinmacher · Marco Cristo · Tayana

Conte · Alessandro Garcia

Received: date / Accepted: date

Abstract Context – Developer productivity is essential to the success of software
development organizations. Team leaders use developer productivity information
for managing tasks in a software project. Developer productivity metrics can be
computed from software repositories data to support leaders’ decisions. We can
classify these metrics in code-based metrics, which rely on the amount of produced
code, and commit-based metrics, which rely on commit activity. Although metrics
can assist a leader, organizations usually neglect their usage and end up stick-
ing to the leaders’ subjective perceptions only. Objective – We aim to understand
whether productivity metrics can complement the leaders’ perceptions. We also
aim to capture leaders’ impressions about relevance and adoption of productivity
metrics in practice. Method – This paper presents a multi-case empirical study per-
formed in two organizations active for more than 18 years. Eight leaders of nine
projects have ranked the developers of their teams by productivity. We quantita-
tively assessed the correlation of leaders’ rankings versus metric-based rankings. As
a complement, we interviewed leaders for qualitatively understanding the leaders’
impressions about relevance and adoption of productivity metrics given the com-
puted correlations. Results – Our quantitative data suggest a greater correlation of

We thank the financial support from SEFAZ/AM, UFAM, CNPq via grants 430642/2016-
4, 423149/2016-4, 311494/2017-0, 204081/2018-1/PDE, 465614/2014-0, 308380/2016-9 and
434969/2018-4, CAPES via grants 175956/2013, 175956, 117875 and 153363/2018-5, FAPERJ
via grants E-26/200.773/2019, 102166/2013, 225207/2016, 211033/2019, 202621/2019, Na-
tional Science Foundation #1815503. Finally, we also thank the participating organizations
and their employees, and the support of USES Research Group members.

E. Oliveira, M. Cristo, T. Conte
Federal University of Amazonas (UFAM), Brazil
E-mail: {edson.cesar, marco.cristo, tayana}@icomp.ufam.edu.br

E. Fernandes, A. Garcia
Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Brazil
E-mail: {emfernandes, afgarcia}@inf.puc-rio.br

I. Steinmacher
Federal University of Technology – Paraná (UTFPR), Brazil, and Northern Arizona University,
USA
E-mail: igorfs@utfpr.edu.br



2 Edson Oliveira et al.

the leaders’ perceptions with code-based metrics when compared to commit-based
metrics. Our qualitative data reveal that leaders have positive impressions of code-
based metrics and potentially would adopt them. Conclusions – Data triangulation
of productivity metrics and leaders’ perceptions can strengthen the organization
conviction about productive developers and can reveal productive developers not
yet perceived by team leaders and probably underestimated in the organization.

Keywords Developer productivity · Software metrics · Repository mining · Team
leaders perceptions · Mixed method

1 Introduction

Developer productivity is essential to the success of development projects [2].
Highly productive developers are desired, especially for performing critical de-
velopment tasks [7]. Therefore, the continuous productivity assessment of the de-
velopment team is recommended. We recently observed that software organiza-
tions often rely on team leaders’ perceptions to assess developer productivity [40].
However, perceptions are subjective and biased. Thus, a systematic productivity
assessment could help team leaders in their work.

Team leaders’ perceptions are usually the primary source of information when
project managers make decisions about development teams [51,53]. Thus, team
leaders perceptions have a direct and non-negligible effect on organization fi-
nance [28]. Team leaders participate in different activities in software projects,
especially in monitoring and managing the development tasks within a team [51].
We recently also investigated how software project managers perceive developer
productivity [40]. Our results indicate that project managers strongly depend on
the team leaders perceptions to assess the productivity of their teams, which, in
turn, build up their developers’ productivity perceptions only through observa-
tions. Therefore, organizations usually end up overlooking opportunities for using
productivity metrics.

Several current studies investigate productivity metrics focus on software pro-
ductivity at the organization level [44], neglecting the analysis on the developer
level [41]. Thus, the findings do not support tracking unproductive developers
and managing development tasks in a particular software project. However, some
recent studies [45,37,48] measured developers’ productivity by relying on infor-
mation stored in the software project repositories, exploring many productivity
metrics in practical settings. That is the case of metrics that (1) are based on
characteristics of the source code produced by developers during development time
(e.g., [31]) — which here are called code-based metrics — and that (2) are based
on the developers’ commit characteristics in a software project (e.g., [37,48]) —
which are called commit-based metrics in this paper.

The developer productivity metrics studied in this paper that focus on the char-
acteristics of the source code are: Source Lines of Code by Time (SLOC/Time) [31],
Halstead Effort by Time (HalsteadEff/Time) [26] and Code Owned by Time (Code-

Owned/Time). The first metric (SLOC/Time) is based on the size of source code,
meaning that the larger the source code created by the developer, the higher
his/her productivity. The second metric (HalsteadEff/Time) is computed in terms
of source code complexity, meaning the more complex the source code created



Code and Commit Metrics of Developer Productivity 3

by the developer, the higher his/her productivity. Finally, the last metric (Code-

Owned/Time) relies on the number of source code files owned by a developer in
the software project, meaning that the more source code the developer owns, the
higher his/her productivity. A developer owns a source code file when the developer
is the one who most contributed to that source code file.

The developer productivity metrics studied in this paper that focus on the char-
acteristics of the commits are: Commits Performed by Time (Commits/Time) [37],
Committed Source Lines of Code by Time (CommittedSLOC/Time) [24] and Com-
mitted Characters by Time (CommittedChars/ Time) [48]. The first metric (Com-

mits/Time) is based on the number of commits performed by a developer, meaning
that the higher the number of commits, the higher is his/her productivity. The
second metric (CommittedSLOC/Time)—also known as Code Churn [39]—is com-
puted considering the number of lines of code in each developer commit, meaning
that the larger the commits created by the developer, the higher his/her produc-
tivity. Finally, (CommittedChars/ Time) is calculated also considering the size of
commits made by a developer, but counting the number of characters instead of
the number of lines, also meaning the larger the commits, the higher his/her pro-
ductivity. This last metric can reduce false positives in developer productivity,
for example, by ignoring substantial number of source code lines that were only
commented out by the developer.

In this paper, we present and discuss a multi-case empirical study aimed to
investigate the relations between team leaders perceptions and developer produc-
tivity metrics. We hypothesize that existing metrics are sufficiently aligned with
the team leaders perceptions of productivity. Although correlation does not not
imply causation, the differences between productivity metrics and leaders’ percep-
tions would provide significant and complementary information about developers’
productivity. This work relies on a mixed-method empirical study, combining quan-
titative and qualitative data. We quantitatively investigated whether six produc-
tivity metrics, selected from a previous research [41], correlate with the perceptions
of eight team leaders from nine software projects. We computed Kendall’s tau (τ)
correlation coefficients for three code-based and three commit-based metrics. Also,
we also interviewed team leaders regarding the relevance and potential of adoption
of those six metrics. By using thematic analysis [12], we sought to capture team
leaders impressions about the selected productivity metrics, investigating whether
and why team leaders would adopt or not productivity metrics.

We relied on data collected from projects and experienced team leaders of
two software development organizations. Our results revealed that team leaders
perceptions are more correlated with code-based metrics than with commit-based
metrics. Complementarily, our interviews revealed a major concern of leaders with
commit-based metrics once the commit practices vary depending on the developer
and project. Finally, team leaders have positive impressions of code-based metrics
and potentially would adopt them.

The remainder of this paper is structured as follows. Section 2 provides back-
ground information. Section 3 describes our research method. Section 4 presents
our study findings by organization and for all organizations together. Section 5
discusses our actionable study findings. Section 6 compares our study with pre-
vious work. Section 7 discusses threats to the study validity. Finally, Section 8
concludes the paper and suggests future work.



4 Edson Oliveira et al.

2 Background

This section discusses developer productivity metrics (Section 2.1) and, specifi-
cally, two categories of metrics that we use in this paper: code-based (Section 2.2)
and commit-based (Section 2.3).

2.1 Developer Productivity Metrics

Productivity, in general, is the relationship between what is produced (output) and
the resources applied (input) to produce it. This sense of productivity is widely
used in many areas, from agriculture to economics [2]. However, for the service
industries, such as Software Engineering, where products are often intangible, this
concept does not apply adequately [27]. One very complex problem is to quantify
the results produced in a software project in terms of size, complexity, or customer
value [21].

In addition, several factors influence software productivity, making its mea-
surement even more complicated. Although many of these factors are known since
Boehm’s work with COCOMO [6] and COCOMO II [5], it is possible that more
factors exist. Considering all of them for analysis would not be feasible [51]. In
addition, when dealing with developer’s productivity, it is important to consider
the human factors involved, which play a central role in software development [1].
The complexity of the topic makes it very hard to reach a consensus about how
to measure software productivity—and more specifically developer’s productivity.

Despite all these difficulties, productivity is a critical success factor for software
projects. To go further and improve our understanding about productivity, it is
necessary to find ways measure it. Therefore, while there is still no consensus
about how to measure productivity accurately, investigating it leveraging existing
productivity metrics still provides information to advance our understanding and
improve productivity measurement.

Existing literature reviews aggregate already proposed productivity metrics to
measure productivity at various levels, such as organization, process, task, devel-
oper. Petersen [44], for example, conducted a systematic mapping exploring how
to measure and predict software productivity. They considered only those studies
that effectively evaluated the metrics, either by experiment, case study, or proof
of concept. Of the 38 articles selected, only five presented developer productivity
metrics, and none of them have been evaluated in the industry to assess produc-
tivity. The systematic literature review by Hernández-López et al. [27] focused
on metrics for developer-level productivity. Of the six studies selected, the pro-
ductivity metrics found were source lines of code (SLOC) per time and tasks per
time. Finally, we also conducted a systematic mapping [41] of productivity metrics
aiming to identify how researchers have measured productivity. We found that, to
measure developer productivity, researchers mainly used time and effort as input
measures and source lines of code as the output measure. From these three reviews,
we observed that the number of productivity metrics used for assessing developer
productivity is small, especially to investigate developer productivity in industry.

