
What Makes a Great Maintainer of
Open Source Projects?

Edson Dias? Paulo Meirelles† Fernando Castor� Igor Steinmacher•, § Igor Wiese• Gustavo Pinto?
?UFPA, Brazil †UNIFESP, Brazil �UFPE, Brazil •UTFPR, Brazil §NAU, USA

ecdias@ufpa.br, paulo.meirelles@unifesp.br, castor@cin.ufpe.br, {igorfs,igor}@utfpr.edu.br, gpinto@ufpa.br

Abstract—Although Open Source Software (OSS) maintainers
devote a significant proportion of their work to coding tasks,
great maintainers must excel in many other activities beyond
coding. Maintainers should care about fostering a community,
helping new members to find their place, while also saying “no”
to patches that although are well-coded and well-tested, do not
contribute to the goal of the project. To perform all these activities
masterfully, maintainers should exercise attributes that software
engineers (working on closed source projects) do not always need
to master. This paper aims to uncover, relate, and prioritize the
unique attributes that great OSS maintainers might have. To
achieve this goal, we conducted 33 semi-structured interviews
with well-experienced maintainers that are the gatekeepers of
notable projects such as the Linux Kernel, the Debian operating
system, and the GitLab coding platform. After we analyzed the
interviews and curated a list of attributes, we created a conceptual
framework to explain how these attributes are connected. We
then conducted a rating survey with 90 OSS contributors. We
noted that “technical excellence” and “communication” are the
most recurring attributes. When grouped, these attributes fit
into four broad categories: management, social, technical, and
personality. While we noted that “sustain a long term vision of
the project” and being “extremely careful” seem to form the
basis of our framework, we noted through our survey that the
communication attribute was perceived as the most essential one.

Index Terms—Open source software, open source maintainers,
great attributes

I. INTRODUCTION

What makes someone great at her profession? Decades of
research have been dedicated to providing answers to this
question [6, 24, 12, 37, 38]. For instance, great instructors are
effective in enabling students to learn [38]. Great managers
discover what is unique about their employees’ strengths and
capitalize on them [6].

In the context of software engineering, Li et al. [19, 18]
and Kalliamvakou et al. [13] conducted seminal empirical
studies that sought to understand the attributes that help to
compose great software engineers and great managers of soft-
ware engineers, respectively. These works uncovered dozens of
(sometimes unique but sometimes shared) attributes crucial for
great software engineers and their managers. For instance, for
software engineers, being data-driven, risk-taking, and curious
are valuable attributes, while for managers, attributes such
as availability, technical expertise, and building relationship
appear to be more substantial. These findings are unequivo-
cally essential to help growing better software engineers and
managers in this ever demanding software industry.

We believe, however, that these findings might not be easily
translated to the context of Open Source Software (OSS).
When working on OSS, software engineers are exposed to
a new landscape of challenges and barriers not frequently ob-
served when working for a company. One of our interviewees
gave an example that exemplifies this difference:

“When you work for a company, your manager says: ‘build
a product’, and then everybody is on board and will work
together. We also have dedicated time to complete it, say,
it should be done in a few days or in a few weeks. In
OSS, there are no deadlines. Normally, you find an issue
that you find interesting, you work on it whenever you
have the time, and this could be weeks or months. There
was an issue that was open for a year before I got the
intuition on how to complete the task. This is the reality
of volunteer-based OSS. It takes time. Things don’t get
completed right way. Even waiting for code reviews. At
work, it’s part of everybody’s day job to do code review;
at work, I can get a PR review within a day. In OSS, it is
usually whenever the maintainer has free time. Sometimes
it’s during the weekend, sometimes you have to wait once
a week.” (P30)

Although our interviewee mentioned time management,
other concerns are intrinsically grounded in OSS development.
Maintainers should also 1) make sure that the goals of the
project are transparently stated, 2) devote time to help new
members (that may disappear one commit ahead), and 3)
think about the long term sustainability of the project. When
working for a company, software engineers would hardly
bother about these concerns.

In this paper, we aim to uncover the set of attributes that are
invaluable to help OSS maintainers to excel in their careers.
We used the work of Li et al. [19, 18] and Kalliamvakou et
al. [13] as inspiration to reach our goal. To guide our research,
we designed three research questions:
RQ1. What are the attributes of great OSS maintainers?
RQ2. How do these attributes relate to each other?
RQ3. How do contributors perceive the importance of these

attributes?
To answer these questions, we employed a mixed-methods

approach. We started by conducting 33 semi-structured in-
terviews with high profile OSS maintainers, then proceeded
to create a conceptual framework about these attributes, and

1

finally performed a survey with 90 contributors. This paper’s
contributions include 1) a comprehensive list of 22 attributes
that define the role and responsibilities of OSS maintainers,
2) a conceptual framework that relates the attributes of a
great OSS maintainer, and 3) quantitative evidence about
contributors’ perception of the importance of the attributes.

We believe that, by understanding more about the role and
the attributes of great maintainers, it is possible to evolve how
projects are managed. By having maintainers that care about
the interpersonal and social aspects of the OSS communities—
without giving up quality and technical excellence—it is
possible to enhance the landscape of OSS with more inclusive
and diverse communities that will better serve the society.

II. RESEARCH METHOD

We followed a mixed-method approach. To answer RQ1,
we analyzed 172 attributes mentioned during the 33 interviews
with experienced OSS maintainers (Section II-A). In answer-
ing RQ2, we created a conceptual framework to understand,
at a higher level of abstraction, the relationships between these
attributes (Section II-B). Finally, in RQ3 we conducted a
rating survey with 90 maintainers and contributors aimed to
understand how they prioritize these attributes (Section II-C).

A. Interviews

1) Participants: We used a convenience sampling approach
by recruiting a group of maintainers close to our network. We
also invited other notable maintainers (e.g., those that maintain
very popular OSS projects) by reaching them by e-mail and
social networks. We used a snowballing approach, asking the
participants to put us in touch with other colleagues that would
qualify. We repeated this process throughout the interviews. To
foster diversity, when inviting the participants, we prioritize
women and non-US based maintainers. We took this decision
to avoid having too many “Silicon Valley” participants, as they
are over-represented amongst OSS maintainers [7, 21, 22].

We interviewed 33 OSS maintainers (36% are women).
Since some of these interviewees work on projects with
a small number of maintainers, to protect their anonymity,
and following guidelines on Ethical Interviews [30], we only
mention the name of the projects if the number of maintainers
is greater than 10. These maintainers work on a diverse set
of projects, including: operating systems (e.g., Debian and the
Linux Kernel), desktop interfaces (e.g., GNOME and KDE),
social coding environments (e.g., GitLab), well-known pro-
gramming languages (e.g., Python), and educational projects.
Our interviewees are located in different countries, such as
Brazil, Canada, Czech Republic, USA, Germany, and Portugal.
On average, they have nine years of experience in OSS,
although only 11 of them are paid, full-time OSS contributors.
We provide additional information about our interviewees in
the supplementary material upload along with this submission.

2) Interview Conduction: We conducted semi-structured
interviews, which is a flexible type of interview, enabling
the interviewer to add or remove questions as they see fit,
during the flow of the interview [25]. We started by inviting 59

maintainers to participate, and only 28 accepted. We conducted
the 28 interviews from April 2019 to September 2019.

During the coding procedure, we noticed that some
attributes were commonly reported. For instance,
communication-related attributes were mentioned in 16
out of the 28 interviews. We also noticed that fewer new
attributes were mentioned after the 24th interview, which gave
us a signal about saturation. From June 2020 to August 2020,
we nevertheless invited seven additional women maintainers
to interview (five accepted). These additional interviews had
two goals: (1) to increase the number of women maintainers
(which was around 25% of our sample); and (2) to verify
whether we had achieved saturation or not. These five
interviews did not introduce any new code to our codebook,
which was another sign of saturation. Therefore, we stopped
recruiting, and ended up with 33 participants.

