
Effects of Adopting Code Review Bots on Pull
Requests to OSS Projects

Mairieli Wessel∗, Alexander Serebrenik†, Igor Wiese‡, Igor Steinmacher‡§ and Marco A. Gerosa§
∗University of São Paulo, Brazil

†Eindhoven University of Technology, The Netherlands
‡Universidade Tecnológica Federal do Paraná, Campo Mourão, Brazil

§Northern Arizona University, USA
mairieli@ime.usp.br, a.serebrenik@tue.nl, igor@utfpr.edu.br, {igor.steinmacher, marco.gerosa}@nau.edu

Abstract—Software bots, which are widely adopted by Open
Source Software (OSS) projects, support developers on several
activities, including code review. However, as with any new
technology adoption, bots may impact group dynamics. Since
understanding and anticipating such effects is important for
planning and management, we investigate how several activity
indicators change after the adoption of a code review bot. We
employed a regression discontinuity design on 1,466 software
projects from GitHub. Our results indicate that the adoption
of code review bots increases the number of monthly merged
pull requests, decreases monthly non-merged pull requests, and
decreases communication among developers. Practitioners and
maintainers may leverage our results to understand, or even
predict, bot effects on their projects’ social interactions.

Index Terms—Software Bots, GitHub Bots, Code Review, Open
Source Software, Software Engineering

I. INTRODUCTION

Many Open Source Software (OSS) projects employ code
review as an essential part of the development process [1].
Code review is a well-known practice for software quality
assurance [2]. In the pull-based development model, project
maintainers carefully inspect code changes and engage in
discussion with the contributors to understand and improve the
modifications before integrating them into the codebase [3].
The time maintainers spend reviewing pull requests is non-
negligible and can affect, for example, the volume of new
contributions [4] and the onboarding of newcomers [5].

In this context, software bots play a prominent role in
the code review process [6] by serving as an interface be-
tween users and other tools [7] and reducing the workload
of maintainers and contributors. Accomplishing tasks that
were previously performed solely by human developers, and
interacting in the same communication channels as their
human counterparts, bots have become new voices in the code
review conversation [8]. Code review bots guide contributors
to provide necessary information before maintainers triage the
pull requests [6].

Notoriously, though, the adoption of new technology can
bring consequences that differ from the expectations of the
technology designers and adopters [9]. Many systems intended
to serve the user ultimately add new burdens. Developers
who a priori expect technological developments to produce
significant performance improvements can be caught off-guard

by a posteriori unanticipated operational complexities [10].
Since, according to Mulder et al. [11], many effects are
not directly caused by the new technology itself, but by the
changes in human behavior that it provokes, it is important
to assess and discuss the effects of new technology on group
dynamics, and this is often neglected for software bots.

In the code review process, bots may affect existing project
activities in several ways. For example, while project main-
tainers may direct their effort to other activities, the bot could
provide poor feedback [6, 12] that leads to contributor drop-
out—indeed, lack of feedback on pull requests is known to
discourage further contributions [13].

We aim to understand how the dynamics of pull requests
of GitHub projects change following the adoption of a code
review bot. To understand what happens after the adoption
of a bot, we used a Regression Discontinuity Design [14] to
model the effects of code review bot adoption across 1,466
OSS projects hosted on GitHub. Hence, our main research
question is:

RQ. How do pull request activities change after a code
review bot is adopted in a project?

Extending the work of Wessel et al. [6], we investigate
changes in project activity indicators, such as the number of
pull requests merged and non-merged, number of comments,
the time to close pull requests, and the number of commits
per pull request. Using time series analysis, we account for
the longitudinal effects of the bot adoption. We also go one
step further, exploring a large sample of open-source projects
and focusing on understanding the effects of a specific bot
category.

Analyzing the statistical models, on the one hand, we found
that more pull requests are merged into the codebase after
the bot adoption, and there is less communication between
contributors and maintainers. On the other hand, merging
pull requests takes more time. Considering non-merged pull
requests, after bot adoption, projects have less monthly non-
merged pull requests, and faster pull requests rejections.

In this paper, we make the following contributions: (i)
identification of changes in project activity indicators after
the adoption of a code review bot; and (ii) an elucidation
of how the introduction of a bot can impact OSS projects.
These contributions aim to help practitioners and maintainers

understand the bots’ effects on a project, especially to avoid
the ones that they consider undesirable. Additionally, our
findings may guide developers to consider the implications
of new bots as they design them.

II. EXPLORATORY CASE STUDY

As little is known about the effects of code review bots’
adoption in the dynamics of pull requests, we conducted an
exploratory case study [15, 16] to formulate hypotheses to
further investigate in our main study.

A. Case Study Method

To carry out our exploratory case study, we selected two
projects that we were aware of that used code review bots for
at least a couple of years: the Julia programming language
project1 and CakePHP,2 a web development framework for
PHP. Both projects have popular and active repositories—Julia
has more than 26.1k stars, 3.8k forks, 17k pull requests, and
46.4k commits, while CakePHP has more than 8.1k stars,
3.4k forks, 8.6k pull requests, 40.9k commits, and is used
by 10k projects. Both projects adopt a code review bot named
Codecov, which posted the first comments on pull requests to
the Julia project in July 2016 and CakePHP in April 2016.

After selecting the projects, we analyzed data from one
year before and one year after the bot adoption, using the
data available at the GHTorrent dataset [17]. During this time
frame, the only bot adopted by Julia and CakePHP was the
Codecov bot. Similar to previous work [18], we exclude 30
days around the bot adoption to avoid the influence of the
instability caused during this period. Afterward, we aggregated
individual pull request data into monthly periods, considering
12 months before and after the bot introduction. We choose
the month time frame based on previous literature [18, 19, 20].
All metrics were aggregated based on the month of the pull
request being closed/merged.

We considered the same activity indicators used in the
previous work by Wessel et al. [6]:
Merged/non-merged pull requests: the number of monthly
contributions (pull requests) that have been merged, or closed
but not merged into the project, computed over all closed pull
requests in each time frame.
Human comments on merged/non-merged pull requests:
the median number of monthly comments—excluding bot
comments—computed over all merged and non-merged pull
requests in each time frame. We used the median because the
distribution is skewed.
Time-to-merge/time-to-close pull requests: the median of
monthly pull request latency (in hours), computed as the
difference between the time when the pull request was closed
and the time when it was opened. The median is computed
using all merged and non-merged pull requests in each time
frame. We used the median because the distribution is skewed.