In the next subsections, we detail the developer productivity metrics chosen
for this study. We explain the rationale for our choice in Section 3.2.



Code and Commit Metrics of Developer Productivity 5

2.2 Code-based Metrics

Metrics extracted from the source code have been largely employed for assessing
many aspects of software quality [38,43]. These metrics have been used in many
automated tools aimed to guide organizations and team leaders in enhancing soft-
ware projects [13,17]. Particularly, some metrics extracted from the source code
can be a proxy for developer productivity [26,31]. Thus, in this study, these metrics
are referred to as code-based metrics.

In a software project developed by a team of developers, each developer con-
tributes by inserting their developed source codes into the project code repository.
Thus, in order to calculate the individual productivity of developers based on the
code-based metrics, it is first necessary to identify which source code belongs to
which developer. Therefore, in this study, we identified the author of each source
code file automatically, based on the work of Bird et al. [4]. As explained by Bird
et al. [4], “ownership is a general term used to describe whether one person has re-
sponsibility for a software component” and, in our case, responsibility for a specific
source code file. With Code Ownership, it is possible to identify the source code
author (developer) automatically from the information of the project source code
repository. Finally, we calculated the productivity of each developer by applying
each code-based metrics to their source code set.

Source Lines of Code by Time (SLOC/Time) [31]: This metric is computed
based on the number of Source Lines of Code (SLOC) [34] produced by a developer
over time. The larger the source code files created by a developer along the project
timeline, the higher is the developer productivity. There is a significant threat
regarding coding habits when computing productivity with SLOC/Time. Let us
suppose that two different developers (D1 and D2) produced equally critical source
code files (F1 and F2, respectively). Although the developers are expected to have
equal (or similar) productivity, in the case when the SLOC for F1 is higher than
for F2, this productivity metric would point out D1 as more productive.

Conversely, SLOC and code maintainability seem correlated such that the
smaller is SLOC, the easier is to read and modify the code [16]. Thus, if developers
spend too much time to reduce SLOC towards a maintainable code, the developer
productivity decays according to SLOC/Time. Nevertheless, SLOC/Time can al-
leviate that threat, and provide a more useful hint of developer productivity in
cases when larger source code files tend to implement more critical features.

Halstead Effort by Time (HalsteadEff/Time): This metric is computed in
terms of source code file complexity measures known as Halstead Effort [26]. Such
measures rely on the number of operands and operators used in the source code,
which supposedly reflects the difficulty level to read and understand the code.
Thus, the higher the Halstead Effort of code produced by a particular developer
along time, the higher is the developer productivity. Differently, from SLOC/Time,
this metric considers the internal complexity of source code files instead of consid-
ering only their size, which alleviates the threat related to coding habits mentioned
above.

Code Owned by Time (CodeOwned/Time): It represents the number of
source code files authored (owned) by a developer over time. Recent studies have
investigated code ownership as a means to infer how much code-related knowledge
and expertise each developer has [4,25,50]. Code ownership is particularly interest-
ing because it reveals key developers in a team, whose participation is essential to



6 Edson Oliveira et al.

the development of a given software project [19]. Basically, the higher the number
of source code files owned by a developer over time, the higher their productivity.
With this metric, we want to observe if developers’ productivity is related to the
number of source code files that belongs (code ownership) to this developer. We
did not find previous studies on team leaders’ perception of productivity metrics
from this nature.

Besides, since the concept of code ownership is also used to compute the other
code-based metrics to associate which files belong to which developers, we decided
to investigate to what extent this metric reflects the team leaders productivity
perceptions.

2.3 Commit-based Metrics

Recent studies extensively explored the use of metrics derived from the commit
history of software projects (e.g., [8,14,55]). These metrics are used to understand
software projects from various perspectives, from internal code structure [8] to
external program behavior [55]. Because of that, several mechanisms have been
proposed to support the collection and analysis of commit data [14]. Notably,
researchers have used specific metrics extracted from commit history for assessing
developer productivity [37,48]. In this study, we refer to these metrics as commit-

based metrics.
Just as the other code-based metrics, to calculate the commit-based metrics,

we also needed to identify which commits are owned by which developer. The
information related to each commit already provides the developer identification.
Based on commit information, we calculated the productivity of each developer
by applying each commit-based metrics to their commits in the project. Note
that, in this case, we only used commits’ information to calculate the developers’
productivity, and did not consider the content of the source code files.

Commits Performed by Time (Commits/Time) [37]: This metric computes
the number of commit operations performed by one particular developer over time.
Shortly, the higher the number of performed commit operations, the higher is the
developer productivity. Only using this metric as a hint of productive developers
can be quite imprecise, once commit policies can vary [56]. Let us suppose that
two different developers (D1 and D2) produced the same amount of relevant source
code, but D1 performed a single commit operation against two or more commit
operations performed by D2. In this case, D2 would be considered the most pro-
ductive developers. Anyway, this metric can be useful in the case of projects whose
developers follow strict commit policies.

Committed Source Lines of Code by Time (CommittedSLOC/Time) [24]:

Each commit has a set of modified lines associated with it, which are frequently
only small parts of source code files. This metric aims to capture the developer pro-
ductivity using commit information in a more fine-grained than Commits/Time:
considering not only the number of commits but also the number of lines associated
with each commit. As an example, let us suppose that two different developers (D1
and D2) applied three and four commits operations, respectively in the last four
months. D1 applied commits c1.1 after modifying 200 SLOC, c1.2 after modifying
200 SLOC, and c1.3 after modifying 400 SLOC. Thus, CommittedSLOC/Time for
D1 equals (200 + 200 + 400)/4 = 200. D2 applied commits c2.1, c2.2, c2.3, and



Code and Commit Metrics of Developer Productivity 7

c2.4 after modifying 100 SLOC by commit. Thus, CommittedSLOC/Time for D2
equals (100 + 100 + 100 + 100)/4 = 100. As a conclusion, D1, despite having per-
formed fewer commits in four months, was more productive than D2, which had
performed more commits in the same four months. CommittedSLOC/Time is also
know as Code Churn [39].

Committed Characters by Time (CommittedChars/ Time) [48]. Similarly
to CommittedSLOC/Time, this metric provides a more fine-grained measurement
of productivity by commit. CommittedChars/Time counts the number of charac-
ters modified in source code files committed by a developer, as the developer often
only changes a small number of chars of a source code line in a commit opera-
tion. We computed the modifications at the character level via Levenshtein’s edit
distance [32]. This metric can significantly reduce false positives in the number
of source code files modified across commits. Here is one practical example: in
popular languages such as C++ and Java, developers may comment on existing
lines of code by adding only a unique special character per line. Modern code
editors facilitate this kind of modifications and, therefore, it does not require too
much effort from developers. In this case, the metric will capture only a minimum
change, and it will count little to the developer productivity.

3 Research Method

This section describes our research method as follows. Section 3.1 introduces our
study goal and research questions. Section 3.2 justify our developer’s productivity
metrics selection. Section 3.3 presents our study steps and procedure. Section 3.4
overviews our data set, including the organizations that participated in our study,
a team leader characterization, and other collected data.

3.1 Study Goal and Research Questions

We systematically defined our study goal based on the Goal Question Metric
(GQM) framework [3] as follows: analyze the team leaders’ perceptions of de-
veloper productivity; for the purpose of understanding to what extent the team
leaders’ perceptions match the developer productivity computed with the support
of existing metrics; with respect to (1) the correlation of team leaders’ perceptions
and developer productivity metrics, and (2) the team leaders impressions about
the relevance and adoption of productivity metrics in practice; from the viewpoint

of software engineering researchers and development team leaders; and in the con-

text of team leaders from software organizations active for decades. To achieve our
goal, we designed a multi-case study [47] based on two research questions (RQs),
as follows.

Research Question 1 (RQ1): Do developer productivity metrics correlate with

team leaders’ perceptions of developer productivity? – The investigation of the cor-
relation between productivity metrics and team leader perceptions can quantify
to what extent productivity metrics correlate with leaders’ perceptions of their
developer’s productivity. If there is any degree of positive correlation, although
correlation does not imply causality, one could assume that both leaders’ per-
ceptions and productivity metrics share a common ground. Triangulating these



8 Edson Oliveira et al.

quantitative results with the qualitative results of the previous question can show
us which productivity metrics can be recommended to complement the leader’s
view of their developers’ productivity.

Research Question 2 (RQ2): How do team leaders perceive the relevance and

adoption of developer productivity metrics in practice? – We have designed RQ1 for
a better understanding of what team leaders think about existing productivity
metrics. We are interested in understanding to what extent developer productivity
metrics can help the team leaders. Therefore, if the rankings presented by the
developer productivity metrics are very different from the leaders’ perceptions,
these metrics cannot contribute to them. However, if the metrics’ rankings make
any sense, then the disagreeing points could mean some factor that the metric does
not take into account or something that the leader has not noticed yet about their
developers. Thus, with the possibility of complementing the leader’s perception,
we could recommend the adoption of developer productivity metrics.

3.2 Selecting Developer Productivity Metrics

As presented in Section 2.1, the idea of productivity in software development is a
historically complex problem [2]. Nevertheless, for a measurement of productivity
to be effective in an organization, the organization needs to define its own measure-
ment of productivity [27] that is aligned with its objectives [15], in order to carry
out benchmarking of their data. However, participating organizations did not have
any formally defined developer productivity metrics. Therefore, we initially sought
to investigate how organizations identify the productivity of their developers.