The interviews were conducted remotely using online chan-
nels (e.g., Jitsi, Whereby), according to participants’ pref-
erence. On average, the interviews lasted 44 minutes (min:
26, max: 60). The audio was recorded and later transcribed.
Five authors conducted all the interviews and the first author
transcribed the audios, supported by otter.ai.

The interview was composed of five parts. First, we asked
about the maintainers’ background and demographics. Second,
we asked questions about their job as maintainers, such as
what they do and how they do it, how do they find new
features, and how much time do they devote OSS. Third,
we discussed specifically the topic related to what makes a
great maintainer. Following the instructions of Kalliamvakou
and colleagues [14], to guide this part of the interview, in
our invitation email, we asked the participants to send us five
attributes that they consider the most important for a great
maintainer. Focusing on only five attributes would: (1) avoid
participants rushing their answers, (2) require them to provide
focused responses, discarding less relevant attributes, and (3)
reduce the cognitive load of remembering specific experiences
in the past. Fourth, we asked the participants whether they
remember other great maintainers that they have worked with
in the past, and describe why they think that person was great
at maintaining OSS projects. Lastly, we closed the interview
by thanking the participant, and asking whether they could
suggest other maintainers that could be interviewed.

3) Interview Analysis: We analyzed the more than 30 hours
of interviews (resulting in 88,586 words of transcripts). We
performed two coding procedures, as follows.
Coding the attributes. We started with 172 raw attributes that
the maintainers sent to us before the interviews. This number is
higher than 165 (5 attributes × 33 interviewees) because some
interviewees mentioned more than five attributes. To group
attributes into high-level categories, two authors followed a
card sorting approach [27]. We started by reading each of
the attributes and grouping those clearly representing the
same code. We then categorized the attributes in higher level
clusters, based on similarities between the meanings of the
codes. This process took five sessions (∼3 hours each). This
process was conducted using continuous comparison [31]

2

during the card-sorting sessions and discussions about codes
and categories until they reached consensus. After almost 15
hours of discussions, 22 attributes emerged, clustered in four
high level categories. These four categories are: Management,
Social, Technical, and Personality. Each category has three to
seven attributes. Table I breaks these categories down in detail.

TABLE I
THE FOUR IDENTIFIED CATEGORIES

Category # of Attributes # of Mentions

Management 7 43
Social 6 67
Technical 3 38
Personality 6 24
Total 22 172

Coding the interviews. We used open coding to analyze the
interview transcripts. We start by reading the transcripts, iden-
tifying key points, and assigned them a code (i.e., a 2–3 words
statement that summarizes the key point). In the context of this
work, the 22 attributes identified in the previous step were used
as seeds for this analysis; other codes emerged throughout the
coding procedure, though. For instance, we had a “maintainer
role” code that synthesizes how maintainers characterize their
role, and a “gender bias” code to represent women maintainers
that experienced different treatments in OSS communities. By
constantly comparing the codes [31], we grouped them into
categories that gave a high-level representation of the codes.
This coding process was conduced by one researcher and
constantly discussed with a second researcher.

B. Conceptual Framework

We developed the Conceptual Framework (CF) to describe
the relation between the attributes, thus helping us to answer
RQ2. The conceptual framework was inspired by the one
designed by Leite et al. [17]. The conceptual framework
development involved three phases: 1) concept identification,
2) CF development, and 3) CF refinement. During these
phases, we interrogated our data again, in particular, looking
for potential relationships among codes.

1) Concepts identification: During the interviews, we asked
the interviewee to explain why the mentioned attribute was
important to her. The understanding that an interviewee has
about a particular attribute is what we called “concept”. To find
these concepts, we revisited the maintainer’s explanation about
the specific attribute, paying particular attention to extract the
main idea from the explanation.

2) Conceptual Framework development: After identifying
the concepts, we used an online tool to design the conceptual
framework. When analyzing the concepts, we looked for rela-
tionship among them, which we further explored in this step.
In the graphical representation, the attributes are represented
by bold, upper case text, whereas the concepts are represented
as smaller, capitalized text. A relationship happens when one
interviewee mentions multiple concepts while describing an
attribute. For instance, P29 mentioned that maintainers have

to “be willing to mentor and help contributors and having
empathy. An effective communication will help them become
a better mentor.” In this statement, we extracted concepts
related to Community building, i.e., to mentor and help
contributors, Empathy, i.e., having empathy, Communication,
i.e., effective communication, and Leadership, i.e., becoming
a better mentor. We used arrows to illustrate relationships, and
bold blue text to describe the participant who mentioned the
concepts. Figure 1 exemplifies our conceptual framework.

ATTRIBUTE Concept

Participant
who cited

Fig. 1. Illustration of our conceptual framework.

3) CF refinement: We created one conceptual framework
for each category (four in total). One author created the first
version of each conceptual framework. While reviewing the
framework, we attempted to reach a granularity level that is
not too coarse-grained that the readers not get any new insight
and not too fine-grained that the readers might be confused
about similar concepts. For instance, in the first version of
the Social conceptual framework, we had “Encourage the
contributor” and “Inspire the contributor” which were merged
into a single concept. Three authors collaboratively revised
each framework. Each refinement session took ∼2 hours.

C. Survey with Contributors

1) Survey Design: We started our survey by getting consent
from the participants, explaining the goal of the study, the
team involved, and its volunteer nature. We then asked some
demographics questions. The next section was requesting
the participants to rate the importance of a subset of the
attributes identified in the interviews. We thought that asking
the participants to rank all 22 attributes would introduce a
heavy load on them, which might lead to drop-outs in the
middle of the questionnaire. Instead, we focused on ranking
the three most recurring attributes per category.

Each participant rated the 12 attributes in terms of an asym-
metric scale, with the options: 1) Essential, 2) Worthwhile, 3)
Unimportant, 4) Unwise, and 5) I don’t know. This scale was
also employed in the work of Begel and Zimmermann [4],
and it is based on the scale defined by Kano et al. [15].
This asymmetric scale makes a distinction between must-be
(Essential), attractive (Worthwhile), and undesirable (Unwise)
quality, in the context of customer satisfaction.

Except for the demographic questions, all other questions
were required. A brief description introduced the questions re-
lated to the attributes. This description provided the definition
and a representative quote (from the interview) of the attribute.
By following this for all attributes, respondents would quickly
understand and answer them. The questionnaire is available
as supplementary material. To illustrate, Figure 2 presents an
example of a question about the Vision attribute.

2) Survey Conduction: Before deploying the survey, we
conducted a pilot to identify eventual problems with the

3

Fig. 2. A screenshot of the survey question for the “vision” attribute.

questionnaire and to ease the understanding of the questions.
We invited eight people (three Ph.D. students in Software
Engineering and five Ph.D. in Software Engineering) to answer
the questionnaire and provide feedback (five answered the
pilot survey). Their answers and feedback answers helped us
to make some questions clearer. For instance, one researcher
suggested the inclusion of a “prefer not to say” option in the
gender question. We time boxed the answers and found that
they took, on average, five minutes. We suggested this time
when inviting the participants to complete the questionnaire.
We did not consider the pilot answers in our analysis.

Our questionnaire was not restricted to OSS maintainers;
anyone who contributed to OSS in the past was welcome
to participate. Our rationale was that, since OSS contribu-
tors have to interact with maintainers to have their patches
evaluated, these interactions could shape the contributors’
perception of what makes a great maintainer. For instance,
it was noted elsewhere that when contributors do not receive
constructive feedback, they become less likely to contribute
again [29]. Instead of sending unsolicited emails to GitHub
users, a practice perceived as “worse than spam” [3], we
followed a multi-step recruitment approach. First, we invited
the 33 maintainers who participated in our interview to answer
our questionnaire. We created a blog post and asked them to
share it with their private networks. Second, we posted the
blog post on social networks such as Twitter, Facebook, and
LinkedIn (in a group with 26k members). We also ran a paid
advertising campaign on r/opensource, a Reddit group with
121k members. For seven days, we received 21 clicks and
paid 19.56 USD. We checked the timestamp of the clicks
and the answers and estimate that no Reddit user filled the
questionnaire, so we closed the campaign in one week. Finally,
we shared the survey with contacts in our network (∼40 OSS
developers), asking them to forward this to other colleagues.