1https://github.com/JuliaLang/julia
2https://github.com/cakephp/cakephp

●
●

●

●
●

● ● ● ● ●

●

●

●

●

● ●

●

●

●

●

●

● ●
●

●

● ●

●
● ●

●

● ● ● ● ● ● ●
●

●
●

● ● ● ● ●

● ●

●
●

0

100

200

−12−11−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12

Month index

N
um

. o
f m

er
ge

d
P

R
s

● ●

● ●
●

●

●

●

●

●

●

● ● ● ● ●
●

● ●
● ● ● ● ● ●

● ●

●
● ●

● ● ●
●

●
●

● ●

●

● ● ● ● ● ● ● ● ● ●
●

0

100

200

−12−11−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12

Month index

N
um

. o
f n

on
−

m
er

ge
d

P
R

s

Project ● ●CakePHP Julia

Fig. 1. Monthly merged and non-merged pull requests.

Commits of merged/non-merged pull requests: the median of
monthly commits computed over all merged and non-merged
pull requests in each time frame. We use the median because
the distribution is skewed.

We ran statistical tests to compare the activity indicators.
distributions before and after the bot adoption. As the sample
is small, and there is no critical mass of data points around the
bot introduction, we used the non-parametric Mann-Whitney-
Wilcoxon test [21]. In this context, the null hypothesis (H0) is
that the distributions pre- and post-adoption are the same, and
the alternative hypothesis (H1) is that these distributions differ.
We also used Cliff’s Delta [22] to quantify the difference
between these groups of observations beyond p-value inter-
pretation. Moreover, we inspected the monthly distribution of
each metric to search for indications of change.

As aforementioned, the case studies helped us to formulate
hypotheses for the main study, which comprised more than
a thousand projects. We formulated hypotheses whenever we
observed changes in the indicators for at least one of the two
projects we analyzed in the case study.

B. Case Study Results

The number of merged pull requests increased for both
projects (Julia: p-value 0.0003, δ = −0.87; CakePHP: p-
value 0.001, δ = −0.76) while the non-merged pull requests
decreased for both projects (Julia: p-value 0.00007, δ = 0.87;
CakePHP: p-value 0.00008, δ = 0.95). Figure 1 shows the
monthly number of merged and non-merged pull requests, top
and bottom respectively, before and after the bot adoption for
both projects. Based on these findings, we hypothesize that:

H1.1 The number of monthly merged pull requests in-
creases after the introduction of a code review bot.

H1.2 The number of monthly non-merged pull requests
decreases after the introduction of a code review bot.

Figure 2 shows the monthly median of comments on merged
and non-merged pull requests, respectively. CakePHP showed

●

● ●

●

●

● ● ●

●

●

● ●

● ● ●

●

●

●

●

●

● ● ● ● ●

●

●

●

● ●
●

●

●

●

● ●

●
●

●

●

●

● ●

●
●

● ●

●

● ●

0

1

2

3

4

5

−12−11−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12

Month index

M
ed

ia
n

co
m

m
en

ts

(m
er

ge
d

P
R

s)

●
●

● ● ●
● ●

● ● ● ●

●

●

●

●

●
●

●

●

● ● ● ●

●

●

● ●
● ● ● ●

●
● ●

● ●

●

●
●

●

●

●

●

●

●

● ●

●

● ●

0

5

10

15

−12−11−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12

Month index

M
ed

ia
n

co
m

m
en

ts

(n
on

−
m

er
ge

d
P

R
s)

Project ● ●CakePHP Julia

Fig. 2. Monthly comments on merged and non-merged pull requests.

statistically significant differences between pre- and post-
adoption distributions. The number of comments increased
for merged pull requests (p-value=0.01, δ = −0.56) and also
for non-merged ones (p-value=0.03, δ = −0.50) with a large
effect size. Thus, we hypothesize that:

H2.1 The adoption of code review bots is associated with
an increase in the monthly number of human comments for
merged pull requests.

H2.2 The number of monthly human comments on non-
merged pull requests increases after the adoption of a code
review bot.

●
● ●

●

●

● ● ●

●
●

● ● ● ● ● ●

● ●
●

●
● ●

●
●

●

●
●

● ● ●
● ● ●

● ●

● ●

●

● ●
●

● ● ●

●

●
● ● ●

●

100

100.5

101

101.5

−12−11−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12

Month index

M
ed

ia
n

tim
e

to
 m

er
ge

 P
R

s
(h

ou
rs

)

●
●

●
●

● ●
● ● ● ●

●

●

●

●

● ●

●

●

●
●

●
●

●
●

●

● ● ●
●

●

●

● ●
●

● ●
●

● ●

●

●

●

● ●

● ●

● ●

●

●
101

102

103

−12−11−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12

Month index

M
ed

ia
n

tim
e

to
 r

ej
ec

t P
R

s
(h

ou
rs

)

Project ● ●CakePHP Julia

Fig. 3. Monthly median time to merge and reject pull requests.

The median time to merge pull requests increased for both
projects (Julia: p-value 0.0003, δ = −1.00; CakePHP: p-value
0.000001, δ = −0.98). Considering non-merged pull requests,
the difference between pre- and post-adoption is statistically
significant only for Julia. For this project, the median time to

close pull requests increased (p-value 0.00007) with a large
effect size (δ = −0.65). The distribution can be seen in
Figure 3. Therefore, we hypothesize that:

H3.1 There is an increase in the monthly time to merge
pull requests after the introduction of code review bots.

H3.2 There is an increase in the monthly time to reject
pull requests after the adoption of a code review bot.

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

● ● ● ●

● ●

●

● ●1

2

3

4

−12−11−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12

Month index

M
ed

ia
n

of
 c

om
m

its

(m
er

ge
d

P
R

s)

●

● ●

● ● ● ● ● ● ● ● ●

● ●

● ● ● ● ●

● ●

●

●

●

●● ● ●

●

●

● ●

● ●

●

● ● ● ●

●

●

●

●

●

● ●

●

●

●

●

1

2

3

4

−12−11−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12

Month index
M

ed
ia

n
of

 c
om

m
its

(n

on
−

m
er

ge
d

P
R

s)
Project ● ●CakePHP Julia

Fig. 4. Monthly commits on merged and non-merged pull requests.