How do software managers identify the developer’s productivity? We
conducted a case study in three software organizations [40]. As one of the study’s
results, we found that software managers identify which developers are productive
through (1) the deliveries resulting from the developer tasks, (2) the developer’s
team feedback, and (3) the developer’s behavior. This team feedback comes from
meetings with the development team and, more specifically, from the team leader.
Therefore, we decided to investigate how the team leader identifies the productivity
of their developers.

How do team leaders identify the developer’s productivity? To answer
this specific research question, we returned to participating organizations to ask
the team leaders how they identify the productivity of their developers. The team
leaders answered that they do it by observing (1) the characteristics of their deliv-
eries (from their programming tasks), (2) the feedback from the developer them-
selves and their team members, and (3) their behavior and attitudes. Based on
this information, we decided to collect the data to measure productivity.

Data collection in the participating organizations. We kindly requested
participating organizations to have access to the data from the projects led by
the interviewed leaders. We asked permission to interview the developers and use
the history of their tasks and code repository data to measure their productivity.
Unfortunately, the organizations denied access to developers and did not make
data available from their internal task tracking systems. They only granted us a
copy of the source code repositories.

How have Software Engineering researchers measured developer produc-

tivity? Unable to measure developer productivity based on team leaders’ point of



Code and Commit Metrics of Developer Productivity 9

view, we decided to investigate in the literature how researchers had been mea-
suring the software productivity [41]. While identifying primary studies in our
systematic mapping, we found two other literature reviews, with different scopes,
but also related to developer productivity metrics (Section 2.1). With the results of
these literature reviews, containing the point of view of the researchers, we began
to select the developer productivity metrics to be used in this work.

Selecting developer productivity metrics. Based on these reviews, we chose
the most widely used metrics that could extract the developer’s productivity from
the data contained in the software repositories. Thus, the first selected metrics,
based on the characteristics of the source code files, were: SLOC/Time and Hal-

steadEff./Time. Motivated by the strategy used, explained below, to identify the
authors of the source code, we introduced the CodeOwned/Time metric. Besides, we
continued to monitor articles that assessed developer productivity from source code
repositories. Thus, we find the work of Scholtes et al. [48], also referencing other
works, which presented us developer productivity metrics based on commit char-
acteristics: Commit/Time, CommittedSLOC/Time and CommittedChars/Time.

3.3 Study Steps and Procedure

Figure 1 illustrates the seven steps designed for guiding our mixed-method empir-
ical study. We introduce and discuss each study step as follows.

9 projects

(1) Select 

software 

projects

(2) Recruit 

team 

leaders

8 leaders (4) Rank 

developers with 

productivity 

metrics (6) Compute 

<�v��oo[��tau 

correlations

(7) Interview 

team leaders 

on productivity 

metrics(5) Rank 

developers via 

survey with 

team leaders

54 

rankings

54 

rankings

Key Study step

Resource

(3) Compute 

version history 

and productivity 

metrics

6 metrics

Fig. 1 Steps of our mixed-method empirical study

Step 1: Select software projects. In this step, we selected the software
projects for collecting and analyzing data. Because we intended to perform a
multi-case study [47], we needed to analyze two or more different projects. For
this purpose, we have contacted as many companies as possible to ask for autho-
rization to analyze their projects, contact the team leaders, and compute developer
productivity (anonymously). By selecting multiple projects, we expected to achieve
comprehensive study findings. As a result, we could analyze data of nine software
projects from two different organizations. Each organization holds at least 18 years
of activity in the software industry.

Step 2: Recruit team leaders. In this step, we recruited team leaders to par-
ticipate in our interviews and support us in computing the productivity rankings.
We kindly asked the managers of the nine projects selected in Step 1 to indicate



10 Edson Oliveira et al.

team leaders that could engage with our study. As a result, we were able to recruit
eight team leaders for the nine projects selected (i.e., one leader was responsible
for two projects at the time of our study execution).

Step 3: Compute version history and productivity metrics. We mined the
software repository from the nine projects. The first author relied on automated
scripts for computing the metrics. We calculated the productivity metrics for each
of the 68 developers who participated in any of the nine selected projects. More
information about the collected data is presented in Section 3.4.

Step 4: Rank developers with productivity metrics1. We ranked the de-
velopers according to their productivity for each software project. We computed
the developer rankings based on each of the six metrics presented in Section 2. For
each code-based and commit-based metric, we calculated the ranked list of devel-
opers from the most productive to the less productive. As a result, we obtained
six developer rankings by software project.

Step 5: Rank developers via a survey with team leaders1. This step con-
sisted of surveying team leaders regarding the developer productivity within their
teams. We asked each team leader to sign a consent form for allowing us to use
the data. Thus, through a short survey, we asked the team leaders to rank the de-
velopers of their respective teams from the most productive to the less productive.
At the survey-filling time, we isolated team leaders so that they could not inter-
communicate, or even consult any resources about their projects and development
teams.

Step 6: Compute Kendall’s tau correlations. This step consisted of com-
puting correlations for the metric-based rankings computed in Step 4 with the
rankings produced by team leaders in Step 5. We computed Kendall’s tau (τ)
rank correlations [30]. The Kendall rank correlation coefficient evaluates the de-
gree of similarity between two ordered sets (the rankings) on the same objects (the
developers). This degree of similarity depends on the number of different pairs
between these two ordered sets. A Kendall coefficient of −1 means the largest pos-
sible number of different pairs, obtained when one ranking is the exact reverse of
the other ranking, and a coefficient of +1 corresponding to the smallest possible
number of different pairs (equal to 0), obtained when both rankings are identical.

Our choice for this particular non-parametric test relied on three points: (1)
both of our variables are of ordinal type (rankings), ruling out the Pearson’s cor-
relation coefficient parametric test as it requires interval data for both variables;
(2) Kendall tau works better with small samples (our case) than Spearman’s rank
correlation coefficient, a more popular non-parametric correlation [20], as it “ap-
proaches a normal distribution more rapidly than Spearman, as N, the sample
size, increases” [23]; and finally (3) “the Kendall correlation measure is more ro-
bust and slightly more efficient than Spearman’s rank correlation, making it the
preferable estimator from both perspectives” [11]. To understand the strength of
correlation results, we used the interpretation guidelines provided by Cohen [10].

Step 7: Interview team leaders on productivity metrics. Our last step
consisted of interviewing the same team leaders that computed rankings in Sec-
tion 5. We first explained the six productivity metrics described in Section 2 to
the team leaders. After that, we presented the ranking that he/she had provided

1 Plots of the joint distributions between calculated metric values and rankings (metric-based
and leader-informed) are available online at https://doi.org/10.5281/zenodo.3534258

https://doi.org/10.5281/zenodo.3534258


Code and Commit Metrics of Developer Productivity 11

and the rankings that we computed using the six metrics. Next, we conducted a
semi-structured interview following the Runeson’s guidelines [46]. This interview
consisted of two high-level questions. Question 1: Do these metrics make sense to

you? – We aimed to explore the extent in which team leaders with the relevance
of the six productivity metrics. Question 2: Would you adopt any of these metrics?

– Our goal was capturing the potential adoption of productivity metrics by team
leaders in practice. We analyzed the data by performing a thematic analysis [12].

3.4 Data Set Overview

Table 1 describes the two organizations that participated in our empirical study.
Organization 1 provides non-profit and private support to hardware and soft-
ware development. Organization 2 is a governmental organization that provides
systems to support public education, healthcare, and other domains. Both orga-
nizations kindly agreed to participate in the study anonymously.

Table 1 Organizations that participated in this study

Characteristic Organization 1 Organization 2
Years of activity 18 46
Total of employees 280 392
Social nature Non-profit, private Government, public
Software project type Desktop, web, mobile* Desktop, web, mobile*
Software project domain Healthcare, industry automation Public assistance (various)
Development process Agile (prescriptive) Agile (prescriptive)
Process certification Mps.Br level F ISO-9001
Software technologies Java, JavaScript, Python Java, NATURAL, PHP
*Projects for both Google Android and Apple iOS platforms.

These organizations have their development processes certified by external
certifying entities. Organization 1 has its development process certified as an
Mps.Br [54] level F. This certification is equivalent to CMMI level 2 [9,18]. Or-
ganization 2 has received an ISO 9001:2015 [29] certification for all its internal
processes, including their software development process.

The development teams of these organizations use variations of an agile SCRUM-
based model to manage their development tasks. In these models, development
sprints ran between 1 and 2 weeks, starting with the team leader’s allocation of
development tasks to each team developer member. Developers are responsible for
record in the internal task tracking system (developed internally by each organi-
zation) the tasks they will be developing. At the end of task execution, developers
upload their commits to the central code repository server and record in the task
tracking system the end of their implementation. Each organization has a qual-
ity team that monitors and evaluates process execution using data from these
task tracking systems. As already mentioned, data from these systems were not
available for this research.

In these organizations, all developers work in the same physical location, or-
ganized by projects, in which the developers from the same project are very close
to each other (practically side by side). When a new software project starts, there
is always a reorganization of the developers’ position, to privilege this proximity.



12 Edson Oliveira et al.

This positioning strategy is intended to facilitate communication and collabora-
tion among developers in the same project. Regarding software testing, the two
organizations differ in the way they work. Organization 2 has a dedicated testing
team for each project, which is responsible for the preparation and execution of
test plans. Project developers in Organization 1 are in charge of planning and
execute the software testing themselves.

As far as team communication and developers’ capability and experience are
concerned, we could observe that these two organizations are very similar. All the
developers of these organizations have a degree in Computer Science. The devel-
opment teams in both organizations are designed to combine more experienced
with less experienced developers. This allocation and physical proximity allow the
exchange of knowledge and experiences through intensive team communication.
For example, although these organizations do not have formal code review mech-
anisms, the physical proximity between the developers enables more experienced
developers to review the code by pairing with their less experienced peers before
submitting it to the version control system. This collaborative practice is expected
to improve the quality of reviews [42]. Besides, the development teams have also
other communication mechanisms (e.g., Slack2), in addition to the task tracker
mechanisms mentioned previously.