We applied some principles as an attempt to increase survey
participation [26]. We employed the social benefit principle
by donating 100 USD to one OSS project (if we received
more than 100 answers), which respondents could vote for.
We employed the authority and credibility principles by intro-

ducing ourselves as professors and researchers from accredited
universities. The brevity principle was employed by asking
closed and direct questions as much as possible. After four
weeks, we closed the survey with 90 answers. These answers
come from all continents except for Australia. We received
answers from 17 women, 3 non-binary, and 70 men. In terms
of experience with OSS development, 20 have between 0 and 2
years, 21 between 3 and 5 years, 17 between 6 and 8 years, 10
between 9 and 10 years, and 22 reported more than 10 years of
experience. The respondents contributed to many high profile
OSS projects, including Linux Kernel, Debian, Tensorflow,
GCC, GNOME, OpenStack, and Kubernetes.

3) Survey Analysis: Based on the scale used to rate the at-
tributes, we employ three metrics to analyze the survey results.
These metrics were previously employed in the study of Begel
and Zimmermann [4]. We avoid converting the ordinal data
from the survey into numerical data by dichotomizing [16] it
in the definition of the metrics. The first of the metrics aims
to capture top-rated attributes considered essential by (most
of) the survey respondents. It is the percentage of Essential
responses among all responses for a given attribute:

%Essential = 100× Essential
Essential + Worthwhile + Unimportant + Unwise

The second metric captures the overall good disposition
of the respondents towards the attributes. It calculates the
percentage of respondents that considered each attribute as
Essential or Worthwhile:

%Good = 100× Essential + Worthwhile
Essential + Worthwhile + Unimportant + Unwise

The third metric looks at the bottom-rated attributes con-
sidered less important or even negative by the respondents. It
computes the percentage of respondents that considered each
attribute Unimportant or Unwise:

%No good = 100× Unimportant + Unwise
Essential + Worthwhile + Unimportant + Unwise

We rank the attributes based on the values of the metrics. We
also attempt to discern whether the respondents’ experience
with OSS development is associated with them considering
an attribute to be Essential. We dichotomize [16] respondent
experience in terms of experienced (9+ years of OSS experi-
ence) and non-experienced (0-5 years). Our rationale is that
experience may bring different perceptions to contributors,
and, therefore, affect their opinions about the attributes. We
also considered analyzing whether gender has a relationship
with rating an attribute as Essential, but did not do so because
of the low number of women and non-binary respondents.

To understand the strength of the association between re-
spondent experience and an attribute being rated Essential, we
calculate the odds ratio. The odds ratio establishes the odds
that an outcome will occur (attribute considered Essential)
given a particular exposure (respondent experience level) [32].
When reporting the odds ratio, we also report the confidence
interval at 95% confidence level. We only report the results
where the size of the confidence interval was less than two.

4

III. WHAT ARE THE ATTRIBUTES OF A GREAT OPEN
SOURCE MAINTAINER?

Our qualitative coding procedure allowed us to summarize
the 172 attributes into four categories, listed in Table II. For
each attribute, we provide its definition and a representative
quote. Our participants are referred to as P1–P33.

A. Management

This category refers to attributes that help managing an
OSS project, in the sense of understanding the vision of the
project, establishing and communicating project goals, propos-
ing timelines, managing the quality of documentation, etc. In
the following, we highlight three management attributes:
Availability. This attribute refers to the response time to
answer a question, or to provide feedback to patch proposals.
It was the most often mentioned attribute in this category
(cited by 15 out of 33). P9 mentioned that “being available is
useful when a person can help another, supporting those who
are starting, avoiding them going the wrong way and wasting
time”. Maintainers might want to give feedback faster, avoid-
ing very long wait times which may discourage contributions,
as stated by P20: “long responses generate dissatisfaction”.
Discipline. A disciplined maintainer ensures that the process
and guidelines are followed. We found six mentions to this
attribute. P23 reported that maintainers might “have a well-
defined agenda and know what to do, avoiding leaving open
tickets”, while P25 stated that “defining tasks for contributors
is a strategy of establishing their commitment to the project”.
Vision. Having a global view of what to achieve with the
project in the future might help maintainers define priorities.
Four participants mentioned this attribute, such as P1, who
argued: “a long-term vision needs to be developed in close
cooperation with stakeholders”.

B. Social

In this category we group attributes related to how main-
tainers deal with other contributors, who might not speak the
same language or might not know how to get started.
Communication, mentioned by 18 out of 33 interviewees, is
the ability to exchange information in a sensible way. Having a
good communication channel with the community is important
in several ways. For instance, “it is important to look for
external feedback after any major changes in the project” (P9).
In addition, P3 highlighted that “it is important to have a good
communication with other maintainers”.
Empathy. By sharing the problems of others, maintainers
can deal better with contributors with different backgrounds.
Among the 16 respondents who reported this, P2 reported that
it is important to be “extremely careful with the way you write
and say things so you don’t look aggressive or impolite”. P15
complemented by saying that “we should discuss ideas, and
not judge who presented it”.
Community building. Nine respondents mentioned that it
is important to build a collaborative culture. This involves
helping newcomers to get on board and motivating existing
contributors to finish their tasks. As P7 stated: “[...] no issue

is more crucial to the project’s future than the development of
a welcoming environment for new members.” P25 mentioned
that “some maintainers forget that many contributors are
volunteers [...], if a person has already contributed to a certain
part of the code, why not direct that same person to make
changes in other parts? This motivates the contributor.”.

C. Technical

This is about technical skills that are used to run an OSS
project (e.g., fix bugs or add new features). This category only
had three attributes, which we discuss next.
Technical excellence. Mentioned by 24 out of 33 interviewees,
this was the most mentioned attribute. P19 summarized this at-
tribute with a provocation: “If you don’t have a high technical
knowledge, how will you ask the contributors to do things with
quality?”. However, technical excellence goes beyond coding
activities; P2 reported that maintainers should also perform
code review to find bugs and give feedback. P32 reported
that technical excellence is something that maintainers “should
look for regularly; the greater the knowledge in technologies,
the easier it is to make decisions”.
Quality assurance. Being the quality gatekeeper—raising the
gate when potential defects arise and keeping it closed while
defects do not vanish from the codebase—is also an important
attribute of great maintainers. P3 summarized this attribute as:
“the maintainer is responsible for making sure everything is
working, i.e., make sure 1) that the pull request is following
the contribution guidelines, 2) that the tests are passing, and
3) that they are not ‘breaking’ anything so they will not release
an inadequate version. The maintainer should guarantee that
this process is being conducted properly.” This attribute is not
only about testing and code reviews. P31 highlighted that good
documentation is also a strong quality indicator.
Domain experience. Having domain experience might help
maintainers to understand idiosyncrasies in the codebase. P12
reported that “knowing the problem domain makes me more
engaged in the project”, which is somehow aligned with the
“scratch your own itch” [23] rationale.

D. Personality

When maintainers express how they think, feel, and behave
in their interaction with the community, they refer to person-
ality aspects. The personality attributes are the following.
Motivation. This relates to factors that encourage maintainers
to do something with enthusiasm, as mentioned by P17
“enthusiasm is in the person who believes in the project, and
also believes in the ability to transform things, to make things
work, have the feeling that they can change the world with
small changes”. Being motivated is a foundation for everything
else, as explained by P19: “if you are well engaged, you also
infect other people in the community and create a feeling that
we are in a community and we are doing something together.”.
Open minded. This is about being open to listen to new ideas.
P1 stated that “the maintainer needs to be innovative in the
community. Innovators have an open mind, it is necessary to
let go of the ego and become an apprentice again... Open

5

TABLE II
ATTRIBUTES OF A GREAT OSS MAINTAINER

Attribute and definition Quote

M
an

ag
em

en
t Availability: to be available to answer questions when-

ever possible.
“Availability is about how much time you can devote to the project. You can’t become a core
maintainer and then leave because you’re busy. You should know how to dose your availability
with your dedication to keep something you would like to see still working and plan it according
to your schedule with your life so that you don’t leave the project behind.” (P21).