Investigating the number of pull request commits per month
(see Figure 4), we note that the medians before the adop-
tion are quite stable, especially for merged pull requests.
In comparison, after adoption, we observe more variance.
The difference is statistically significant only for CakePHP,
for which the number of pull request commits increased for
merged pull requests (p-value=0.002, δ = −0.58) and for non-
merged pull requests (p-value=0.002, δ = −0.69) with a large
effect size. Based on this, we posit:

H4.1 There is an increase in the monthly number of
commits for merged pull requests after code review bot
adoption.

H4.2 There is an increase in the monthly number of
commits for non-merged pull requests after code review bot
adoption.

In conclusion, differently than Wessel et al. [6], we observe
statistically significant differences for all four activity indica-
tors we investigated in at least one of the two projects. Based
on these observations, we formulated hypotheses to be further
investigated in our main study, comprising a large number of
projects and employed the regression discontinuity design.

III. MAIN STUDY DESIGN

In the following, we present the statistical approach and data
collection procedures for the main study.

A. Statistical Approach

Considering the hypotheses formulated in the case study, in
our main study, we employed time series analysis to account

for the longitudinal effects of the bot adoption. We employed
Regression Discontinuity Design (RDD) [14, 23], that has
been applied in the context of software engineering in the
past [18, 20]. RDD is a technique used to model the extent of
a discontinuity at the moment of intervention and long after
the intervention. The technique is based on the assumption that
if the intervention does not affect the outcome, there would be
no discontinuity, and the outcome would be continuous over
time [24]. The statistical model behind RDD is

yi = α+ β · timei + γ · interventioni +

δ · time after interventioni + η · controlsi + εi

where i indicates the observations for a given project. To
model the passage of time as well as the bot introduction, we
include three additional variables: time, time after intervention,
and intervention. The time variable is measured as months
at the time j from the start to the end of our observation
period for each project (24 months). The intervention variable
is a binary value used to indicate whether the time j occurs
before (intervention = 0) or after (intervention = 1) adoption
event. The time after intervention variable counts the number
of months at time j since the bot adoption, and the variable
is set up to 0 before adoption.

The controlsi variables enable the analysis of bot adoption
effects, rather than confounding the effects that influence the
dependent variables. For observations before the intervention,
holding controls constant, the resulting regression line has a
slope of β, and after the intervention β + δ. The size of the
intervention effect is measured as the difference equal to γ
between the two regression values of yi at the moment of the
intervention.

Considering that we are interested in the effects of code
review bots on the monthly trend of the number of pull
requests, number of comments, time-to-close pull requests,
and number of commits over a pull request, and all these for
both merged and non-merged pull requests, we fitted eight
models (2 cases x 4 variables). To balance false-positives and
false-negatives, we report the corrected p-values after apply-
ing multiple corrections using the method of Benjamini and
Hochberg [25]. We implemented the RDD models as a mixed-
effects linear regression using the R package lmerTest [26].

To capture project-to-project and language-to-language vari-
ability, we modeled project name and programming language
as random effects [27]. By modeling these features as random
effects, we can account for and explain different behaviors
observed across projects or programming languages [18]. We
evaluate the model fit using marginal (R2

m) and conditional
(R2

c) scores, as described by Nakagawa and Schielzeth [28].
The R2

m can be interpreted as the variance explained by the
fixed effects alone, and R2

c as the variance explained by the
fixed and random effects together.

In mixed-effects regression, the variables used to model the
intervention along with the other fixed effects are aggregated
across all projects, resulting in coefficients useful for inter-
pretation. The interpretation of these regression coefficients
supports the discussion of the intervention and its effects, if

any. Thus, we report the significant coefficients (p < 0.05)
in the regression as well as their variance, obtained using
ANOVA. In addition, we log transform the fixed effects and
dependent variables that have high variance [29]. We also
account for multicollinearity, excluding any fixed effects for
which the variance inflation factor (VIF) is higher than 5 [29].

B. Data Collection

1) Candidate projects: To identify open-source software
projects hosted on GitHub that at some point had adopted
a code review bot, we queried the GHTorrent dataset [17] and
filtered projects in which at least one pull request comment
was made by one of the code review bots identified by Wessel
et al. [6]. Following the method used by Zhao et al. [18] to
assemble a time series, we considered only those projects that
had been active for at least one year before and one year after
the bot adoption. We found 4, 767 projects that adopted at least
one of the code review bots. For each project, we collected
data on all its merged and non-merged pull requests.

2) Aggregating projects variables: Similar to the ex-
ploratory case study (see Section II), we aggregated the project
data in monthly time frames and collected the four variables
we expected to be influenced by the introduction of the bot:
number of merged and non-merged pull requests, median
number of comments, median time-to-close pull requests, and
median number of commits. All these variables were computed
over pull requests that have been merged and non-merged in
a time frame.

We also collected six control variables, using the GHTorrent
dataset [17]:

Project name: the name of the project, used to identify the
project on GitHub. We account for the fact that different
projects can lead to different contribution patterns.

Programming language: the primary project programming
language as automatically determined and provided by the
GitHub. We consider that projects with different programming
languages can lead to different activities and contribution
patterns.

Time since the first pull request: in months, computed since
the earliest recorded pull request in the entire project history.
We use this to capture the difference in adopting the bot earlier
or later in the project life cycle, after the projects started to
use pull requests.

Total number of pull request authors: as a proxy for the size
of the project community, we count how many contributors
submitted pull requests to the project.

Total number of commits: as a proxy for the activity level of
a project, we compute the total number of commits.

Number of pull requests opened: the number of contributions
(pull requests) received per month by the project. We expect
that projects with a high number of contributions also observe
a high number of comments, latency, commits, and merged
and non-merged contributions.

TABLE I
AN OVERVIEW OF THE STUDIED BOTS

Bot name GitHub user Link # of projects

Ansible’s issue bot ansibot https://github.com/ansible/ansibullbot 1
Elastic Machine elasticmachine https://github.com/elasticmachine 3
Codecov codecov-io https://github.com/marketplace/codecov 552
Coveralls coveralls https://github.com/coveralls 910

Total of 1, 466 under study

3) Filtering the final dataset: After excluding the period
of instability (30 days around the adoption), we inspected the
dataset and found 223 projects with no comments authored by
any of the studied bots. We manually checked 30% of these
cases and concluded that some projects only added the bot for
a testing period and then disabled it. We removed these 223
projects from our dataset.

