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a b s t r a c t 

Background : Co-change prediction makes developers aware of which artifacts will change together with 

the artifact they are working on. In the past, researchers relied on structural analysis to build predic- 

tion models. More recently, hybrid approaches relying on historical information and textual analysis have 

been proposed. Despite the advances in the area, software developers still do not use these approaches 

widely, presumably because of the number of false recommendations. We conjecture that the contextual 

information of software changes collected from issues, developers’ communication, and commit metadata 

captures the change patterns of software artifacts and can improve the prediction models. Objective : Our 

goal is to develop more accurate co-change prediction models by using contextual information from soft- 

ware changes. Method : We selected pairs of files based on relevant association rules and built a predic- 

tion model for each pair relying on their associated contextual information. We evaluated our approach 

on two open source projects, namely Apache CXF and Derby. Besides calculating model accuracy met- 

rics, we also performed a feature selection analysis to identify the best predictors when characterizing 

co-changes and to reduce overfitting. Results : Our models presented low rates of false negatives ( ∼8% 

average rate) and false positives ( ∼11% average rate). We obtained prediction models with AUC values 

ranging from 0.89 to 1.00 and our models outperformed association rules, our baseline model, when we 

compared their precision values. Commit-related metrics were the most frequently selected ones for both 

projects. On average, 6 out of 23 metrics were necessary to build the classifiers. Conclusions : Prediction 

models based on contextual information from software changes are accurate and, consequently, they can 

be used to support software maintenance and evolution, warning developers when they miss relevant 

artifacts while performing a software change. 

© 2016 Elsevier Inc. All rights reserved. 
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1. Introduction 

Software systems are built upon artifacts that depend on one

another. As a result, some artifacts evolve together throughout

software development ( Canfora et al., 2014 ). Co-change prediction

has been used to support developers while they work on change

requests ( Bohner and Arnold, 1996; Zimmermann et al., 2005 ). For

example, if a developer modifies a file without knowing that this

file should be changed along with another file (e.g., a configuration

file), the change will be incomplete, which might end up introduc-

ing defects ( Hassan and Holt, 2004 ). Predicting co-changes can be
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seful to avoid incomplete changes, notifying developers about ar-

ifacts that are likely to change together. 

Previous research has proposed different approaches to predict

o-changes based on dynamic ( Orso et al., 2004 ) and static analy-

is ( Briand et al., 1999 ), frequent past changes and change coupling

nalysis ( Canfora et al., 2010; Gall et al., 1998; Ying et al., 2004;

immermann et al., 2005 ), and conceptual analysis ( Gethers and

oshyvanyk, 2010; Revelle et al., 2011 ). Other approaches combined

hese different techniques into hybrid methods ( Dit et al., 2014;

ethers et al., 2012; Hassan and Holt, 2004; Kagdi et al., 2013;

alik and Hassan, 2008 ). Although significant progress has been

ade, these approaches still suffer from low accuracy. In practice,

his means these approaches would both issue several false recom-

endations and miss many relevant items. 

Given this challenge, a possible solution to improve the ac-

uracy of co-change prediction is to use information sources un-

http://dx.doi.org/10.1016/j.jss.2016.07.016
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xplored so far. We conjecture that using contextual information

rom software changes in prediction models – something not done

y current approaches – can reduce the number of false recom-

endations and improve the effectiveness (e.g., accuracy) of co-

hange prediction. 

Our motivation to use contextual information is related to the

act that software artifacts are changed for different reasons ( Oliva

nd Gerosa, 2015a; Oliva et al., 2013 ) and the context involved in

hese changes can better describe the conditions in which two ar-

ifacts are more prone to co-change. For this purpose, we built pre-

iction models for each pair of artifacts using contextual informa-

ion from one release to predict if the two artifacts would change

ogether in issues of the consecutive release. 

To illustrate our approach, consider the following concrete ex-

mple from our analysis. For the release 2.0 of the CXF project,

he files JMSConduit.java and JMSOldConfigHolder.java changed to-

ether in 19 commits (in 17 different issues). In another 26 com-

its, the former did not change together with the latter. Collecting

ontextual information for each commit made to JMSConduit.java

or release 2.0, we were able to predict, for release 2.1, 15 co-

hanges between both files and 18 commits in which the former

id not change together with the latter. In only two commits the

redictions were wrong. For this pair, the most important contex-

ual information was the number of source code lines changed in

MSConduit.java , the number of words used to describe the issues,

nd who reported each issue. 