Discipline: to make sure that the process, the guide-
lines, and the code of conduct are being followed as
close as possible.

“I will not be able to solve everything immediately, naturally, I just need to have organization
to know what I need to do now and in the future.)” (P30).

Vision: to depict how a project could develop in the
future, and plan for this.

“If you don’t have a macro view of the project, you might end up incorporating features that
don’t have a coherence between them, generating a behavior in one part of the software and a
contradictory behavior in another part.” (P5).

Documentation: to reinforce the importance of docu-
menting the software

“It is really important that the project has updated documents. We document everything: from
problems to source code. Therefore, it can be easy for newcomers to understand the requirements
that the maintainer might not know in detail, etc.” (P6)

Project management: to be able to lead the work of
a team to achieve bigger goals.

“The project maintainer needs to be a good facilitator of reaching a decision. This means greater
managerial responsibility for the project.” (P32).

Sustainability: to promote the project to fulfill its
goals, to survive changes, and to incorporate new
demands over time.

“It is essential that you have some notion of marketing and that you know how to promote this
project in some way.” (P19).

Transparency: to make available and disseminate all
information about the project.

“If you want people to work on your project, you need to be very transparent about what the
project is, the repository of everything about the project, if the project is for a company, what
is the company, if the company is supporting the project.” (P6).

So
ci

al

Communication: to have the ability to exchange in-
formation in a sensible way.

“It is about how to explain a problem or an answer that is understandable to anyone, regardless
of the level of experience and context; this helps a lot. Knowing how to express yourself well,
formatting your thinking in a clear way facilitates this asynchronous interaction.” (P12)

Community Building: to help and incentivize new
members to keep participating into the project.

“Knowing how to encourage new team members, that is, knowing how to assign challenges and
tasks to encourage new team members” (P23)

Empathy: to have the ability to understand and share
the feelings of another.

“When you have the empathy, you have the ability to think from their point of view, and then you
could understand and experience the pain that they went through. If somebody has gone through
and used your project and fill an issue, that is a gift; that is not just somebody complaining.”
(P1)

Leadership: to provide guidance to the project and
the community, empowering others to contribute and
make decisions.

“There are maintainers who are very attached to the code and do not accept external
contributions. The maintainer needs to be democratic with the community..” (P5)

Pedagogy: to teach others the basic contribution steps,
e.g., how to get involved, how to walk through, or how
to find an issue.

“When someone contributes to your project, you have to provide technical comments, show that
sometimes the code is wrong, etc. You have to do this in a non-aggressive way and you have to
efficiently and effectively write the information to the person, in the way you expect the code to
be written. You have to be a teacher to do this.” (P13)

Relationship: to sustain a good relationship with
stakeholders (e.g., upstream and downstream develop-
ers).

“The closer you are to your stakeholders, the better. You have to see what is happening, to be
able to react quickly. [...] We have some insights about someone if they has already worked for
an OSS community, but we also need time to build trust in this kind of relationship.” (P4)

Te
ch

ni
ca

l Domain Experience— to have experience in the do-
main of the project.

“The maintainer has to be evolving not only technically, but also in the domain of that project;
they must master more and more the software business.” (P30).

Quality assurance— to maintain a desired level of
quality on the project, paying attention to every stage
of the development cycle.

“The maintainer is responsible for making sure everything is working, i.e. they have to make
sure 1) that the pull request is following the contribution guidelines, 2) that the tests are passing,
and 3) that they are not “breaking” anything so they will not release an inadequate version.
The maintainer should guarantee that this process is being conducted properly.” (P3)

Technical excellence— to continuously learn new
skills while trying to enhance the quality of her code.

“Technical skill is important. If you don’t have that skill, you won’t be able to work things out
on the project. You will not be able to give the final say in the face of a problem.” (P6)

Pe
rs

on
al

ity Motivation: to be energetic and eager to work on the
project.

“If motivation doesn’t happen, they can’t do anything else; they can’t be be a good programmer,
can’t be available, can’t have good communication, can’t develop technically in the project
domain. Being motivated is a basis for everything else.” (P18).

Open Minded: to be willing to listen and consider
new ideas

“Have some kind of vision for where the project is going. But being open about that, so open
to other ideas or open to things not quite working out as expected” (P20).

Patience: to tolerate delay/trouble without getting up-
set.

“Sometimes the maintainer wants a lot of things at once, so the contributor might ending up
getting lost. It is important to be calm, and walk one step at a time.” (P25).

Confidence: to be certain about her own abilities or
qualities.

“Among several solutions, there must be a confidence to choose one and execute it. Trust leads
to a good acceptance of the maintainer by the community.” (P17).

Diligence: to work carefully and persistently towards
a goal.

“I think in order to maintain a project well, you have to be very diligent about working through
the communication overhead, dealing with bug reports, etc.” (P8).

Responsibility: to have a commitment and a con-
sciously dedication to the project.

“The person in the role of maintainer needs to be responsible for not being afraid and making
a commitment to provide a non-hostile environment for the community. ” (P17).

6

your mind to discuss matters that you assume are ‘truths’ and
to hear opinions different from yours”. The maintainer might
want to be receptive to a wide variety of ideas, arguments,
and information: “it’s mostly about when someone suggests
something that you didn’t think about before. Instead of being
defensive and trying to criticize, you have to think that the
person is trying to help you” (P17).
Patience. To accept delay without becoming angry. According
to P20, “patience enables [maintainers] to take stock of the
situation, to understand what is required, and wait while they
build the capacity to take appropriate and effective action”.
P27 complemented by saying that: “patience leads to clarity
about the future of the project; it allows the maintainer to see
the root of the problems more clearly.”.

IV. HOW THESE ATTRIBUTES RELATE TO EACH OTHER?

Figure 3 presents the conceptual framework for all cat-
egories.1 Each conceptual framework has a core concept,
highlighted in yellow. A core concept is a concept related to at
least three different attributes. We also highlight in bold with
underline the concepts that appear in multiple categories.

A. Management

Figure 3(a) illustrates the conceptual framework of the
“Management” category, and its attributes: Discipline, Project
Management, Availability, Documentation, Transparency, Sus-
tainability, and Vision. We identified 18 concepts and their
relationship with our attributes.

“Sustain a long term vision of the project” was identified
as a core concept, mentioned by seven participants when
describing four attributes: Discipline, Project Management,
Vision and Sustainability. This concept helps maintainers to
find and establish project goals, which could also be the
motivators for future actions. When talking about discipline,
P11 said that “sometimes a person is taking over the project
and they say ‘I saw that this thing was missing, so I spent the
whole week developing it’; most of the time this was not in the
scope of the project. This is something to be highlighted in OSS
projects. It is very easy to just make a contribution that is not
relevant; it is a community and not a client, the person thinks
they can do what they want. It is easy to lose focus”. On the
other hand, in the context of project management, according to
P6, “setting expectations up front is important. For example,
what are the project’s expectations for 10 years from now?
Will the scope change? Will there be a drastic change?”

It brings us to another recurring concept: “Define a
roadmap”. It was mentioned by three participants when
describing Discipline and Project Management. Defining a
roadmap was considered important to manage expectations
and organize the goals so the project can evolve within the
scope. In that sense, P23 reported that “having a well-defined
schedule, knowing what to do not to leave tasks open [...]”.
Later on, the same participant mentioned that maintainers need

1All conceptual frameworks (as well as their different revisions) are
available as supplementary material (uploaded along with this submission).

to “determine roadmaps, things that can be done and that can
be incremental, or evolve”.