We also checked the activity level of the candidate projects,
since many projects on GitHub are inactive [30]. We excluded
from our dataset projects without at least a six month period
of consistent pull request activity during the one-year period
before and after bot adoption. After applying this filter, a set of
1, 740 GitHub software projects remained. To ensure that we
observed the effects of each bot separately, we also excluded
from our dataset 78 projects that adopted more than one of
the studied bots and 196 projects that used non-code review
bots. After applying all filters, 1, 466 GitHub software projects
remained. Table I shows the number of projects per bot. All of
these four bots perform similar tasks on pull requests—provide
comments on pull requests about code and test coverage.

IV. MAIN STUDY RESULTS

In this section, we discuss the effects of code review
bot adoption in project activities along four dimensions: (i)
accepted and rejected pull requests, (ii) communication, (iii)
pull request resolution efficiency, and (iv) modification effort.

A. Effects in Merged and Non-merged Pull Requests

We start by investigating the effects of bot adoption on the
number of merged and non-merged pull requests. From the
exploratory case study, we hypothesized that the use of code
review bots is associated with an increase in the number of
monthly merged pull requests and a decrease in the number
of monthly non-merged pull requests. We fit two mixed-effect
RDD models, as described in Section III-A. For these models,
the number of merged/non-merged pull requests per month
is the dependent variable. Table II summarizes the results of
these two RDD models. In addition to the model coefficients,
the table also shows the sum of squares, with a variance
explained for each variable.

Analyzing the model for merged pull requests, we found that
the fixed-effects part fits the data well (R2

m = 0.69). However,
considering R2

c = 0.76, variability also appears from project-
to-project and language-to-language. Among the fixed effects,
we observe that the number of monthly pull requests explains
most of the variability in the model. As expected, this indicates

that projects receiving more contributions tend to have more
merged pull requests, with other variables held constant.

Furthermore, the statistical significance of the time series
predictors indicates that the adoption of code review bots
affected the trend in the number of merged pull requests.
We note an increasing trend before adoption; a statistically
significant discontinuity at the adoption time; and a positive
trend after adoption that indicates that the number of merged
pull requests increased even faster.

Similar to the previous model, the fixed-effect part of the
non-merged pull requests model fits the data well (R2

m =
0.68), even though a considerable amount of variability is
explained by random effects (R2

c = 0.75). We note similar
results on fixed effects: projects receiving more contributions
tend to have more non-merged pull requests. All time-series
predictors for this model are statistically significant, showing
a measurable effect of the code review bot’s adoption on the
time to review and accept a pull request. We note a decreasing
trend before adoption, a statistically significant discontinuity
at the adoption time, and a slight acceleration after adoption
in the decreasing time trend seen before adoption.

Therefore, based on models for merged and non-merged
pull requests, we confirm both H1.1 and H1.2.

Overall, there are more monthly merged pull requests and
fewer monthly non-merged pull requests after adopting a
code review bot.

B. Effects in Communication

In the exploratory case study, we hypothesized that bot
adoption increases monthly human communication on pull
requests for both merged and non-merged pull requests. To
statistically investigate this, we fit one model to merged pull
requests and another to non-merged ones. The median of pull
request comments per month is the dependent variable, while
number of monthly pull requests, median of time-to-close pull
requests, and median of pull request commits are independent
variables. Table III shows the results of the fitted models.

Considering the model of comments on merged pull re-
quests, we found that the model taking into account only fixed
effects (R2

m = 0.52) fits the data well. However, there is also
variability from the random effects (R2

c = 0.58). We observe
that time-to-close pull requests explains the largest amount of
variability in the model, indicating that the communication
during the pull request review is strongly associated with

TABLE II
THE EFFECTS OF CODE REVIEW BOTS ON PRS. THE RESPONSE IS LOG(NUMBER OF MERGED/NON-MERGED PRS) PER MONTH.

Merged Pull Requests Non-merged Pull Requests

Coefficients Sum of Squares Coefficients Sum of Squares

Intercept -0.317*** -0.517***
TimeSinceFirstPullRequest 0.00004* 3.8 -0.0002*** 3.1
log(TotalPullRequestAuthors) -0.111*** 203.1 0.089*** 1061.2
log(TotalCommits) 0.057*** 742.8 0.053*** 609.3
log(OpenedPullRequests) 0.510*** 10873.7 0.415*** 6608.5
log(PullRequestComments) 0.453*** 3840.0 0.387*** 2809.5
log(PullRequestCommits) 0.268*** 845.8 0.155*** 294.3
time 0.003** 276.3 -0.004*** 521.3
interventionTrue 0.109*** 27.5 -0.166*** 62.4
time after intervention 0.007*** 5.4 -0.006*** 3.4

Marginal R2
m 0.69 0.68

Conditional R2
c 0.76 0.75

*** p < 0.001, ** p < 0.01, * p < 0.05

TABLE III
THE EFFECT OF CODE REVIEW BOTS ON PULL REQUEST COMMENTS. THE RESPONSE IS LOG(MEDIAN OF COMMENTS) PER MONTH.

Merged Pull Requests Non-merged Pull Requests

Coefficients Sum of Squares Coefficients Sum of Squares

Intercept -0.132*** -0.138***
TimeSinceFirstPullRequest 0.00001 29.7 -0.00002* 32.5
log(TotalPullRequestAuthors) 0.056*** 213.6 0.070*** 837.2
log(TotalCommits) -0.011*** 62.2 -0.008** 158.2
log(OpenedPullRequests) 0.078*** 1203.2 0.076*** 1692.3
log(TimeToClosePullRequests) 0.093*** 3942.4 0.101*** 5674.1
log(PullRequestCommits) 0.101*** 78.7 0.120*** 148.2
time -0.0004 1.9 -0.001 10.2
interventionTrue 0.018** 0.6 -0.025*** 1.4
time after intervention -0.003*** 1.2 -0.001 0.1

Marginal R2 0.51 0.66
Conditional R2 0.57 0.70

*** p < 0.001, ** p < 0.01, * p < 0.05

the time to merge it. Regarding the bot effects, there is
a discontinuity at adoption time, followed by a statistically
significant decrease after the bots introduction.

As above, the model of non-merged pull requests fits
the data well (R2

m = 0.67) and there is also variability
explained by the random variables (R2

c = 0.71). This model
also suggests that communication during the pull request
review is strongly associated with the time to reject the pull
request. Table III shows that the effect of bot adoption on
non-merged pull requests differs from the effect on merged
ones. The statistical significance of the intervention coefficient
indicates that the adoption of code review bots slightly affected
communication; however, there is no bot effect as time passes.

Since our model for merged pull requests shows a decrease
in the number of comments after bot adoption, we rejected
H2.1. Still, our model for non-merged pull requests did not
show any bot effect as time passes, then we also reject H2.2.