In summary, our goal in this paper was to investigate novel

ources of information to improve co-change prediction, focusing

n traces of contextual information produced during software evo-

ution. Therefore, the central elements of our approach comprise

uman- and process-centric contextual information sources (e.g.,

ssue comments, developers’ communication network, commit 

ractices, and historical information about artifact changes), rather

han language/artifact-centric information sources (e.g., static and

ynamic dependencies, such as call graphs). 

Our hypothesis is that co-changes can be better predicted us-

ng socio-technical context instead of only using different types of

oupling among artifacts, since developers need to interpret the re-

orted problem, choose artifacts to modify, and collaborate with

ther developers ( De Souza et al., 2007; Schröter et al., 2012; Tsay

t al., 2014; Wolf et al., 2009b; Zanetti, 2012 ). We set out to in-

estigate the following central question: Can contextual information

xtracted from issues, developers’ communication, and commit meta-

ata improve the accuracy of co-change prediction? 

By analyzing two open source projects, Apache Derby (11 re-

eases) and Apache CXF (8 releases), we addressed the following

wo research questions: 

(RQ1) Can we accurately predict co-changes between two

rtifacts using contextual information from issues, developers’

ommunication, and commit metadata? 

Previous work has shown that prediction models can be built to

redict co-change occurrence ( Zimmermann et al., 2005 ). However,

e conjecture that such models can be improved by using con-

extual information from issues, developers’ communication, and

ommit metadata. Models that bring fewer false positives and false

egatives are necessary to avoid misleading alerts to developers. 

(RQ2) What are the most important kinds of contextual in-

ormation when predicting co-changes? 

Knowing which kind of contextual information is the most im-

ortant indicator of co-change can help practitioners during soft-

are evolution and maintenance tasks. From a practical perspec-

ive, selecting the best subset of metrics can be useful to reduce

he effort to create a prediction model, since less data needs to be

ollected and fewer metrics need to be computed. 

We relied on the concept of change coupling to select pairs of

les to evaluate ( Oliva and Gerosa, 2015b ). We compared our pre-
iction model to an association rule model. The association rule

odel is widely used in the literature and can be considered a

aseline model ( Ball et al., 1997; Ceccarelli et al., 2010; Dit et al.,

014; Ying et al., 2004; Zimmermann et al., 2005 ). 

Overall, we found that contextual information extracted from

ssues, developers’ communication, and commit metadata enables

 highly accurate prediction of co-changes. We observed that the

verage rates of false positives and false negatives were lower than

1% and 8% respectively. These results suggest that our model can

e leveraged for the development of novel co-change prediction

ools to support software evolution and maintenance. 

The remainder of the paper is organized as follows.

ection 2 presents a discussion about contextual information

rom software changes. Section 3 describes our case study design,

hile Section 4 presents the results with respect to our two

esearch questions. Section 5 presents related work. Section 6 dis-

usses the results and their implications on practice and research.

inally, Section 7 presents the threats to the validity of our study,

nd Section 8 presents conclusions, limitations, and our plans for

uture work. 

. Contextual information from software changes 

According to Dey et al. (2001) , context is “any information that

an be used to characterize the situation of entities .” To Brézillon and

olleagues (2004) , context represents “a complex description of

hared knowledge about physical, social, historical, or other circum-

tances within which an action or an event occurs .”

In line with these definitions of context, we conjecture that

oftware changes can be characterized by the circumstances in

hich they occur. In our study, these circumstances encompass the

eta-data of the change request, communication that occurs in the

ssue tracker system, and the commit meta-data. In other words,

hese three sources of information represent our notion of context

or software changes (and co-changes). 

Many authors have indicated that software changes are influ-

nced by socio-technical aspects ( Bettenburg and Hassan, 2012;

e Santana et al., 2013; Kwan et al., 2012; Leano et al., 2014;

chröter et al., 2012; Tsay et al., 2014; Zanetti, 2012 ). In fact, we

onsider these socio-technical aspects to be contextual information

f software changes, since developers’ communication and collabo-

ation revolve around software change requests (issues). Hence, in

his paper we investigate three sources of contextual information,

amely: issues, developers’ communication, and commits. It is im-

ortant to highlight that we are not claiming that contextual in-

ormation can be the cause of co-changes, as we are just exploring

he prediction power of these kinds of information. 