In another concept, “Delegate tasks”, was mentioned by
two participants when describing Discipline and Project Man-
agement. P23 and P25 reported that the maintainer should not
concentrate tasks but instead delegate them. This increases
the team productivity, and the planned tasks are more likely
to be completed. From the discipline perspective, delegation
was related to contributors’ commitment to the project. P25
explained that “maintainers should not do the contributors’
work. This is extremely bad in terms of community health.
Defining the tasks for the contributors is a strategy to establish
their commitment to the project.”.

“Take care of the docs” was mentioned by six participants
when describing Transparency and Documentation attributes.
Regarding documentation promoting the transparency of the
project, P6 mentioned that “when you want people to work on
your project, you need to be very transparent about what the
project is, [...] if the project is for a company, what is the com-
pany, if the company is supporting the project. These things
must be documented appropriately.”. In a more general sense,
P28 said that “[...] it is very important that maintainers ask
the contributors to keep the project documentation updated;
this helps disseminate the project”.

To manage all these demands, it is important to “balance
work and life”, a concept related to Project Management and
Availability. In terms of Availability, P21 mentioned that “you
can’t become the main maintainer of the project and then leave
because you were busy. You need to know how to measure
your availability to keep something you would like to work on
and plan it according to your life, so that you don’t leave the
project in trouble”. While harmonizing the personal life with
the projects’ activities, P2 said that the maintainer needs to
establish priorities, organize an agenda with contributors, be
flexible with days and times dedicated to the project.

Relationship 1: to sustain a long term vision of the
project, maintainers ultimately should define a roadmap,
delegate tasks, and take care of the docs. In a volunteer-
based work, these activities must be carefully thought in
order to not impact work and life balance.

B. Social

Figure 3(b) illustrates the conceptual framework of the “So-
cial” category and its attributes, Empathy, Leadership, Com-
munication, Pedagogy, Community building, and Relationship.
According to our analysis, we discovered 17 concepts. Out of
these, we observed three core concepts in this category.

“Extremely careful/polite” is the most recurring core
concept mentioned by seven participants when describing
Empathy, Communication, Leadership,Pedagogy, and Commu-
nity Building. In terms of Empathy, P13 argues that “it is
absolutely essential that you make technical comments, but
you can do it in a welcoming way, always kind and using the
appropriate language, not using any kind of aggressive com-
munication.”P25 suggested that, to become a better maintainer,

7

DISCIPLINE PROJECT
MANAGEMENT

Define a
roadmap

Delegate
tasks

Sustain a long
term vision of

the project
SUSTAINABILITY

VISION
Know the
codebase

Balance
work and life

AVAILABILITY

Take care of
the docsTRANSPARENCY

DOCUMENTATION

Give
rapid

feedback

Always provide
an answer

Perform code
review

Find
consensus

Update changelog
after merge

Spread the
importance of

Communicate
what the project is

all about

Share
responsibilities

Marketing the
project

Choose an
appropriate

license

Participate in
non-technical

activities

Mentor new
contributors

P23

P23, P30
P25

P11

P26, P28

P28
P19

P1, P5, P32

P10, P31

P6

P6, P7 P6, P11, P22,
P28, P30

P22 P4

P2, P12, P18, P19,
P20, P22, P28, P31

P22

P21, P24

P9 P5, P22

P23, P28

P13
P2, P23

P32 P2, P32

P23

P6

EMPATHY

COMMUNICATION

LEADERSHIP

PEDAGOGY

COMMUNITY
BUILDING

Face an issue
as a gift

Think from their
point of view

Extremely
careful/polite

Foster
transparency

Encourage
contributors

Effectively
write for

everyone

Willingness
to listen/talk

Guide
contributors Find

consensus

Mentor new
contributors

Teach patiently

Avoid blame
game

Build
confidence

Promote good
first issues

RELATIONSHIP

Perform
code review

Give
recognition

Focus on the
idea

P1

P15

P1, P2, P10, P12

P6, P10, P13, P24, P31

P21 P4, P16, P31 P23

P15

P9, P29P25

P24

P15

P10

P13, P30

P24, P30

P3

P7, P23

P15

P15

P22

P2,
P3,
P5,
P6,
P20

P11, P12

P10 P19

P16, P17

P32
P24

P4

P10

P7 P3

(a) Management (b) Social

TECHNICAL
EXCELLENCE

Be aware of the
technologies of

the project

Perform code
review

Know the
small parts of
the codebase

Follow project
quality standards

Have
relevant

contributions

Have a global
view of the

project

High technical
knowledge
to support

decision-making

Implement
quality

processes

Know the
application

domain

Scratch own
itch

Process
automation

Write
automated tests

 Understand
impacts on user

environment

QUALITY
ASSURANCE

DOMAIN
EXPERIENCE

P12

P12, P18, P26

P30

P31

P3
P11
P31

P33

P14, P24

P3
P4
P8

P31

P1
P3
P4
P11
P19
P26
P32

P2, P8,
P13, P29

P4, P19

P1, P6, P18, P32

P28

P27

P5, P10

P5

P5, P27

PATIENCE

Perform code
review

Persistence to
collaborate in the

long term

Foster open
innovation

Take appropriate
and effective

measures

Request things
gradually

MOTIVATION

DILIGENCE

CONFIDENCE

OPEN
MINDED

RESPONSIBILITY

 Focus on the
project goal

P18P8

P25
P29

P16

P1

P10

P21 P19

Stand out for the
dedication

P20

P16 P8

P20

Demonstrate
technical quality

Ensure a
non-hostile

environment

P17

Promote social
inclusion

P7

P7

P17

P8

P8

Establish truth in
the community

P8

P1
P17
P24
P27

Increase
confidence

P7

Make your
demands clear

P27

Think about
partnership

actions

P17

(c) Technical (d) Personality
Fig. 3. Conceptual frameworks of our four categories. Core concepts are highlighted in yellow. Concepts in bold and underlined are those that appear in
multiple categories.

“I am always very careful; I should thank the contribution
and then make the considerations”. Being polite also helps
to build a community, since “there are people sending code,
people wanting to contribute, so [the maintainer] needs to pay
attention revising that code, being didactic to teach the best
way. The project can get better from these contributions.” (P3).

“Encourage contributors” and “Mentor new contribu-
tors” also appear as core concepts. Although they might sound
similar, they have their differences. Encourage contributors
is about empowering contributors to finish a task and engage
in other activities. As a community-building strategy, P15 sug-
gested giving commit rights to active contributors, since it will
further motivate them, fostering a collaborative culture. In the
context of pedagogy, P24 said that some maintainers carefully
explain how a patch can be improved, instead of rejecting it:
“they carefully explain to encourage future improvements.” A
less hierarchical and more decentralized community increases
everyone’s engagement, incentivizing the contributors to en-
gage with the project. “More collaboration, more creation,

less hierarchy. Encourage contributors, you’ll see them more
engaged [...] this generates an emotional commitment to the
project” (P15). Different from “Encourage contributors”,
“Mentor new contributors” guiding and helping newcomers
to the project. When mentoring new contributors, P23 reported
that it is important to delegate suitable tasks for newcomers
as a community-building strategy.

Other recurring concepts include: “Think from their point
of view”, “Build confidence”, and “Willingness to lis-
ten/talk”. According to P1, it is important “when you have
the empathy you have the ability to think from their point of
view, and understand and experience the pain that they went
through”. In terms of leadership, P21 shared that she “was
a little traumatized by this kind of ‘review’, thinking that I
was right without willing to understand one’s opinion. For
me, it is very important to know that one made a mistake and
understand different opinions; it is something that I bring to
my life”. In the context of “Build confidence”, P4 mentioned
that, to create good relationships, one must acknowledge that

8

“if a person has already worked in a software community,
they have some credibility, but we can only be sure when
we build trust”. Therefore, it is necessary to create ways
to strengthen the ties and build trust among team members.
Finally, “Willing to listen/talk” is about finding the time to sit
with someone and talk. P16 said that “direct communication
helps to humanize the community environment.”