On average, there is less monthly communication on
merged pull requests after adopting a code review bot.
However, the monthly communication on non-merged pull
requests does not change as time passes.

C. Effects in Pull Request Resolution Efficiency

In the exploratory case study, we found that the monthly
time to close pull requests increased after bot adoption. Then,
we fitted two RDD models, for both merged and non-merged
pull requests, where median of time to close pull requests per
month is the dependent variable, with independent variables
similar to the above models.

Analyzing the results to the effect of code review bots on
the latency to merge pull requests (Table IV), we found that
combined fixed-and-random effects fit the data better than the
fixed effects. Although several variables affect the trends of
pull request latency, communication during the pull requests
is responsible for most of the variability in the data. This
indicates the expected results: the more effort contributors
expend discussing the contribution, the more time the con-
tribution takes to merge into the codebase. The number of
commits also explains the amount of data variability, since a
project with many changes needs more time to review and
merge them. Moreover, we observe an increasing trend before
adoption, followed by a statistically significant discontinuity
at the adoption time. After adoption, the time to merge pull

TABLE IV
THE EFFECT OF CODE REVIEW BOTS ON TIME-TO-CLOSE PRS. THE RESPONSE IS LOG(MEDIAN OF TIME-TO-CLOSE PRS) PER MONTH.

Merged Pull Requests Non-merged Pull Requests

Coefficients Sum of Squares Coefficients Sum of Squares

Intercept 0.430*** 0.265*
TimeSinceFirstPullRequest 0.0002*** 675 0.0001 1293
log(TotalPullRequestAuthors) 0.197*** 2504 0.189*** 28482
log(TotalCommits) -0.150*** 1212 -0.081*** 6569
log(OpenedPullRequests) 0.111*** 39939 0.245*** 60411
log(PullRequestComments) 2.436*** 140233 3.311*** 213221
log(PullRequestCommits) 2.253*** 55713 1.659*** 31939
time 0.023*** 4099 0.013*** 15
interventionTrue 0.318*** 229 -0.041 7
time after intervention 0.015** 22 -0.026*** 71

Marginal R2 0.61 0.69
Conditional R2 0.67 0.72

*** p < 0.001, ** p < 0.01, * p < 0.05

requests increases even faster. This may happen because the
contributors need to fix issues found by the code review bot.

Turning to the model of non-merged pull requests, we
note that it fits the data well (R2

m = 0.69), and there is
also a variability explained by the random variables (R2

c =
0.72). As above, communication during the pull requests is
responsible for most of the variability encountered in the
results. In this model, the number of received contributions
is important to explain variability in the data—projects with
many contributions need more time to review and reject them.
The effect of bot adoption on the time spent to reject pull
requests differs from the previous model. Regarding the time
series predictors, the model did not detect any discontinuity
at adoption time. However, the positive trend in the latency to
reject pull requests before the bot adoption is reversed, toward
a decrease after adoption.

Thus, based on model results of merged pull requests, we
confirm H3.1. As the model of non-merged pull requests shows
a decrease in the monthly time to close pull requests, we
rejected H3.2. This may indicate that, after the introduction
of the code review bot, maintainers started to focus on pull
requests that are more likely to be integrated into the codebase.

After adopting the code review bot, on average, less time
is required from maintainers to review and reject pull
requests. However, more time is required to review and
accept a pull request.

D. Effects in Commits

Finally, we studied whether code review bot adoption affects
the number of commits made before and during the pull
request review. Our hypothesis is that the monthly number of
commits increases with the introduction of code review bots.
Again, we fitted two models for merged and non-merged pull
requests, where the median of pull request commits per month
is the dependent variable. The results are shown in Table V.

Analyzing the model of commits on merged pull requests,
we found that the combined fixed-and-random effects (R2

c =

0.48) fit the data better than the fixed effects (R2
m = 0.34),

showing that most of the explained variability in the data
is associated with project-to-project and language-to-language
variability, rather than the fixed effects. The statistical signifi-
cance of the intervention coefficient indicates that the adoption
of code review bots affected the number of commits only at
the moment of adoption. Additionally, from Table V, we can
also observe that the number of pull request comments per
month explains most of the variability in the result. This result
suggests that the more comments there are, the more commits
there will be, as discussed above.

Investigating the results of the non-merged pull request
model, we found that the model fits the data well and that
the random effects are again important in this regard. We
also observe from Table V that the adoption of a bot is
not associated with the number of commits on non-merged
pull requests, since intervention and time after intervention
coefficients are not statistically significant.

Therefore, based on models for merged and non-merged
pull requests, we reject both H4.1 and H4.2.

After adopting a code review bot, the monthly trend in the
median of pull request commits do not change for both
merged and non-merged pull requests.

V. DISCUSSION

Adding a code review bot to a project can represent the de-
sire to enhance feedback to stakeholders, helping contributors
and maintainers, and achieving improved interpersonal com-
munication, as already discussed by Storey and Zagalsky [7].
Still, code review bots can guide contributors toward detecting
change effects before maintainers triage the pull requests [6],
ensuring high-quality standards. In this paper, following the
study of Wessel et al. [6], we focused on monthly activity
indicators that are not primarily related to bot adoption, but
might be impacted by it. When studying each indicator across
the projects, we found that most of them have a statistically
significant effect on the review process.

TABLE V
THE EFFECT OF CODE REVIEW BOTS ON PULL REQUEST COMMITS. THE RESPONSE IS LOG(MEDIAN OF PULL REQUEST COMMITS) PER MONTH.

Merged Pull Requests Non-merged Pull Requests

Coefficients Sum of Squares Coefficients Sum of Squares

Intercept 0.362*** 0.045
TimeSinceFirstPullRequest 0.0001*** 0.32 0.00002 7.5
log(TotalPullRequestAuthors) -0.138*** 0.04 -0.059*** 262.9
log(TotalCommits) 0.020*** 103.97 0.035*** 259.0
log(OpenedPullRequests) 0.146*** 1693.63 0.119*** 1756.4
log(PullRequestComments) 0.519*** 2883.72 0.591*** 4011.9
time 0.001 157.20 -0.004*** 12.2
interventionTrue 0.120*** 31.95 0.006 0.1
time after intervention 0.002 0.58 0.002 0.3

Marginal R2 0.34 0.41
Conditional R2 0.48 0.49

*** p < 0.001, ** p < 0.01, * p < 0.05

According to the regression results, the monthly number
of merged pull requests continued increasing, even faster,
after the code review bot adoption. This would indicate that
contributors started to have faster and clearer feedback on what
they need to do to have their contribution accepted. In addition,
the number of non-merged pull requests continued to decrease,
even faster, after bot adoption. Therefore, these models showed
that after adopting the bot, maintainers started to deal with an
increasing influx of contributions ready to be further reviewed
and integrated into the codebase. On the one hand, bots helped
maintainers to focus on the non-trivial review tasks. On the
other hand, if a project did not have the workforce to handle
these incoming contributions it could become a maintenance
burden. These findings confirm the hypothesis we formulated
based on the exploratory case study.