Although the data from these organization’s internal task tracking systems
were not available, they made the code repositories available. While the low num-
ber of data points is a limitation of this study, this unique dataset it is not easy to
obtain. Table 2 provides general data of team leaders per software project obtained
and organization. The second column lists the projects lead by each of the team
leaders at the time of our empirical study. The third column identifies each team
leader to keep them anonymous. The fourth and fifth columns present age and
the number of years that the team leaders had been working in the organization.
Almost all team leaders had a degree in Computer Science, except for L8, who
has a degree in Electrical Engineering but worked as a software developer for their
entire career.

All team leaders work for their organizations for at least three years (about
nine years, on average). Thus, they are quite familiar with development activities
and processes employed within their organizations. Before being leaders, all of
them worked as developers of the organizations, having experience working with
most other developers. These team leaders develop their leadership activities in
their respective software projects, sharing the same physical environment with
their developers. They actively participate in development because, in addition to
allocating tasks, working to help to solve some development problems faced by
their developers.

Table 3 summarizes the version history data computed for all nine projects
analyzed. We have calculated some necessary information to support our discus-
sions: numbers of developers that contributed to the project development (second
column), number of commit operations applied along the project history (third
column), number of source code files that constitute the project (fourth column),
percentage of files implemented in the predominant programming language, i.e.,
Java for all projects except P7 (fifth column), and months of project development.
P6 and P8 were already in production (in maintenance phase); the other projects

2 http://slack.com



Code and Commit Metrics of Developer Productivity 13

Table 2 Team leaders allocated by organization and software project

Organization Project Team Leader Age Years of Work

Organization 1

P1 L1 29 7
P2 L2 44 8
P3 L3 34 8
P4 L4 30 3
P5 L5 27 6

Organization 2
P6 L6 33 10

P7, P8 L7 32 6
P9 L8 40 26

were not deployed to production at the time of the study. As it is possible to ob-
serve, the ratio commits/month is higher for P1 to P5 (Organization 1) than P6 to
P9 (Organization 2). A possible explanation is that Organization 1 adopted weekly
sprints while Organization 2 adopted bi or triweekly sprints, and Organization 2’s
projects have more developers than Organization 1’s.

Table 3 Version history data by software project

Project Developers Commits
Source Code Files

Development Months
Absolute %*

P1 18 7,894 964 100.0 8
P2 10 4,052 1,494 99.9 6
P3 8 7,127 1,463 99.1 12
P4 7 4,474 512 94.6 11
P5 5 2,308 681 99.8 7
P6 7 7,011 1,788 100.0 73
P7 5 780 512 100.0 6
P8 4 777 241 98.8 76
P9 4 196 512 95.0 11
*At least 90% of source code files implemented in Java or PHP (project P7)

4 Study Results

This section reports the results of our mixed-method empirical study. Section 4.1
present the correlations between team leaders’ perceptions and the productivity
metrics presented in Section 2. Section 4.2 presents the results of the interviews
concerning the importance and adoption of productivity metrics from the team
leaders’ perspective. All identifiers for organizations, software projects, and team
leaders used in this section are inherited from Tables 2 and 3.

4.1 Correlation of Metrics and Team Leaders Perceptions

Research Question 1 (RQ1): Do developer productivity metrics correlate with team

leaders’ perceptions of developer productivity?

Table 4 presents Kendall’s τ correlation coefficient by software project under
analysis. The first column lists the six developer productivity metrics selected
for the study. The following nine columns present the correlation coefficients for



14 Edson Oliveira et al.

projects P1 to P9 regardless of the software development organization. Each coef-
ficient is annotated with * and ** whenever they were statistically significant with
α = 0.10 (i.e., 90% confidence level) and α = 0.05 (i.e., 95%. confidence level),
respectively. The table data shows that code-based metrics presented statistical
significance in 11 cases for the most strict confidence level (i.e., α = 0.05), against
only 6 cases regarding the commit-based metrics.

Table 4 Kendall’s τ correlation coefficients by software project

Metric
Software Project

P1 P2 P3 P4 P5 P6 P7 P8 P9
CodeOwned/Time 0.57** 0.38 0.64** 0.71** 0.00 0.14 1.00** 0.55 0.33
HalsteadEff/Time 0.50** 0.42* 0.29 0.62** 0.80** 0.52* 0.80** 0.55 0.67
SLOC/Time 0.57** 0.47* 0.36 0.81** 0.40 0.43 1.00** 0.55 0.33
Commits/Time 0.31* 0.51** 0.07 0.14 0.40 0.59* -0.2 0.00** 1.00**
CommittedChars/Time 0.48** 0.29 0.29 0.05 0.20 0.59* -0.2 0.00** 0.00
CommittedSLOC/Time 0.32* 0.24 0.36 0.24 -0.2 0.59* 0.20 0.00** 0.00
* α = .10, ** α = .05

Although the metrics used in this study use different ways to calculate de-
veloper productivity, each group of metrics shares a common strategy for their
calculation using either the source code files characteristics or the commits char-
acteristics (Sections 2.2 and 2.3). Therefore, it is possible that these metrics in-
tercorrelate with each other, turning the analysis of strongly correlated metrics
unnecessary. CodeOwned/Time and CommittedChars/Time metrics are strongly
positively correlated (Table 5, in red) with the other code-based and commit-based
metrics, respectively. Thus, to simplify the presentation of results, these metrics
will be omitted from the next tables and figures in this section.

Table 5 Developer productivity metrics intercorrelation

Metrics M1 M2 M3 M4 M5 M6
CodeOwned/Time (M1) - -0.04 0.77 -0.71 -0.54 0.20
HalsteadEff/Time (M2) -0.04 - 0.44 -0.01 -0.55 -0.58
SLOC/Time (M3) 0.77 0.44 - -0.68 -0.54 0.08
Commits/Time (M4) -0.71 -0.01 -0.68 - 0.36 -0.05
CommittedChars/Time (M5) -0.54 -0.55 -0.54 0.36 - 0.59
CommittedSLOC/Time (M6) 0.20 -0.58 0.08 -0.05 0.59 -

Figure 2 provides a general data view of Table 4 using boxplots, presenting
with a dot each correlation for all combinations of project and metric. The x-
axis lists the six developer productivity metrics selected. The y-axis indicates the
Kendall’s τ correlation coefficients per project. We have adopted the assessment
guidelines presented by Cohen in his work [10] for understanding the correlation
power of productivity metrics and team leaders’ perceptions: 0.3 ≤ τ < 0.5 indi-
cates moderate correlation, and τ ≥ 0.5 indicates a strong correlation. This figure
also presents a red background for correlations with less than moderate strength
(tau < 0.3)

From this guideline, we can draw the following observations. The code-based
metrics medians were strong and moderate, wherein only one project (P3) did
not get a moderate or strong correlation (HalsteadEff/Time). The commit-based



Code and Commit Metrics of Developer Productivity 15

SLOC/
Time

HalsteadEff/
Time

Commits/
Time

CommittedSLOC/
Time

−0.3

0.0

0.3

0.5

0.7

1.0

K
en

da
ll-
ta

u 
co

rr
el
at

io
n 

co
ef

fic
ie
nt

Fig. 2 Distribution of Kendall’s τ correlations for all projects

metrics medians were moderate and weak. The medians of commit-based metrics
were weak and moderate, wherein the moderate median was very close to the lower
bound of a moderate correlation. Overall, the productivity code-based metrics
had a smaller variance than commit-based metrics. These results suggest that, in
general, the analyzed code-based metrics (at least partially) can better reflect the
team leaders’ perceptions of developer productivity

Table 6 ranks the productivity metrics analyzed by median correlation coeffi-
cient. The first column lists all productivity metrics. The second and third column
presents the median correlation coefficients computed strictly based on coefficients
validated with α = .05 and α = .10, respectively. The fourth columns present the
median correlation based on all coefficients regardless of the statistical significance.
The ranking of the fifth column followed this sorting precedence: second, third, and
fourth columns. Each coefficient is followed, in parentheses, by the rate of projects
(out of the nine projects) included in the median computation. As a result, the
top-two of metrics is represented by code-based metrics solely.

Table 6 Ranking of productivity metrics by median correlation

Metric
Median Correlation Coefficient

Rank
α = .05 α = .10 All

SLOC/Time .81 (3/9) .69 (4/9) .47 (9/9) 1st

HalsteadEff/Time .71 (4/9) .57 (6/9) .55 (9/9) 2nd

Commits/Time .51 (3/9) .51 (5/9) .31 (9/9) 3rd

CommittedSLOC/Time .00 (1/9) .32 (3/9) .24 (9/9) 4th

Considering projects with seven or more developers – Some of the projects obtained
have a small number of developers. Nevertheless, the probability of a leader ranking
being perfectly correlated (equal rankings) to that of a metric in a 4-developer
project is 1 in 24 possibilities, increasing to 1 in 120 in a 5-developer project. Still,
the variation of the correlation coefficient value is small, i.e., small changes in



16 Edson Oliveira et al.

rankings have a significant effect on the correlation coefficient; for example, with
a single change, the correlation coefficient may change from 0 (no correlation) to
0 .33 (moderate correlation). This variation may represent a noisy in the data
analysis. Therefore, we decided to analyze only the projects with seven or more
developers, making the chance of having two equal rankings at least 1 in 5040.

Figure 3 presents, via boxplots, the distribution of correlation coefficients by
metric for the five software projects (P1, P2, P3, P4, and P6). As before, the x-axis
lists the developer productivity metrics selected; the y-axis indicates the Kendall’s
τ correlation coefficients per project. Overall, the variance of all metrics decreased,
and in commit-based metrics, this decrease was more pronounced. Some correla-
tions at the extremes of metric distributions disappeared, suggesting confirmation
of the idea of noise in data analysis with projects with few developers. Negative
correlations and the perfect correlation of commit-based metrics are gone.