Relationship 2: Being extremely careful/polite seems to
be the bedrock to encourage and mentor new contrib-
utors. To build their confidence, maintainers should be
willing to listen and talk, which in turn will allow them
to think from another person’s point of view.

C. Technical

Figure 3(c) illustrates the conceptual framework of the
“Technical” category and its attributes: Technical Excellence,
Quality Assurance, and Domain Experience. “High technical
knowledge to support decision-making” was identified as
a core concept, was mentioned by six participants describing
Quality Assurance, Domain Experience and Technical Excel-
lence. In the context of technical excellence, P18 said that “it
is important that the maintainer knows the topic technically
well to help the developers. The technical capacity must be
much more comprehensive as the ability to master the subjects
of Computer Science.” Also, P31 mentioned that “tests and
documentation are indicative of quality, OSS has to provide
that for the community, the quality.”

“Follow projects quality standards” was mentioned by
five participants describing Quality Assurance and Technical
Excellence. The maintainer needs to follow the standards to
develop roadmaps for configuration and project management.
Describing technical excellence, P19 said: “[...] if you do not
have technical quality, it is difficult to keep the quality of the
project. If you don’t have a high level of knowledge of project
technologies, how are you going to ask contributors to do
things with quality?”. P3, about quality assurance, mentioned
that “[the maintainer] has to ensure that the contributors are
following the standard, [...] the automated tests are passing
and that the contribution is not ‘breaking’ the code.”

The third concept for this category is “Know the applica-
tion domain”. It describes that understanding the application
domain is also important. P18 said that “the maintainer has to
be evolving not only technically, but also in the project domain,
they must increasingly dominate the software business.”

Relationship 3: To have the high technical knowledge
to support decision-making, maintainers should know
the application domain, be aware of the technologies
of the project, and have the experience to implement
a quality process to perform code review and follow
project quality standards.

D. Personality

Figure 3(d) illustrates the conceptual framework of the
“Personality” category, and its attributes: Patience, Motivation,

Responsibility, Open-minded, Diligence and Confidence. The
core concept “Foster open innovation” was mentioned by
six participants when describing three different attributes:
Patience, Motivation, and Open-minded. In the context of
motivation, P19 described that the maintainer “must be en-
gaged, it motivates other people in the community and creates
a feeling that we are in a community and we are doing
something together [...] and the growth of the project depends
on different ideas.” In the same sense, but talking about being
open-minded, P27 said that “the maintainer must have a more
open and innovative mind [...] The way the maintainer thinks
should not be ‘the absolute truth’.”

Finally, P7 mentioned that the maintainer can create a
friendly environment and show that the product can help in the
social environment. These actions can give rise to perspectives
that include people to be part of something. Thus, the concept
“Promote social inclusion” emerged. This is observed in a
quote from P17, “[...] enthusiasm is in the person who believes
in the project, and also believes in the ability to transform
things, to make things work, have the feeling that they can
change the world with small changes”.

Relationship 4: To foster open innovation, keeping the
focus on the project goal and establish truth in the com-
munity, maintainers should stand out for the dedication,
have the persistence to collaborate in the long term, and
ensure a non-hostile environment.

E. Intra- (and inter-) relationships

The concepts and relationships discovered here are (what we
called) intra-category, since they connect attributes within the
same categories. However, we also found inter-category rela-
tionships: when the concepts are connecting attributes among
different categories. We observed three concepts with this
characteristic, highlighted in gray in Figure 3. The “Perform
good code review” concept was the most comprehensive one:
it appears as part of all the four categories: social, manage-
ment, technical, and personality. The other two concepts that
crosscut the categories are “Find consensus” and “mentor
new contributors”, which appeared in the management and
social categories. Since we could not present all conceptual
frameworks in this paper, we leave for future work a holistic
observation of these relationships.

V. HOW DO CONTRIBUTORS PERCEIVE THE IMPORTANCE
OF THESE ATTRIBUTES?

Table III presents the values of the three metrics we
computed based on the survey responses (Section II-C3). We
start by examining, for each attribute, the %Essential metric,
which highlights the attributes that stand above the others,
even considering that our interviewees mentioned all of them.
For this metric, we have a clear winner: Communication. This
attribute is considered Essential by 76.67% of the respondents
and does not have a single vote for Unimportant or Unwise.
The second attribute with the highest percentage of votes

9

TABLE III
RESULTS OF THE RATING SURVEY.

Attributes % Essential % Good % Not good
Communication 76.67 100.00 0.00
Quality Assurance 57.78 97.78 2.22
Community Building 50.00 94.44 5.56
Empathy 43.33 96.67 3.33
Vision 43.18 89.77 10.23
Open Mindedness 41.11 96.67 3.33
Motivation 41.11 85.56 14.44
Patience 40.91 94.32 5.68
Technical Expertise 38.89 91.11 8.89
Domain Experience 36.36 82.95 17.05
Discipline 34.83 88.76 11.24
Availability 24.72 88.76 11.24

for Essential is Quality Assurance, with 57.78%, followed by
Community Building (50.00%)

The %Good metric exhibits consistently high values for
all the attributes. The lowest percentage we observe for this
metric is 82.95%, for the Domain Experience attribute. The
Worthwhile rating worked as a baseline, since all the attributes
not only were mentioned during the interviews but were the
12 most frequently cited. A corollary of this high value of
%Good is that the percentages for the %Nogood metric
are consistently low. The attributes with the highest values
for %Nogood are Domain Experience (17.05%), Motivation
(14.44%), Availability and Discipline (11.24%), and Vision
(10.23%). Availability is the one with the lowest value for
%Essential. It is the attribute with the lowest difference
between %Essential and %Nogood; the former is higher than
the latter by a factor of 2.2.

We calculated the odds ratio to quantify the strength of the
association between respondent experience and an attribute be-
ing rated Essential. For Patience, the odds ratio is 0.232, i.e., a
not experienced respondent is 4.3 times more likely to consider
this attribute Essential than an experienced one. The confi-
dence interval at the 95% confidence level is (0.083,0.645),
with a p-value of 0.005. This confidence interval suggests that,
with 95% confidence, a not experienced respondent is between
1.55 and 12.05 times more likely to consider this attribute
Essential. Applying the Bonferroni correction, i.e., dividing the
target significance level of 0.05 by 12 (the number of statistical
tests we perform) we obtain a significance level of 0.004167.
Since the p-value of 0.005126 is greater than this, we cannot
ascertain statistical significance. For Communication, the odds
ratio is 0.533, i.e., a not experienced respondent is almost twice
more likely to consider it Essential. At the 95% confidence
level, the confidence interval is (0.182, 1.562), although the p-
value does not indicate statistical significance. The odds ratios
for these two attributes suggest that less experienced develop-
ers perceive a stronger need for communication and patience
from other project contributors. This reinforces Relationship 2
(Section IV-B) with quantitative data.

On the other hand, for the Motivation and Domain Experi-
ence attributes, the odds ratios are 2.154 and 1.75, respectively.
According to the responses we received, this evidence means
that an experienced respondent is more than twice more likely

to consider Motivation Essential than a not experienced re-
spondent and about 1.75 times more likely to consider Domain
Experience Essential. The confidence intervals are (0.828,
5.599) and (0.660, 4.639), reinforcing this result, although it
was not possible to ascertain statistical significance.

TABLE IV
RESULTS OF THE POST-HOC FRIEDMAN-NEMENYI TEST FOR THE

COMMUNICATION ATTRIBUTE. A P-VALUE LOWER THAN 0.004545
INDICATES THAT IT IS POSSIBLE TO REJECT THE NULL HYPOTHESIS THAT

COMMUNICATION WAS RATED SIMILARLY TO ANOTHER ATTRIBUTE.