In addition, we noticed that just after the adoption of the
code review bot the median number of comments slightly
increased for merged pull requests. The number of comments
on these pull requests could increase due to contributions
that drastically reduced the coverage, stimulating discussions
between maintainers and contributors. This can happen es-
pecially at the beginning of bot adoption, since contributors
might be unfamiliar with bot feedback. After that initial period,
we found that the median number of comments on merged
pull requests decreased each month. Considering non-merged
pull requests, there is no significant change in the number of
comments as time passes. These results differ from the case
study results, indicating that individual projects reveal different
results, likely caused by other project-specific questions.

As showed by the exploratory case study, the regression
results reveal a monthly increase in the time spent to merge
pull requests after adoption. It makes sense from the contrib-
utors’ side, since the bot introduces a secondary evaluation
step that requires more time from contributors to meet all
requirements. The code review bot might increase the time to
merge pull requests due to the need to write tests and obtain
a stable code. From the maintainers’ side, the increase in the
volume of contributions ready to review and merge, shown by
the model of merged pull requests, can impact the time spent

to review all of them. Complementarily, the regression model
shows a decrease in the time spent to review and reject pull
requests. Overall, this may indicate that, after the bot adoption,
maintainers started to expend efforts on pull requests that are
more likely to be integrated into the codebase.

As we found in the model of comments on merged pull
requests, just after the adoption of the bot the median number
of pull request commits increased. The bot provides imme-
diate feedback in terms of proof of failure, which can lead
contributors to submit code modifications to change the bot
feedback and have their contribution accepted. Overall, the
regression models reveal that the monthly number of commits
did not change for both merged and non-merged pull requests
as time passes. These results differ from the case study results.
Nevertheless, even if there is an increase in the number of com-
mits reported in the case study, overall the monthly number of
commits are quite stable. For example, for CakePHP it varies
from 1 to 2 for merged pull requests, and 1 to 4 for non-merged
pull requests. Additionally, in the main study, we account for
control variables, rather than analyzing the monthly number of
commits interdependently. As presented in Section IV-D, for
example, the number of comments on pull requests explains
the largest amount of variability in these models, indicating
that the number of commits is strongly associated with the
communication during the pull request review.

Indeed, the dynamics of pull requests of GitHub projects
changed following the adoption of code review bots. This
change in the pull request dynamics can directly affect con-
tributors’ and maintainers’ work. Hence, understanding how
the code review bot adoption affects a project is important for
practitioners and open-source maintainers, mainly to avoid un-
expected or even undesired effects. Awareness of unexpected
bot effects can lead maintainers to take countermeasures and/or
decide whether or not to use a code review bot.

VI. RELATED WORK

Software bots support activities in software engineering,
such as communication and decision-making [7]. Bots are
particularly relevant in social-coding platforms [31], such

as GitHub, where the pull-based model [30] offers several
opportunities for community engagement, but at the same time
increases the workload for maintainers [32, 33]. Thus, OSS
communities have been adopting bots to reduce the workload
by automating repetitive and predefined tasks on GitHub pull
requests [6].

Bots are software applications that integrate their work with
human tasks, serving as interfaces between users and other
tools [34, 35], and providing additional value to the human
users [36]. Software bots frequently reside on platforms where
users work and interact with other users [37]. On GitHub, bots
have user profiles to interact with the developers, executing
well-defined tasks [6].

Storey et al. [7] and Paikari and van der Hoek [38] highlight
that the potentially negative impact of task automation through
bots is being overlooked. Storey et al. [7] claim that bots are
often used to avoid interruptions to developers’ work, but may
lead to other, less obvious distractions. While previous studies
provide recommendations on how to develop bots and evaluate
bots’ capabilities and performance, they do not draw attention
to the impact of bot adoption on software development or how
software engineers perceive the bots’ impact. Since bots are
seen as new team members [8], we expected that bots would
impact group dynamics in a way that differs from non-bot
forms of automation.

Wessel et al. [6] investigated the usage and impact of soft-
ware bots to support contributors and maintainers with pull re-
quests. After identifying bots on popular GitHub repositories,
the authors classified these bots into 13 categories according to
the tasks they perform. The third most frequently used bots are
code review bots. According to Wessel et al. [6], code review
bots are software bots that analyze code style, test coverage,
code quality, and smells. As an interface between human
developers and other tools, code review bots generally serve
to report the feedback of a third-party service into the GitHub
platform. In a preliminary study, Wessel et al. [39] conducted
a survey with 127 open source maintainers experienced in
using code review bots. While maintainers report that bots
satisfied their expectations regarding enhancing developers’
feedback, reducing maintenance burden, and enforcing code
coverage, they also perceived unexpected effects of having
a bot, including communication noise, more time spent with
tests, newcomers’ dropout.

Prior work has also investigated the impact of CI and code
review tools on GitHub projects [18, 19, 20] across time.
While Zhao et al. [18] and Cassee et al. [20] focused on the
impact of the Travis CI tool’s introduction on development
practices, Kavaler et al. [19] turned to the impact of linters,
dependency managers, and coverage reporter tools. Our work
extends this literature by providing a more in-depth investiga-
tion of the effects of code review bot adoption.

VII. THREATS TO VALIDITY

While our results only apply to OSS projects hosted on
GitHub, many relevant projects are currently hosted on this
platform [40]. Our selection of projects also limits our results.

Therefore, even though we considered a large number of
projects and our results indicates general trends, we recom-
mend running segmented analyses when applying our results
to a given project. For replication purposes, we made our data
and source code publicly available.3

One of the constructs in our study is the “first bot comment
on a pull request” as a proxy to the “time of bot adoption”
on a project. A more precise definition of this adoption
time would have involved the integration date, which is not
provided by the GitHub API. Hence, the validity of the “time
of bot adoption” construct might have been threatened by the
definition. We reduce this threat by excluding the period of 15
days immediately before and after adoption from all analyses.
Moreover, Kalliamvakou et al. [41] stated that many merged
pull requests appear non-merged, which could also affect the
construct validity of our study since we consider the number
of merged pull requests.