SLOC/
Time

HalsteadEff/
Time

Commits/
Time

CommittedSLOC/
Time

−0.3

0.0

0.3

0.5

0.7

1.0

K
en

da
ll-
ta

u 
co

rr
el
at

io
n 

co
ef

fic
ie
nt

Fig. 3 Distribution of Kendall’s τ correlations for projects with seven or more developers

Commit-based metrics showed a strong correlation in only one project (P6).
In most projects, code-based metrics correlated more strongly than commit-based
metrics. In general, the analysis previously described (with all projects) remained
when analyzing projects with seven or more developers separately. Finally, it is
worth mentioning that our results for these projects achieve statistical significance
with α = 0.10 for at least one code-base metric per project.

Table 7 ranks the productivity metrics based on the median correlation coef-
ficient, similarly to Table 6. The top-two of metrics kept composed by code-based
metrics only. The different between rankings is a little variation in the correlations
median value of all metrics, with a decrease for the code-based metrics, and a
slight increase for the CommittedSLOC/Time metric. The Commits/Time metric
has not changed.

Considering projects with ten or more developers – We now focus only on the two
biggest projects in our dataset. These projects (P1 and P2) have ten and eigh-
teen developers, in which the probability of a leader ranking being equal to that



Code and Commit Metrics of Developer Productivity 17

Table 7 Ranking of productivity metrics by median correlation

Metric
Median Correlation Coefficient

Rank
α = .05 α = .0.5 or .10 All

SLOC/Time .69 (2/5) .57 (3/5) .47 (5/5) 1st

HalsteadEff/Time .56 (2/5) .51 (4/5) .50 (5/5) 2nd

Commits/Time .51 (1/5) .51 (3/5) .31 (5/5) 3rd

CommittedSLOC/Time N/A (0/5) .46 (2/5) .32 (5/5) 4th

N/A: Not applicable (division by zero)

calculated by the metric is one in 3,628,800 and one in 6,402,373,705,728,000, re-
spectively. Therefore, by reducing, even more, the noise in the data, we can have
more confidence in interpreting the results, even though the sample consists of
only two projects.

Table 8 lists the correlation coefficients by productivity metric for these two
projects. This table is a cut from Table 4, focusing only on the biggest projects
and including the number of developers. At the time of data gathering, these two
projects were new developments (started in less than a year).

Table 8 Kendall’s τ correlation coefficients for software project with ten or more developers

Metric
Software Project

P1 (18 devs.) P2 (10 devs.)
HalsteadEff/Time 0.50** 0.42*
SLOC/Time 0.57** 0.47*
Commits/Time 0.31* 0.51**
CommittedSLOC/Time 0.32* 0.24
* α = .10, ** α = .05

Concerning the correlation distribution of projects with seven or more devel-
opers (Figure 3), the correlations of these two projects (P1 and P2) are the central
points: project P1 correlation is the median for metrics HalsteadEff/Time, Com-
mits/Time and CommittedSLOC/Time; while project P2 correlation is the median
for metric SLOC/Time. In addition, Code-based metrics were the only ones to get
a strong correlation (τ ≥ 0.5) for the biggest project (P1), while Commits/Time,
a commit-based metric, was the only one to get a strong correlation for project
P2. The CommittedSLOC/Time was the only metric that did not get at least a
moderate correlation (0.3 ≤ τ < 0.5) for both projects, and still the only one to
have a weak correlation (τ < 0.3 for project P2). Table 9 ranks the productivity
metrics by correlation coefficient median.

Table 9 Ranking of productivity metrics by median correlation

Metric
Median Correlation Coefficient

Rank
α = .05 α = .10 All

SLOC/Time .57 (1/2) .52 (2/2) .52 (2/2) 1st

Commits/Time .51 (1/2) .41 (2/2) .41 (2/2) 2nd

HalsteadEff/Time .50 (1/2) .46 (2/2) .46 (2/2) 3rd

CommittedSLOC/Time N/A (0/2) .32 (1/2) .28 (2/2) 4th

N/A: Not applicable (division by zero)



18 Edson Oliveira et al.

When data in Table 9 is compared with the previous metrics rankings (Ta-
ble 7 and Table 6), the main difference is: Commits/Time outperformed Halstead-
Eff/Time by a minimal margin (0.01). However, despite this latest Commits/Time
metric result, code-based metrics correlated most strongly with the team leaders’
perceptions.

Summary of RQ1: Code-based metrics outperformed commit-based metrics,
in reflecting team leaders’ perceptions of developer productivity. Moreover,
commit-based metrics showed even negative correlations, indicating an inverse
rank concerning the team leader’s rank.

4.2 Analysis of Interviews with Team Leaders

Research Question 2 (RQ2): How do team leaders perceive the relevance and adop-

tion of developer productivity metrics in practice?

According to their perceptions, eight leaders estimated the developer ranking
of their team. We interviewed these leaders, showing the ranking that he/she had
provided and the rankings that we computed using the developer productivity
metrics. Thus, this section presents the interview data involving the same eight
leaders. In the sequence, we discuss our qualitative results based on the two inter-
view questions defined in Section 3.3 (Step 7).

4.2.1 On the Relevance of the Six Productivity Metrics

After explaining each of the six productivity metrics selected to the team leaders,
we showed the metric-based rankings to the respective team leaders. We then asked
Question 1 to each team leader: do these metrics make sense to you?

By analyzing the leaders’ responses based on the procedures documented in
Section 3, we captured both positive and negative perceptions of each productivity
metric. We refer to answers similar to ”I think that this metric makes sense in the

context of developer productivity assessment” as positive perceptions. The opposite
applies to negative perceptions. Table 10 summarizes both positive and negative
perceptions of the team leader (L1 to L8). In the table, we marked with * the
metrics that presented the highest Kendall’s τ correlation coefficient for a given
team leader (according to data of Section 4.1).

Table 10 Positive and negative perceptions of productivity metrics by team leader

Metric
Team Leader Total

L1 L2 L3 L4 L5 L6 L7 L8 + –

CodeOwned/Time +* + +* + – + +* + 7 1

HalsteadEff/Time – + +* + +* + 5 1

SLOC/Time +* + * + + +* – 5 1

Commits/Time – * – – – * –* 0 5

CommittedChars/Time – – – – * – 0 5

CommittedSLOC/Time – – – – * – 0 5
Positive perception (+); Negative perception (–); Greatest τ correlation coefficient (*)



Code and Commit Metrics of Developer Productivity 19

The data presented in Table 10 suggests an overall negative perception about
commit-based metrics: none of these metrics shown at least a single positive com-
ment. Conversely, the majority of team leaders perceived the code-based metrics as
positive to the developer productivity assessment. Especially, CodeOwned/Time
was pointed out as positive by seven out of the eight team leaders interviewed.
Additionally, half of the team leaders (L1, L3, L5, and L7) perceived positively
the productivity metrics whose correlation coefficients best fit their perceptions.
Three leaders (L2, L4, and L6) did not point out as positive the metrics whose
correlations best fit their perceptions. Curiously, L8 had a negative impression of
Commits/Time, though this was the only metric whose correlation best fit his
perception. We hypothesize that the unfamiliarity with productivity metrics may
have made leaders reluctant to reveal their positive perceptions on these metrics.

Criticism regarding code-based metrics – L1 and L5 reported criticism
about using code-based metrics to assess developer productivity. L1 disagreed
that HalsteadEff/Time can successfully capture the complexity of produced source
code, while L5 pointed out that CodeOwned/Time does not always reflect the
developer productivity. The excerpts representing their perspectives are presented
below:

I do not know if HalsteadEff/Time can measure complexity of

the produced code by simply counting operands and operators. – L1

I believe that CodeOwned/Time does not reflect well the reality.

In fact, the top-one developers should not be there. – L5

Criticism regarding commit-based metrics – L3, L4 and L8 expressed their
criticism about the productivity assessment enabled by commit-based metrics,
such as Commits/Time. Particularly, L8 suggested that depending on the commit
policy adopted by the developer, commit frequency says little about developer
productivity:

“I found these commit-based metrics irrelevant because, sometimes,

developers commit their source code simply to not lose it;

it has nothing to do with developer productivity.” – L8

About the noise in productivity metrics data – L2, L3, and L5 gave some
feedback about noises that may have affected the metric-based productivity rank-
ings. The leaders illustrated scenarios (e.g. when refactoring code, fixing bugs or
running code formatting routines) in which one or another metric may not have
succeeded in reflecting the developer productivity. This was clearly exemplified by
L2, when the participant said:

“I remember that one developer refactored the source code, thereby performing many

commits. It may have affected the metrics based on Code Ownership.” – L2

4.2.2 On the Potential Adoption of the Six Productivity Metrics in Practice

After asking the team leaders about the relevance of the six productivity metrics
analyzed, we asked Question 2 to each team leader: would you adopt any of these

metrics?



20 Edson Oliveira et al.

From the leaders’ responses, we captured the potential adoption (or non-
adoption) of each productivity metric from a team leader perspective. The interest
of a leader to adopt a given productivity metric was captured from sentences such
as I would adopt this metric in practice. The opposite applied to the non-adoption
of a metric. Table 11 summarizes both potential adoption and non-adoption of
each metric by team leader. In the table, we marked with * whenever a metric
presented the highest Kendall’s τ correlation coefficient for a given team leader
(cf. data of Section 4.1). We discuss below our main observations.