Attribute p-value
Communication 1.000000
Empathy 0.018169
Community Building 0.101391
Patience 0.001672
Open Mindedness 0.009216
Motivation 0.001000
Vision 0.002479
Discipline 0.001000
Availability 0.001000
Technical Expertise 0.001000
Quality Assurance 0.599034
Domain Experience 0.001000

We employed Friedman’s test to determine whether any
of the 12 attributes has been rated consistently higher than
other attributes by the respondents. The classic example of
the usefulness of Friedman’s test is wine tasting2: “N wine
judges each rate K different wines. Are any of the K wines
ranked consistently higher or lower than the others?”. This
test yielded a p-value of 0.000475, indicating that there are
attributes rated consistently higher than others. To further in-
vestigate this, we employ the posthoc Friedman-Nemenyi test.
For every possible pair of attributes, this test verifies whether
it is possible to reject the null hypothesis that the two attributes
are rated similarly by the respondents. This test reveals that
Communication is rated higher than seven out of the 11 other
attributes, after applying the Bonferroni correction3, as shown
in Table IV. Besides, Quality Assurance, the attribute with
the second-highest value of %Essential, is rated consistently
higher than Availability (p-value = 0.001602).

VI. LIMITATIONS

A threat to the results’ validity in qualitative work relates
to the data classification subjectivity. To alleviate this threat,
we used multiple methods. More than one researcher con-
ducted every qualitative analysis step; when in doubt, other
researchers joined the discussion. These discussions along the
process aimed to validate the interpretations through mutual
agreement. We also used the constant comparison technique
when coding the interview transcripts, comparing our findings
with previous ones as they emerged from the data analysis.

Another potential threat in qualitative works refers to the
saturation or the comprehensiveness of the results. To ensure
that we reached a comprehensive set of attributes that represent

2https://en.wikipedia.org/wiki/Friedman test
3The target significance level is 0.004545 = 0.05/11 since each attribute is

compared to 11 others.

10

great maintainers, we interviewed 33 well-experienced OSS
maintainers, who are diverse in terms of location, gender, years
of experience, and domain. We kept interviewing participants
until we could not find any new attributes for five consecutive
interviews. Still, the number of participants seems to be
adequate to understand the core attributes in any cultural
domain or study of lived experience [5].

Finally, most of our interviewees work on infrastructure
OSS (e.g., operating systems, browsers, programming lan-
guages). Our findings might not generalize to maintainers
working on non-critical environments (e.g., trivial JavaScript
libraries [1]). To reduce this threat, we made sure we in-
terviewed maintainers of smaller projects. Yet, while con-
ducting our interviews, we could identify several maintainers
responsible for multiple projects, including smaller/less visible
ones. During our interviews, we asked them to report their
experience in whatever projects in which they were involved.

VII. RELATED WORK

Software engineering researchers investigated the attributes
that would make great software developers, maintainers, and
software project managers. In 1995, Turley and Bieman [34]
reported 38 competencies that characterize the skills required
by software developers. They show that, in addition to the
technical skills, great software developers have interpersonal
and personality traces that lead them to better performance. Li
et al. [18] uncovered a set of 54 attributes of great engineers.
They found that software engineers excellence comes with
“writing good code”, but also relates to looking for future
value and costs, practicing informed decision-making, and
continuous learning.

With a specific focus on managers at Microsoft,
Kalliamvakou et al. [13] they found that, although technical
skills are relevant, they are not the sign of greatness for an
engineering manager. The main attributes relate to keeping a
positive environment and enabling talent growth and software
engineering autonomy. Once again, the interpersonal attributes
stood up as essential characteristics. However, it is possi-
ble to notice that OSS maintainers’ attributes spam across
community building and sustainability, which transcends the
requirements in companies. Likewise, our results show that
great maintainers need to have a set of attributes that go
beyond technical skills like software engineers. We expand
this by showing that maintainers need to have a special “Swiss
Army Knife” to deal with specific points to OSS, including
community building and project sustainability.

More generally speaking, research about OSS spams from
what motivates contributors [35], what attracts and hin-
ders newcomers [28, 2], how to become a core contribu-
tor [39, 20], challenges faced by mentors [2], and career
pathways [33].These efforts contribute to understanding the
activities of OSS contributors. However, they hardly touch
the maintainers’ work, who, as we showed, are responsible
for managing not only people and projects as in traditional
software projects but also to assure that the community is
well-kept and that the project is sustainable.

Closely related to this work, Wang et al. [36] investigated
the activities performed by Elite developers—those who “hold
clearly defined project management privileges in a project.” By
analyzing repository data, they found that these developers
manage the community tasks, parallel coordinate work, and
discuss them with multiple stakeholders. Although the authors
uncover a set of tasks performed by these elite developers, it
is not clear whether they are maintainers and the attributes
that would make these developers perform their work with
excellence. Therefore, we understand that our work brings a
complementary perspective to Wang et al.’s [36].

Still, previous work from Gousious and colleagues focused
on understanding the perspective of contributors [10] and
integrators [11] about the pull-based development model [9].
Gousios et al. [11] found that integrators focus on quality
assurance when reviewing a contribution and that prioritization
of the contributions involves a sense of urgency and the size of
the contribution. The social aspects were mentioned as chal-
lenges of dealing with pull requests. Our work complements
Gousios’ work by focusing not only on integrators but showing
the characteristics that great maintainers would have. We can
see that, and while quality assurance ans social aspects are
a common themes, we show that the set characteristics of a
great maintainer is broader and includes attributes that are not
solely related to code integration.

Finally, Nadia Eghbal [8] analyzes OSS maintenance and
presents some of the “hidden costs” of maintaining OSS
projects (e.g., physical infrastructure, user support, and com-
munity management). She mentions that maintainers are re-
sponsible for “being mindful of how they allocate their atten-
tion,” given that their effort is a limited resource. Eghbal’s dis-
cussion revolves around the Management and Social categories
uncovered here, which show that maintainers need to manage
multiple aspects of the project, mindfully, to keep contributors,
community, and project working in the same frequency.

VIII. CONCLUSION

Maintainers perform an unquestionably central work to the
success and long-term sustainability of communities. The re-
sponsibilities of these contributors encompass a diverse set of
responsibilities, which require different competencies. While
one can think of a maintainer as a solely technical developer
responsible for keeping high-quality code, our results showed
that a great maintainer has to master a diverse set of skills.

In fact, we found that Communication was considered the
most important attribute of a great maintainer with Quality As-
surance being the second-ranked according to the %Essential
metric. This has been confirmed by a statistical analysis that
involved pairwise comparisons between the ratings received
by the attributes. The other three attributes that compose the
top-5 are not related to technical competencies (Community
Building, Empathy, and Vision). Therefore, it is clear that,
although maintainers are usually highly technically-skilled
contributors, social and management skills are essential to
excel in the position.

11

ACKNOWLEDGMENTS

We thank the reviewers for their helpful comments and the
participants of our study for their input. This work is partially
supported by CNPq (grants 313067/2020-1, 309032/2019-
9 and 304220/2017-5), National Science Foundation (grant
1900903), FACEPE/Brazil (APQ-0839-1.03/14), and INES 2.0
(FACEPE grants PRONEX APQ 0388-1.03/14 and APQ-0399-
1.03/17, and CNPq grant 465614/2014-0).

REFERENCES

[1] R. Abdalkareem, O. Nourry, S. Wehaibi, S. Mujahid, and
E. Shihab. Why do developers use trivial packages? an
empirical case study on npm. In E. Bodden, W. Schäfer,
A. van Deursen, and A. Zisman, editors, 11th Joint Meet-
ing on Foundations of Software Engineering, ESEC/FSE
2017, pages 385–395. ACM, 2017.

[2] S. Balali, I. Steinmacher, U. Annamalai, A. Sarma,
and M. A. Gerosa. Newcomers’ barriers... is that all?
an analysis of mentors’ and newcomers’ barriers in
oss projects. Computer Supported Cooperative Work
(CSCW), 27(3):679–714, 2018.