To reduce internal threats, we applied multiple data filtering
steps to the statistical models. To confirm the robustness of
our models, we varied the data filtering criteria, for example,
by filtering projects that did not receive pull requests in all
months, instead of at least 6 months, and observed similar
phenomena. Additionally, several controls that might influence
the independent variables have been added to reduce con-
founding factors. However, in addition to the already identified
dependent variables, there might be other factors that influence
the activities related to pull requests. These factors could
include the adoption of other code review bots, or even
other types of bots and non-bot automation. To treat this, we
removed projects that adopted more than one bot, based on
the list of bots provided by Wessel et al. [6].

VIII. CONCLUSION

In this work, we conducted an exploratory empirical inves-
tigation of the effects of adopting bots to support the code
review process on pull requests. While several code review
bots have been proposed and adopted by the OSS community,
relatively little has been done to evaluate the state of practice.
To understand the impact on practice, we statistically analyzed
data from 1, 466 open source projects hosted on GitHub.

By modeling the data around the introduction of a code re-
view bot, we notice different results from merged pull requests
and non-merged ones. We see that the monthly number of
merged pull requests of a project increases after the adoption
of a code review bot, requiring less communication between
maintainers and contributors. Moreover, the time to review and
accept a pull request increased. At the same time, code review
bots can lead projects to reject fewer pull requests.

Practitioners and open-source maintainers may use our
results to understand how group dynamics can be affected
by the introduction of a code review bot, designing counter-
measurements to avoid undesired effects. Future work includes
the qualitative investigation of the effects of adopting a bot and
the expansion of our analysis for other types of bots, activity
indicators, and social coding platforms.

3https://zenodo.org/record/3858029#.Xs15vilKhhE

ACKNOWLEDGMENTS

This work was partially supported by the Coordenação
de Aperfeiçoamento de Pessoal de Nı́vel Superior – Brasil
(CAPES) – Finance Code 001, CNPq (grant 141222/2018-
2), and National Science Foundation (grants 1815503 and
1900903).

REFERENCES

[1] O. Baysal, O. Kononenko, R. Holmes, and M. W. God-
frey, “Investigating technical and non-technical factors
influencing modern code review,” Empirical Software
Engineering, vol. 21, no. 3, pp. 932–959, 2016.

[2] F. Ebert, F. Castor, N. Novielli, and A. Serebrenik, “Con-
fusion in code reviews: Reasons, impacts, and coping
strategies,” in 2019 IEEE 26th International Confer-
ence on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 2019, pp. 49–60.

[3] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan,
“The impact of code review coverage and code review
participation on software quality: A case study of the qt,
vtk, and itk projects,” in Proceedings of the 11th Working
Conference on Mining Software Repositories, 2014, pp.
192–201.

[4] Y. Yu, H. Wang, V. Filkov, P. Devanbu, and B. Vasilescu,
“Wait for it: Determinants of pull request evaluation
latency on GitHub,” in 2015 IEEE/ACM 12th Working
Conference on Mining Software Repositories, May 2015,
pp. 367–371.

[5] I. Steinmacher, I. Wiese, A. P. Chaves, and M. A. Gerosa,
“Why do newcomers abandon open source software
projects?” in 2013 6th International Workshop on Co-
operative and Human Aspects of Software Engineering
(CHASE). IEEE, 2013, pp. 25–32.

[6] M. Wessel, B. M. de Souza, I. Steinmacher, I. S. Wiese,
I. Polato, A. P. Chaves, and M. A. Gerosa, “The power
of bots: Characterizing and understanding bots in OSS
projects,” Proc. ACM Hum.-Comput. Interact., vol. 2,
no. CSCW, pp. 182:1–182:19, Nov. 2018. [Online].
Available: http://doi.acm.org/10.1145/3274451

[7] M.-A. Storey and A. Zagalsky, “Disrupting
developer productivity one bot at a time,” in
Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software
Engineering, ser. FSE 2016. New York, NY,
USA: ACM, 2016, pp. 928–931. [Online]. Available:
http://doi.acm.org/10.1145/2950290.2983989

[8] M. Monperrus, “Explainable software bot contributions:
Case study of automated bug fixes,” in Proceedings
of the 1st International Workshop on Bots in Software
Engineering, ser. BotSE ’19. Piscataway, NJ, USA:
IEEE Press, 2019, pp. 12–15. [Online]. Available:
https://doi.org/10.1109/BotSE.2019.00010

[9] T. Healy, “The unanticipated consequences of technol-
ogy,” Nanotechnology: ethical and social Implications,
pp. 155–173, 2012.

[10] D. D. Woods and E. S. Patterson, “How unexpected
events produce an escalation of cognitive and coordi-
native demands,” PA Hancock, & PA Desmond, Stress,
workload, and fatigue. Mahwah, NJ: L. Erlbaum, 2001.

[11] K. Mulder, “Impact of new technologies: how to assess
the intended and unintended effects of new technologies,”
Handb. Sustain. Eng.(2013), 2013.

[12] M. Wessel and I. Steinmacher, “The inconvenient side
of software bots on pull requests,” in 2nd International
Workshop on Bots in Software Engineering, ser. BotSE
’20, 2020.

[13] I. Steinmacher, G. Pinto, I. S. Wiese, and M. A.
Gerosa, “Almost there: A study on quasi-contributors
in open source software projects,” in Proceedings
of the 40th International Conference on Software
Engineering, ser. ICSE ’18. New York, NY,
USA: ACM, 2018, pp. 256–266. [Online]. Available:
http://doi.acm.org/10.1145/3180155.3180208

[14] D. L. Thistlethwaite and D. T. Campbell, “Regression-
discontinuity analysis: An alternative to the ex post facto
experiment.” Journal of Educational psychology, vol. 51,
no. 6, p. 309, 1960.

[15] P. Runeson and M. Höst, “Guidelines for conducting and
reporting case study research in software engineering,”
Empirical software engineering, vol. 14, no. 2, p. 131,
2009.

[16] R. K. Yin, “Design and methods,” Case study research,
vol. 3, 2003.

[17] G. Gousios and D. Spinellis, “GHTorrent: GitHub’s data
from a firehose,” in 2012 9th IEEE Working Conference
on Mining Software Repositories (MSR). IEEE, 2012,
pp. 12–21.