Table 11 Potential adoption of productivity metrics by team leader

Metric
Team Leader Total

L1 L2 L3 L4 L5 L6 L7 L8 X
HalsteadEff/Time X X X* X* X 5
SLOC/Time X* X X* X 4
CodeOwned/Time X* X* X * 3

Commits/Time * X * * 1
CommittedChars/Time X * 1
CommittedSLOC/Time X * 1
Adoption (X); Non-adoption (X); Greatest τ correlation coefficient (*)

L4 proved to be the most enthusiastic team leader concerning the practical
adoption of productivity metrics: he pointed out interest in adopting all six metrics.
Conversely, L2 showed lack of interest in adopting productivity metrics—even the
only one he previously pointed out as relevant, i.e., CodeOwned/Time (Table 10).
Most of the leaders (L1, L3, L4, L5, and L7) showed interest in adopting at least
one metric whose τ correlation coefficient with their perceptions was the greatest.
We highlight that only L4 would adopt commit-based metrics, which reflects an
overall rejection of these metrics in practice.

Practical benefits of using productivity metrics – L1, L3, L5, and L6 pro-
vided us with insights on how beneficial can be the adoption of productivity met-
rics in practice, such as revealing not observed productive developers, productive
history, other aspects of developer’s productivity. The following excerpts from L1
and L5 summarize this point of view:

“Productivity metrics can guide us and reveal

aspects of productivity not yet observed.” – L1

“This metric [HalsteadEff/Time] may be revealing the

most productivity developer [contrary to expectations].” – L5

Combining productivity metrics – L3 and L4 suggested that combining two
or more productivity metrics can be useful to guide the productivity assessment.
In this sense, L4 mentioned:

“In practice, I would need to use two or more productivity

metrics combined rather than only one metric.” – L3

Applicability of productivity metrics – L3, L4 and L8 also provided in-
sights about the applicability of these metrics in particular industry cases. It was
interesting to see their inputs in this regard:



Code and Commit Metrics of Developer Productivity 21

“I would apply these metrics in practice because I do not want to

be unfair with any developer of my team.” – L3

“The metric results suggest that I should pay special attention to a given

developer. I could give more recognition to her work.” – L4

“Productivity metrics can help me in enhancing the human resource management,

so that developers are allocated to tasks in which

they are more likely to be productive.” – L8

In summary, our qualitative results showed that the team leaders’ percep-
tions of developer productivity are aligned with code-based metrics rather than
commit-based metrics. The eight interviewed team leaders showed a general rejec-
tion of using commit-based metrics to assess developer productivity. Such rejection
is often motivated by noise derived from varying commit policies and practices.
However, some leaders (especially L3 and L4) pointed out that combining differ-
ent metrics can be useful to enhance productivity assessment. We highlight that
further investigation is required to understand how the six productivity metrics
should be combined to support productivity assessment effectively.

Summary of RQ2: Most of the interviewed team leaders pointed out code-
based metrics as relevant to assess developer productivity. Although they are
not ultimately enthusiastic about adopting productivity metrics in practice,
the leaders showed interest in combining multiple metrics to guide their daily
work in allocating tasks to developers.

4.3 Comparing quantitative results with qualitative results

Finally, we compared the results of correlations between metrics and team leaders’
productivity perceptions with team leaders’ positive or negative views of the same
metrics (Figure 4).

Fig. 4 Team leader’s perception of metrics versus metrics’ correlation strength



22 Edson Oliveira et al.

For this analysis, we chose to use Cohen’s interpretation of the metrics’ corre-
lation values (see Table 9) for α = .10. We decided this way because the correlation
data for α = .05, in addition to one of productivity metrics do not have a valid cor-
relation (CommittedSLOC/Time), all other metrics had a valid correlation value
for only one project, but not the same project. The numbers shown next to each
bubble in the figure are the totals of positive (+) and negative (−) perceptions of
team leaders (see Table 10).

Code-based metrics had the highest number of positive perceptions and most
strongly correlated with developer productivity rankings reported by team leaders.
Only a single leader Indicated a negative perception for each of code-based metrics.
Conversely, all leaders had only negative perceptions about commit-based metrics.
Also, commit-based metrics lagged behind all comparisons made so far, except for
the last comparison when Commits/Time was ahead of HalsteadEff/Time by a
minimal margin.

Summary: Code-based metrics are those that had the most positive reac-
tions from team leaders and also those that had the strongest correlations
with team leaders’ perception of developers’ productivity. Conversely, commit-
based metrics are those that had all negative reactions from team leaders and
had the correlations outperformed by code-based metrics, except for the Com-
mit/Time metric.

5 Lessons Learned

In this section, we present and discuss a set of lessons that we have learned by
conducting this study, which may have implications in research and practice.
Assessing developer productivity via commit-based metrics is tricky – Our
quantitative data revealed that code-based metrics outperformed commit-based
metrics in reflecting the team leaders’ perceptions of developer productivity (Sec-
tion 4.1). Complementarily, our qualitative data revealed a certain rejection of
team leaders in adopting commit-based metrics to assess productivity. The eight
interviewed leaders are unanimous in stating that commit-based metrics strongly
dependent on developers’ commit habits; thus, these metrics are quite unreliable
(Section 4.2). Particularly, team leaders expressed their concern about being unfair
with developers who commit less but produce more complex program features than
other developers. Therefore, we have learned that using commit-based metrics to
assess developer productivity is tricky in practice.
Code ownership as a key to assessing developer productivity – We computed
code-base metrics based on code files owned by a software developer (Section 2.2).
Differently of past research, such as [7] and [31], which manually computed code
ownership, we used a recent approach based on software repository mining [4]. Our
results were encouraging for code-based metrics: all code-based metrics are strongly
correlated with team leaders’ perceptions of developer productivity. Despite crit-
icisms of previous work (e.g., [45] and [49]), even SLOC/Time was successful in
reflecting the leaders’ perceptions. Conversely, the isolated use of commit frequency
by the commit-based metrics showed ultimately unsuccessful (Tables 4 and 10).
As the CodeOwned/Time metric strongly correlated with the SLOC/Time metric



Code and Commit Metrics of Developer Productivity 23

(Table 5), we hypothesize that code ownership plays an important role, suggesting
that team leaders intuitively see developers working frequently (owner of code)
on the most important (possible biggest or most complex code) part of the project
source code as the most productive ones. Future work could further investigate
this hypothesis in practice.
To what extent code-based and commit-based can complement the team

leaders’ perceptions of their developer’ productivity? Although developer
productivity is a subjective concept [1], it is essential to the success of software
development organizations [2] [28]. Thus, any additional support to team leaders
in assessing developer productivity can benefit the management of development
teams and enhance team productivity as a whole. One of the goals of our study was
to understand whether productivity metrics could complement the perceptions of
team leaders in assessing developers productivity. Our results showed that, even
with the leaders’ explicit rejection to adopt specific metrics (Section 4.2), produc-
tivity based on code-based metrics are usually aligned with the leaders’ subjective
perception of productivity (Section 4.1). In summary, our results suggest that pro-
ductivity metrics, especially code-based metrics, can complement the subjective
perception of team leaders. The leaders themselves highlighted the benefits: re-
vealing aspects of developer productivity not previously known, boost the fairness
of productivity assessment, and acknowledge those developers that are produc-
tive but underestimated (Section 4.2). Ultimately, this work provides empirical
evidence that productivity metrics can be triangulated with the team leaders’
perceptions towards a more accurate productivity assessment.

6 Related Work

Developer productivity assessment has been extensively investigated by previous
work in order to support organizations, project managers, and team leaders in
their needs [35] [36] [40] [49]. Some studies (e.g., [35] [36]) aimed to understand how
developer productivity has been computed and managed from a practical perspec-
tive. Section 6.1 discusses these studies. Additionally, other studies (e.g., [40] [49])
assess what project managers and team leaders think about developer productiv-
ity. Section 6.2 discusses these studies. We compare our study results with those
obtained by previous work as much as possible.

6.1 General Studies on Perceptions of Developer Productivity

A first study [35] investigated the productivity perceptions of agile teams. That
study relies on two industry case studies with 13 team members, including de-
velopers and team leaders. Through semi-structured interviews and informal dis-
cussions, the study revealed the lack of a common perception of productivity.
Developers and team leaders have mixed perceptions that range from time spent
to produce code to the quality and quantity of code created. An example of factors
usually perceived as harmful to productivity is the poor team organization, which
may hinder knowledge sharing among members. Unfortunately, that study [35] did
not investigate details about how developers and team leaders measure produc-
tivity using time spent, quality, and quantity of produced code. In this work, we



24 Edson Oliveira et al.

address this literature gap by capturing the perception of team leaders in agile
teams about developer productivity metrics. We rely on six metrics that compute
either on the characteristics of produced code or the commit activity. Our results
point out that code-based metrics better represent the team leaders perceptions
of developer productivity.

A second study [36] has complimented some key observations provided by the
first study [35] but in the context of developer productivity. The authors have per-
formed a mixed-method empirical research based on surveys with 379 experienced
developers and interviews with 11 developers. Similarly to the first study [35], the
authors have confirmed different perceptions of developers about their produc-
tivity with no consensus among developers. These perceptions ultimately rely on
the number of achieved goals and completed development tasks, which could be
translated to the amount of produced code. As a complement, the authors found
that developers consider their working days productive when a lower number of
interruptions and working context switches occur. The rate of completed tasks by
day and the amount of code produced and bug-fixed were frequently used by de-
velopers to compute their productivity. Differently from both studies [35] [36], our
current work targets the perceptions of developer productivity from the viewpoint
of team leaders. We acknowledge the need for understanding whether developer
productivity metrics could help leaders in managing their development teams, once
this is the principal leader responsibility in a team.

6.2 Developer Productivity: A Project Manager and Team Leader Perspective

A previous study [49] has investigated the perception of developers and project
managers about two productivity metrics: Function Points (FP) [22] and Source
Lines of Code (SLOC) [34]. FP captures the number of program features realized
by the produced source code, and SLOC captures the amount of produced code
itself, usually regardless of the features implemented by these lines of code. The
authors have surveyed 28 developers and 42 project managers. The results are
quite interesting: although only 34% of developers and managers said to be more
familiar with SLOC rather than FP, they are more likely to adopt SLOC due to
its computation simplicity. As a complement, our current work empirically stated
that SLOC produced by time and other code-based metrics fit the team leaders
perceptions of developer productivity.