[3] S. Baltes and S. Diehl. Worse than spam: Issues in
sampling software developers. In 10th International
Symposium on Empirical Software Engineering and Mea-
surement, ESEM ’16, New York, NY, USA, 2016. ACM.

[4] A. Begel and T. Zimmermann. Analyze this! 145
questions for data scientists in software engineering. In
36th International Conference on Software Engineering,
ICSE 2014, page 12–23, New York, NY, USA, 2014.
ACM.

[5] H. R. Bernard. Research methods in anthropology:
Qualitative and quantitative approaches. Rowman &
Littlefield, 2017.

[6] M. Buckingham. What great managers do. IEEE
Engineering Management Review, 33(2):3–10, 2005.

[7] G. Catolino, F. Palomba, D. A. Tamburri, A. Serebrenik,
and F. Ferrucci. Gender diversity and women in soft-
ware teams: how do they affect community smells? In
41st International Conference on Software Engineering:
Software Engineering in Society, ICSE 2019, pages 11–
20, 2019.

[8] N. Eghbal. Working in Public: The Making and Mainte-
nance of Open Source Software. Stripe Press, 2020.

[9] G. Gousios, M. Pinzger, and A. v. Deursen. An ex-
ploratory study of the pull-based software development
model. In 36th International Conference on Software
Engineering, ICSE, pages 345–355. ACM, 2014.

[10] G. Gousios, M.-A. Storey, and A. Bacchelli. Work
practices and challenges in pull-based development: The
contributor’s perspective. In Proceedings of the 38th
International Conference on Software Engineering, ICSE
’16, pages 285–296. ACM, 2016.

[11] G. Gousios, A. Zaidman, M.-A. Storey, and A. van
Deursen. Work practices and challenges in pull-based
development: The integrator’s perspective. In 37th In-
ternational Conference on Software Engineering, ICSE,
pages 358–368, 2015.

[12] A. Hemon, B. Lyonnet, F. Rowe, and B. Fitzgerald.
From agile to devops: Smart skills and collaborations.
Information Systems Frontiers, 22(4):927–945, 2020.

[13] E. Kalliamvakou, C. Bird, T. Zimmermann, A. Begel,
R. DeLine, and D. M. Germán. What makes a great
manager of software engineers? IEEE Trans. Software
Eng., 45(1):87–106, 2019.

[14] E. Kalliamvakou, C. Bird, T. Zimmermann, A. Begel,
R. DeLine, and D. M. German. What makes a great
manager of software engineers? IEEE Transactions on
Software Engineering, 45(1):87–106, 2019.

[15] N. Kano, N. Seraku, F. Takahashi, and S. Tsuji. Attractive
quality and must-be quality. Journal of the Japanese
Society for Quality Control (in Japanese), 14(2):39–48,
April 1984.

[16] B. A. Kitchenham and S. L. Pfleeger. Personal opinion
surveys. In F. Shull, J. Singer, and D. I. K. Sjøberg, edi-
tors, Guide to Advanced Empirical Software Engineering,
pages 63–92. Springer, 2008.

[17] L. A. F. Leite, C. Rocha, F. Kon, D. S. Milojicic, and
P. Meirelles. A survey of devops concepts and challenges.
ACM Comput. Surv., 52(6):127:1–127:35, 2020.

[18] P. L. Li, A. J. Ko, and A. Begel. What distinguishes great
software engineers? Empirical Software Engineering,
25(1):322–352, 2020.

[19] P. L. Li, A. J. Ko, and J. Zhu. What makes a great
software engineer? In 37th International Conference on
Software Engineering, ICSE 2015, pages 700–710, 2015.

[20] K. Nakakoji, Y. Yamamoto, Y. Nishinaka, K. Kishida,
and Y. Ye. Evolution patterns of open-source software
systems and communities. In International Workshop on
Principles of Software Evolution, pages 76–85. ACM,
2002.

[21] S. H. Padala, C. J. Mendez, L. F. Dias, I. Steinmacher,
Z. S. Hanson, C. Hilderbrand, A. Horvath, C. Hill, L. D.
Simpson, M. Burnett, et al. How gender-biased tools
shape newcomer experiences in oss projects. IEEE
Transactions on Software Engineering, 2020.

[22] A. Rastogi, N. Nagappan, G. Gousios, and A. van der
Hoek. Relationship between geographical location and
evaluation of developer contributions in github. In 12th
International Symposium on Empirical Software Engi-
neering and Measurement, ESEM ’18, pages 22:1–22:8,
New York, NY, USA, 2018. ACM.

[23] E. S. Raymond. The cathedral and the bazaar - musings
on Linux and Open Source by an accidental revolution-
ary. O’Reilly, 1999.

[24] J. G. Rivera-Ibarra, J. Rodrı́guez-Jacobo, J. A.
Fernández-Zepeda, and M. A. Serrano-Vargas.
Competency framework for software engineers. In
2010 23rd IEEE Conference on Software Engineering
Education and Training, pages 33–40, 2010.

[25] C. B. Seaman. Qualitative methods in empirical stud-
ies of software engineering. IEEE Trans. Softw. Eng.,
25(4):557–572, July 1999.

12

[26] E. Smith, R. Loftin, E. Murphy-Hill, C. Bird, and T. Zim-
mermann. Improving developer participation rates in
surveys. In 6th International Workshop on Cooperative
and Human Aspects of Software Engineering (CHASE),
pages 89–92, 2013.

[27] D. Spencer. Card sorting: Designing usable categories.
Rosenfeld Media, 2009.

[28] I. Steinmacher, T. Conte, M. A. Gerosa, and D. Redmiles.
Social barriers faced by newcomers placing their first
contribution in open source software projects. In 18th
ACM conference on Computer supported cooperative
work & social computing, pages 1379–1392, 2015.

[29] I. Steinmacher, G. Pinto, I. S. Wiese, and M. A. Gerosa.
Almost there: A study on quasi-contributors in open
source software projects. In 40th International Confer-
ence on Software Engineering, ICSE ’18, page 256–266,
New York, NY, USA, 2018. ACM.

[30] P. E. Strandberg. Ethical interviews in software engi-
neering. In 13th International Symposium on Empirical
Software Engineering and Measurement, ESEM ’19,
2019.

[31] A. L. Strauss and J. M. Corbin. Basics of qualitative
research : techniques and procedures for developing
grounded theory. Sage Publications, Thousand Oaks,
1998.

[32] M. Szumilas. Explaining odds ratios. J Can Acad Child

Adolesc Psychiatry, 19(3):227–229, 2010.
[33] B. Trinkenreich, M. Guizani, I. Wiese, A. Sarma, and

I. Steinmacher. Hidden figures: Roles and pathways
of successful OSS contributors. Computer Supported
Cooperative Work (CSCW), 4(180), 2020.

[34] R. T. Turley and J. M. Bieman. Competencies of excep-
tional and nonexceptional software engineers. Journal of
Systems and Software, 28(1):19 – 38, 1995.

[35] G. Von Krogh, S. Haefliger, S. Spaeth, and M. W. Wallin.
Carrots and rainbows: Motivation and social practice in
open source software development. MIS quarterly, pages
649–676, 2012.

[36] Z. Wang, Y. Feng, Y. Wang, J. A. Jones, and D. Redmiles.
Unveiling elite developers’ activities in open source
projects. Transactions on Software Engineering and
Methodology (TOSEM), 29(3):1–35, 2020.

[37] T. Whitaker. What great teachers do differently: Seven-
teen things that matter most. Eye on Education, 2012.

[38] M. Wood and F. Su. What makes an excellent lecturer?
academics’ perspectives on the discourse of ‘teaching
excellence’in higher education. Teaching in higher edu-
cation, 22(4):451–466, 2017.

[39] M. Zhou and A. Mockus. What make long term contrib-
utors: Willingness and opportunity in oss community. In
34th International Conference on Software Engineering
(ICSE), pages 518–528. IEEE, 2012.

13