[18] Y. Zhao, A. Serebrenik, Y. Zhou, V. Filkov, and
B. Vasilescu, “The impact of continuous integration
on other software development practices: a large-scale
empirical study,” in Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engi-
neering. IEEE Press, 2017, pp. 60–71.

[19] D. Kavaler, A. Trockman, B. Vasilescu, and V. Filkov,
“Tool choice matters: JavaScript quality assurance tools
and usage outcomes in GitHub projects,” in Proceedings
of the 41st International Conference on Software Engi-
neering. IEEE Press, 2019, pp. 476–487.

[20] N. Cassee, B. Vasilescu, and A. Serebrenik, “The silent
helper: the impact of continuous integration on code
reviews,” in 27th IEEE International Conference on
Software Analysis, Evolution and Reengineering. IEEE
Computer Society, 2020.

[21] D. S. Wilks, Statistical methods in the atmospheric
sciences. Academic press, 2011, vol. 100.

[22] J. Romano, J. D. Kromrey, J. Coraggio, and
J. Skowronek, “Appropriate statistics for ordinal
level data: Should we really be using t-test and cohen’sd
for evaluating group differences on the nsse and other
surveys,” in annual meeting of the Florida Association
of Institutional Research, 2006, pp. 1–33.

[23] G. W. Imbens and T. Lemieux, “Regression discontinuity
designs: A guide to practice,” Journal of econometrics,
vol. 142, no. 2, pp. 615–635, 2008.

[24] T. Cook and D. Campbell, Quasi-Experimentation: De-
sign and Analysis Issues for Field Settings. Houghton
Mifflin, 1979.

[25] Y. Benjamini and Y. Hochberg, “Controlling the false
discovery rate: a practical and powerful approach to
multiple testing,” Journal of the Royal statistical society:
series B (Methodological), vol. 57, no. 1, pp. 289–300,
1995.

[26] A. Kuznetsova, P. B. Brockhoff, and R. H. B. Chris-
tensen, “lmertest package: tests in linear mixed effects
models,” Journal of Statistical Software, vol. 82, no. 13,
2017.

[27] A. Gałecki and T. Burzykowski, Linear mixed-effects
models using R: A step-by-step approach. Springer
Science & Business Media, 2013.

[28] S. Nakagawa and H. Schielzeth, “A general and simple
method for obtaining r2 from generalized linear mixed-
effects models,” Methods in ecology and evolution, vol. 4,
no. 2, pp. 133–142, 2013.

[29] S. Sheather, A modern approach to regression with R.
Springer Science & Business Media, 2009.

[30] G. Gousios, M. Pinzger, and A. v. Deursen, “An ex-
ploratory study of the pull-based software development
model,” in Proceedings of the 36th International Confer-
ence on Software Engineering. ACM, 2014, pp. 345–
355.

[31] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social
coding in GitHub: Transparency and collaboration
in an open software repository,” in Proceedings of
the ACM 2012 Conference on Computer Supported
Cooperative Work, ser. CSCW ’12. New York, NY,
USA: ACM, 2012, pp. 1277–1286. [Online]. Available:
http://doi.acm.org/10.1145/2145204.2145396

[32] G. Gousios, M.-A. Storey, and A. Bacchelli, “Work
practices and challenges in pull-based development:
The contributor’s perspective,” in Proceedings of
the 38th International Conference on Software
Engineering, ser. ICSE ’16. New York, NY,
USA: ACM, 2016, pp. 285–296. [Online]. Available:
http://doi.acm.org/10.1145/2884781.2884826

[33] G. Pinto, I. Steinmacher, and M. A. Gerosa, “More
common than you think: An in-depth study of casual
contributors,” in 2016 IEEE 23rd International Confer-

ence on Software Analysis, Evolution, and Reengineering
(SANER), vol. 1. IEEE, 2016, pp. 112–123.

[34] M.-A. Storey, A. Zagalsky, F. F. Filho, L. Singer,
and D. M. German, “How social and communication
channels shape and challenge a participatory culture in
software development,” IEEE Trans. Softw. Eng., vol. 43,
no. 2, pp. 185–204, Feb. 2017. [Online]. Available:
https://doi.org/10.1109/TSE.2016.2584053

[35] C. Lebeuf, M. D. Storey, and A. Zagalsky, “How
software developers mitigate collaboration friction with
chatbots,” in Talking with Conversational Agents in
Collaborative Action Workshop at the 20th ACM
conference on Computer-Supported Cooperative Work
and Social Computing, ser. CSCW ’17, 2017. [Online].
Available: http://arxiv.org/abs/1702.07011

[36] C. Lebeuf, A. Zagalsky, M. Foucault, and M.-
A. Storey, “Defining and classifying software bots:
A faceted taxonomy,” in Proceedings of the
1st International Workshop on Bots in Software
Engineering, ser. BotSE ’19. Piscataway, NJ, USA:
IEEE Press, 2019, pp. 1–6. [Online]. Available:
https://doi.org/10.1109/BotSE.2019.00008

[37] C. Lebeuf, M.-A. Storey, and A. Zagalsky, “Software
bots,” IEEE Software, vol. 35, no. 1, pp. 18–23, 2018.

[38] E. Paikari and A. van der Hoek, “A framework
for understanding chatbots and their future,” in
Proceedings of the 11th International Workshop
on Cooperative and Human Aspects of Software
Engineering, ser. CHASE ’18. New York, NY,
USA: ACM, 2018, pp. 13–16. [Online]. Available:
http://doi.acm.org/10.1145/3195836.3195859

[39] M. Wessel, A. Serebrenik, I. Wiese, I. Steinmacher, and
M. A. Gerosa, “What to expect from code review bots on
GitHub? a survey with OSS maintainers,” in SBES 2020
- Ideias Inovadoras e Resultados Emergentes, oct 2020.

[40] L. F. Dias, I. Steinmacher, G. Pinto, D. A. D. Costa, and
M. Gerosa, “How does the shift to GitHub impact project
collaboration?” in 2016 IEEE International Conference
on Software Maintenance and Evolution (ICSME), Oct
2016, pp. 473–477.

[41] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer,
D. M. German, and D. Damian, “The promises
and perils of mining GitHub,” in Proceedings of
the 11th Working Conference on Mining Software
Repositories, ser. MSR 2014. New York, NY,
USA: ACM, 2014, pp. 92–101. [Online]. Available:
http://doi.acm.org/10.1145/2597073.2597074