Similarly to the work mentioned above [49], we have recently investigated the
project managers perceptions of developer productivity [40]. Our primary goal
was achieving a general understanding of what productivity means for project
managers and how they have been measuring the productivity of their team de-
velopers in practice. For this purpose, we performed semi-structured interviews
with 12 project managers from two software development organizations. Our re-
sults showed that project managers often perceive the number of tasks delivered
on-time and the frequency of produced artifacts as hints of developer productiv-
ity. Surprisingly, the interviewed managers said they strongly depend on the team
leaders perceptions to assess developer productivity, thereby neglecting the use
of productivity metrics. Due to the limited knowledge of how team leaders assess
developer productivity in practical settings, we performed the current work.



Code and Commit Metrics of Developer Productivity 25

7 Threats to Validity

We carefully designed and performed our empirical study aimed to understand
the team leaders perceptions of developer productivity metrics. We employed our
best effort in developing appropriate study settings, artifacts, and analysis proto-
cols. Nevertheless, some threats to the study validity should be considered before
reproducing our study and adopting our recommendations in practice. Below, we
discuss threats to validity based on a previous work [57].

Construct Validity. (1) We performed a pilot study that counted on the par-
ticipation of five team leaders. We recruited them from organizations not exploited
in this work. The voluntary participation of all five volunteers helped us to adjust
our survey and interview protocols. It has enabled us to reduce threats related to
our capability to obtain all data required to address our research questions. (2)
We cherry-picked the software projects in this work based on the availability of
data for analysis. We asked managers of each organization to indicate the projects
available for study. One out of the five projects provided to us by Organization 2
was discarded due to insufficient data of code and commit history data. All other
projects were considered for analysis. Thus, we expected to minimize biases in
the project selection. (3) We asked managers of each organization to indicate the
team leaders with the highest leading experience for participating in our study.
Although we expected to minimize bias in selecting team leaders, this procedure
may conversely have created a bias. . Thus, we carefully selected those team lead-
ers with the highest leading experience per organization. Therefore, we expected
to minimize biases in the selection of team leaders.

Internal Validity. (1) We followed strict guidelines for computing the pro-
ductivity metrics and all data required to rank developers by productivity. For
computing the source code metrics like as Source Lines of Codes (SLOC) [34],
we considered only the primary programming language used to implement each
software project. Additionally, we prioritize projects implemented in Java due to
the worldwide language popularity. Finally, we computed code ownership based
on a previous work [4], which has been adopted by recent studies like [25] and [50].
Besides, we selected an algorithm to identify code ownership. Thus, we expected to
reduce biases in the metrics computation. (2) We discarded all commit operations
performed on non-source code files, frequently done by non-developers, thereby
reducing noise in the analyzed data. (3) We have computed the developer pro-
ductivity based on the average productivity of each developer by working week.
We relied on a previous work [48] and the fact that, for both exploited organiza-
tions, the time interval among commits is usually lower than seven days (in 95%
of cases).

External Validity. (1) We carefully selected the statistical tests that could
help us in understanding the significance of our data. We relied on previous stud-
ies [16] [33] for computing correlations of metrics with developer perceptions. At
least two paper authors checked all computed data. In case of divergences, we
discussed each issue and performed the proper fixes. (2) We followed thematic
analysis procedures [12] to analyze the interview data. The first author has joined
another paper author for conducting the qualitative analysis of interview data.
Thus, we excepted to minimize threats like missing and incorrect data. All inter-
view transcriptions were carried out in Portuguese, which is the native language
for all paper authors and interviewees. (3) Double-validating the developer rank-



26 Edson Oliveira et al.

ings computed based on metrics enabled us to identify that four developers (two
of project P1 and two of P8) were missing in the rankings. Regarding P1, we asked
leader L1 to recompute the rankings, and it was done promptly because he/she
just missed those developers. Regarding P8, we realized that leader L8 omitted
two developers on purpose because they were no longer part of that project. Once
both developers have been part of the project from the beginning, we asked L8 to
recompute the rankings, which was done promptly as well.

Conclusion Validity. (1) We did our best to invite as many development or-
ganizations as possible for participation in our study. For each organization, we
asked the project managers to indicate as many projects and team leaders to ana-
lyze and survey. Although, we are aware that the selected organizations, projects,
and team leaders are not representative of all industry settings. Nevertheless, we
expected to achieve a reasonable number of participants for this study. (2) For
understanding the team leaders perceptions of developer productivity, we have
selected a considerable set of metrics. We carefully picked three code-based and
three commit-based metrics for the study. These metrics were identified and cate-
gorized in a previous work [41]. Thus, we expected to have a study that is diverse in
terms of productivity metrics that may capture the team leaders perceptions. (3)
Although all selected organizations are focused on agile development, we expect
that our study findings apply to some extent to other development contexts, e.g.,
the traditional development. We highlight that the two organizations exploited in
this work represent typical regional organizations elsewhere.

8 Final Remarks

To assess the productivity of software developers in real software projects is essen-
tial to the success of development organizations [2] [52]. Aimed to support such
assessment, various studies have proposed means to guide leaders in managing
human resources in their development teams [35] [36] [40] [49]. Especially, many
metrics were introduced by past research in order to infer different aspects of
developer productivity [24] [31] [48]. These metrics usually rely on either the char-
acteristics of produced source code (code-based metrics) or the commit frequency
performed by developers (commit-based metrics). Unfortunately, the current em-
pirical knowledge on to what extent these metrics reflect the team leaders’ percep-
tions of developer productivity is quite scarce if not nonexistent. In this context,
we carefully designed and performed a mixed-method empirical study on leaders’
perceptions of six productivity metrics proposed in the literature (Section 2). This
work has combined a correlational study (Section 4.1) with interviews (Section 4.2)
performed with eight team leaders that work for nine software projects (68 devel-
opers in total) with a correlational study (Section 4.1). The nine projects were
selected from two development organizations with more than 18 years of activity.

In the correlational study, we computed the correlation of developer rankings
subjectively calculated by the team leaders with rankings computed via produc-
tivity metrics. Although correlation does not necessarily imply causality, our cor-
relational study data suggest a higher correlation of the leaders’ perceptions with
code-based metrics when compared to commit-based metrics, regardless the devel-
opment organization. In the interview-based study, we observed that team leaders
are more likely to find relevant code-based metrics rather than the commit-based



Code and Commit Metrics of Developer Productivity 27

metrics. We also observed that team leaders are interested in combining two or
more metrics information to support their daily work of managing teams, gath-
ering benefits such as: revealing aspects of developer productivity not previously
known, boost the fairness of productivity assessment, those developers that are
productive but underestimated. Based on these results, productivity metrics, es-
pecially code-based metrics, can complement the subjective perception of team
leaders. Therefore, we recommend that team leaders adopt in practical settings produc-

tivity metrics, especially code-based metrics, to complement the developers’ productivity

assessment.

Suggestions for future research: Our empirical study shed light on some op-
portunities for future research. First, one could perform empirical studies aimed
to understand the effect of commit data on the performance of code-based metrics
for assessing developer productivity. To what extent the commit frequency enhances

the developer productivity metrics? is an example of a question that could be ad-
dressed based on the discussion presented in Section 5. Second, researchers could
perform participatory action research to investigate team leaders that employ the
productivity metrics (Section 2) in practice. How do team leaders employ productiv-

ity metrics to manage development teams? and What is the effect of using metrics on

the productivity of real development teams? are suggested research questions. Third,
one could investigate the human factors underlying the team leaders’ perceptions
of developer productivity.

References

1. Amrit, C., Daneva, M., Damian, D.: Human factors in software development: On its under-
lying theories and the value of learning from related disciplines. a guest editorial introduc-
tion to the special issue. Information and Software Technology (IST) 56(12), 1537–1542
(2014)

2. de Aquino Junior, G., Meira, S.: Towards effective productivity measurement in software
projects. In: Proceedings of the 4th International Conference on Software Engineering
Advances (ICSEA), pp. 241–249 (2009)

3. Basili, V., Rombach, H.D.: The tame project: Towards improvement-oriented software
environments. IEEE Transactions on Software Engineering (TSE) 14(6), 758–773 (1988)

4. Bird, C., Nagappan, N., Murphy, B., Gall, H., Devanbu, P.: Don’t touch my code! ex-
amining the effects of ownership on software quality. In: Proceedings of the 19th ACM
SIGSOFT Symposium and the 13th European Conference on Foundations of Software
Engineering (ESEC/FSE), pp. 4–14 (2011)

5. Boehm, B., Clark, B., Horowitz, E., Westland, C., Madachy, R., Selby, R.: Cost models for
future software life cycle processes: COCOMO 2.0. Ann. Softw. Eng. 1(1), 57–94 (1995).
DOI 10.1007/BF02249046

6. Boehm, B.W.: Software Engineering Economics. Prentice Hall, Englewood Cliffs, New
Jersey (1981)

7. Chand, D., Gowda, R.: An exploration of the impact of individual and group factors on
programmer productivity. In: Proceedings of the Conference on Computer Science (CSC),
pp. 338–345 (1993)

8. Chávez, A., Ferreira, I., Fernandes, E., Cedrim, D., Garcia, A.: How does refactoring affect
internal quality attributes? a multi-project study. In: Proceedings of the 31st Brazilian
Symposium on Software Engineering (SBES), pp. 74–83 (2017)

9. Chrissis, M.B., Konrad, M., Shrum, S.: CMMI for development: guidelines for process
integration and product improvement. Pearson Education (2011)

10. Cohen, J.: Statistical power analysis for the behavioural sciences, 2 edn. Routledge (1988)
11. Croux, C., Dehon, C.: Influence functions of the spearman and kendall correlation mea-

sures. Statistical methods & applications 19(4), 497–515 (2010)



28 Edson Oliveira et al.

12. Cruzes, D., Dyba, T.: Recommended steps for thematic synthesis in software engineering.
In: Proceedings of the 5th International Symposium on Empirical Software Engineering
and Measurement (ESEM), pp. 275–284 (2011)

13. De Silva, L., Balasubramaniam, D.: Controlling software architecture erosion: A survey.
Journal of Systems and Software (JSS) 85(1), 132–151 (2012)

14. Dyer, R., Nguyen, H.A., Rajan, H., Nguyen, T.: Boa: Ultra-large-scale software repository
and source-code mining. ACM Transactions on Software Engineering and Methodology
(TOSEM) 25(1), 7 (2015)

15. Fenton, N.E., Neil, M.: Software metrics: Roadmap. Proc. Conf. Futur. Softw. Eng. ICSE
2000 pp. 357–370 (2000). DOI 10.1145/336512.336588

16. Fernandes, E., Ferreira, L.P., Figueiredo, E., Valente, M.T.: How clear is your code? an
empirical study with programming challenges. In: Proceedings of the Ibero-American
Conference on Software Engineering: Experimental Software Engineering Track (CIbSE-
ESELAW), pp. 1–14 (2017)

17. Fernandes, E., Oliveira, J., Vale, G., Paiva, T., Figueiredo, E.: A review-based comparative
study of bad smell detection tools. In: Proceedings of the 20th International Conference
on Evaluation and Assessment in Software Engineering (EASE), pp. 18:1–18:12 (2016)

18. Ferreira, A.I.F., Santos, G., Cerqueira, R., Montoni, M., Barreto, A., Barreto, A.O.S.,
Rocha, A.R.: Applying iso 9001: 2000, mps. br and cmmi to achieve software process
maturity: Bl informatica’s pathway. In: 29th International Conference on Software Engi-
neering (ICSE’07), pp. 642–651. IEEE (2007)

19. Ferreira, M., Valente, M.T., Ferreira, K.: A comparison of three algorithms for computing
truck factors. In: Proceedings of the 25th International Conference on Program Compre-
hension (ICPC), pp. 207–217 (2017)

20. Field, A.: Discovering Statistics using IBM SPSS Statistics, 3 edn. Sage Publications Ltd.
(2009)

21. Fowler, M.: Cannot measure productivity (2003). URL https://martinfowler.com/
bliki/CannotMeasureProductivity.html. [Online; posted 29-August-2003]

22. Furey, S.: Why we should use function points. IEEE Software 14(2), 28 (1997)
23. Gilpin, A.R.: Table for conversion of kendall’s tau to spearman’s rho within the context

of measures of magnitude of effect for meta-analysis. Educational and Psychological Mea-
surement 53(1), 87–92 (1993). DOI 10.1177/0013164493053001007

24. Gousios, G., Kalliamvakou, E., Spinellis, D.: Measuring developer contribution from soft-
ware repository data. In: Proceedings of the 5th International Working Conference on
Mining Software Repositories (MSR), pp. 129–132 (2008)

25. Greiler, M., Herzig, K., Czerwonka, J.: Code ownership and software quality: A replication
study. In: Proceedings of the 12th Working Conference on Mining Software Repositories
(MSR), pp. 2–12 (2015)

26. Halstead, M.: Elements of software science, 1 edn. Elsevier Science (1977)
27. Hernández-López, A., Colomo-Palacios, R., Garćıa-Crespo, A.: Software Engineering Job

Productivity – A Systematic Review. Int. J. Softw. Eng. Knowl. Eng. 23(03), 387–406
(2013). DOI 10.1142/S0218194013500125

28. Huselid, M.: The impact of human resource management practices on turnover, productiv-
ity, and corporate financial performance. Academy of Management Journal (AMJ) 38(3),
635–672 (1995)

29. International Standard Organization: ISO 9001:2015 Quality management systems – Re-
quirements (2015). URL https://www.iso.org/standard/62085.html

30. Kendall, M.G.: Rank correlation methods, 2 edn. Hafner Publishing (1955)
31. Lawrence, M.: Programming methodology, organizational environment, and programming

productivity. Journal of Systems and Software (JSS) 2(3), 257–269 (1981)
32. Levenshtein, V.: Binary codes capable of correcting deletions, insertions, and reversals.

Doklady Physics 10(8), 707–710 (1966)
33. Lokan, C.: An empirical study of the correlations between function point elements. In:

Proceedings of the 6th International Software Metrics Symposium (METRICS), pp. 200–
206 (1999)

34. Lorenz, M., Kidd, J.: Object-oriented software metrics: A practical guide, 1 edn. Prentice
Hall (1994)

35. Melo, C., Cruzes, D., Kon, F., Conradi, R.: Agile team perceptions of productivity factors.
In: Proceedings of the Agile Conference (Agile2011), pp. 57–66 (2011)

36. Meyer, A., Fritz, T., Murphy, G., Zimmermann, T.: Software developers’ perceptions of
productivity. In: Proceedings of the 22nd International Symposium on Foundations of
Software Engineering (FSE), pp. 19–29 (2014)

https://martinfowler.com/bliki/CannotMeasureProductivity.html
https://martinfowler.com/bliki/CannotMeasureProductivity.html
https://www.iso.org/standard/62085.html


Code and Commit Metrics of Developer Productivity 29

37. Mockus, A., Fielding, R., Herbsleb, J.: Two case studies of open source software develop-
ment: Apache and Mozilla. ACM Transactions on Software Engineering and Methodology
(TOSEM) 11(3), 309–346 (2002)

38. Mordal, K., Anquetil, N., Laval, J., Serebrenik, A., Vasilescu, B., Ducasse, S.: Software
quality metrics aggregation in industry. Software: Evolution and Process (S:E&P) 25(10),
1117–1135 (2013)

39. Munson, J., Elbaum, S.: Code churn: A measure for estimating the impact of code change.
In: Proceedings of the 6th International Conference on Software Maintenance (ICSM), pp.
24–31 (1998)

40. Oliveira, E., Conte, T., Cristo, M., Mendes, E.: Software project managers’ perceptions
of productivity factors: Findings from a qualitative study. In: Proceedings of the 10th
International Symposium on Empirical Software Engineering and Measurement (ESEM),
pp. 15:1–15:6 (2016)

41. Oliveira, E., Viana, D., Cristo, M., Conte, T.: How have software engineering researchers
been measuring software productivity? A systematic mapping study. In: Proceedings of
the 19th International Conference on Enterprise Information Systems (ICEIS), pp. 76–87
(2017)

42. Oliveira, R., de Mello, R., Fernandes, E., Garcia, A., Lucena, C.: Collaborative or individ-
ual identification of code smells? On the effectiveness of novice and professional developers.
Information and Software Technology (IST) 120, 106242 (2020)

43. Ordonez, M., Haddad, H.: The state of metrics in software industry. In: Proceedings of
the 5th International Conference on Information Technology: New Generations (ITNG),
pp. 453–458 (2008)

44. Petersen, K.: Measuring and predicting software productivity: A systematic map and re-
view. Information and Software Technology (IST) 53(4), 317–343 (2011)

45. Rahman, F., Devanbu, P.: How, and why, process metrics are better. In: Proceedings of
the 35th International Conference on Software Engineering (ICSE), pp. 432–441 (2013)

46. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in
software engineering. Empirical Software Engineering (EMSE) 14(2), 131 (2009)

47. Runeson, P., Host, M., Rainer, A., Regnell, B.: Case study research in software engineering:
Guidelines and examples, 1 edn. John Wiley & Sons (2012)

48. Scholtes, I., Mavrodiev, P., Schweitzer, F.: From Aristotle to Ringelmann: A large-scale
analysis of team productivity and coordination in Open Source Software projects. Empir-
ical Software Engineering (EMSE) 21(2), 642–683 (2016)

49. Sheetz, S., Henderson, D., Wallace, L.: Understanding developer and manager perceptions
of function points and source lines of code. Journal of Systems and Software (JSS) 82(9),
1540–1549 (2009)

50. Thongtanunam, P., McIntosh, S., Hassan, A., Iida, H.: Revisiting code ownership and its
relationship with software quality in the scope of modern code review. In: Proceedings of
the 38th International Conference on Software Engineering (ICSE), pp. 1039–1050 (2016)

51. Trendowicz, A., Münch, J.: Factors influencing software development productivity: State-
of-the-art and industrial experiences. Advances in Computers 77, 185–241 (2009)

52. Verner, J., Babar, M., Cerpa, N., Hall, T., Beecham, S.: Factors that motivate software
engineering teams: A four country empirical study. Journal of Systems and Software (JSS)
92(1), 115–127 (2014)

53. Wagner, S., Ruhe, M.: A systematic review of productivity factors in software development.
In: Proceedings of the 2nd International Workshop on Software Productivity Analysis and
Cost Estimation (SPACE), pp. 1–6 (2008)

54. Weber, K.C., Araújo, E.E., da Rocha, A.R.C., Machado, C.A., Scalet, D., Salviano, C.F.:
Brazilian software process reference model and assessment method. In: International Sym-
posium on Computer and Information Sciences, pp. 402–411. Springer (2005)

55. Wen, M., Wu, R., Cheung, S.C.: Locus: Locating bugs from software changes. In: Pro-
ceedings of the 31st International Conference on Automated Software Engineering (ASE),
pp. 262–273 (2016)

56. Wloka, J., Ryder, B., Tip, F., Ren, X.: Safe-commit analysis to facilitate team software
development. In: Proceedings of the 31st International Conference on Software Engineering
(ICSE), pp. 507–517 (2009)

57. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M., Regnell, B., Wesslén, A.: Experimentation
in software engineering, 1 edn. Springer Science & Business Media (2012)


	Introduction
	Background
	Research Method
	Study Results
	Lessons Learned
	Related Work
	Threats to Validity
	Final Remarks