Table 1 presents the definition and the rationale for picking

ach contextual metric used in this work. We also grouped each

etric into a contextual dimension. In the results section, we dis-

uss also the performance of each contextual dimension, since

ome metrics sources might not be available in some projects. This

et of metric was inspired by a systematic mapping we previously

onducted ( Wiese et al., 2014a ) and by systematic reviews on pre-

iction models applied in software engineering ( Hall et al., 2012;

adjenovi ́c et al., 2013 ). 

In the next Section, we present the descriptive statistics of the

ontextual information and we also provide details about how the

ontextual information was used to build the prediction models. 

. Case study design 

In this section, we present the studied software projects, and

he data extraction and analysis approaches. In Fig. 1 we present

n overview of the data extraction and prediction/analysis ap-

roaches. In the data extraction phase we present the way we
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Table 1 

Contextual information dimensions and their metrics. 

Contextual Metric name Type Description Rationale 

dimension 

Issue Context 

(IC) 

Issue type String Type of an issue, chosen when the issue was opened. 

The values can be: Bug, Improvement, New Task, 

Documentation, Infrastructure, etc. 

Changes resolve issues of different types. Some 

co-changes are more likely to happen when fixing a 

bug, while others can appear when implementing 

new features ( Zimmermann et al., 2012 ). 

Was issue 

reopened? 

Boolean If the status of an issue was ever “reopened”, then we 

set this value to “TRUE”

An issue may be reopened especially when the change 

request is complex and the number of files involved 

to fix the issue is high, thus some specific 

co-changes may appear ( Shihab et al., 2010 ). 

Issue assignee String The name of the developer assigned to resolve an issue The assignee can work on issues related to specific 

parts of the software. In this sense, assignees can be 

more prone to submit patches that change the same 

set of files ( Zhang et al., 2013 ). 

Issue reporter String The name of the stakeholder that reported the issue An issue reported by the same reporter might involve 

the same files, since the reporter might be interested 

in some specific requirements ( Zimmermann et al., 

2012 ). 

Communication 

Context (CC) 

# of Issue 

comments 

Numeric Number of comments posted to an issue The communication dimension involves aspects from 

discussion around issues. Patterns of this discussion 

can indicate when files change together. For 

example, some co-changes can happen in issues with 

more discussion, more messages, and more words 

(wordiness) because the issue is difficult to 

understand, or the files necessary to fix this issue 

are more complex to understand ( Bettenburg and 

Hassan, 2012 ). 

# of Issue 

discussants 

Numeric Number of distinct stakeholders that commented on an 

issue 

Issue wordiness Numeric Amount of words in the discussion. We only 

considered words with more than 2 characters. 

# of Issue 

developer 

commenters 

Numeric The number of distinct developers that committed the 

file in a previous release and comment on an issue 

in which the file changed in the current release 

Developer’s 

Role in Com- 

munication 

(DRC) ∗∗

Betweenness 

centrality ∗
Numeric Number of times a node acts as a bridge along the 

shortest path. We used the median of betweenness 

among all developers that commented on an issue in 

which the pair of files changed 

Centrality measures can capture developers’ roles in 

the communication. We hypothesize that developers 

involved in a discussion have different values of 

Betweenness and Closeness, indicating that the roles 

can be used to predict co-changes. Previous work 

has shown the importance of these metrics in other 

software engineering problems ( Bicer et al., 2011; 

Bird et al., 2009; Wolf et al., 2009a ). 

Closeness 

centrality ∗
Numeric Closeness can be regarded as a measure of how long 

something will take to spread in a network. We used 

the median of closeness among all developers that 

comment on an issue in which the pair of files 

changed 

Structural Hole 

of Communi- 

cation 

(SH) ∗∗

Constraint ∗ Numeric Measures the lack of holes among neighbors. This 

measure is based on the degree of exclusive 

connections. Low values indicate that there are few 

alternatives to access a single neighbor 

Structural hole metrics denote gaps between nodes in 

a social network and represent that people on either 

side of the hole have access to different flows of 

information, indicating that there is a diversity of 

information flow in the network. In previous work 

( Wiese et al., 2014c ), we successfully used structural 

holes to identify recurrent change couplings. In this 

sense, these metrics represent a way to analyze the 

communication network revolving around the 

software co-changes. 

Hierarchy ∗ Numeric Measures the constraint to a single node. High values 

indicate that the constraint is concentrated in a 

single node neighbor 

Effective Size ∗ Numeric Measures the portion of non-redundant neighbors of a 

node. High values represent that many nodes among 

the node’s neighbors are not redundant 

Efficiency ∗ Numeric Efficiency normalizes the effective size by the number 

of node neighbors. High values show that many 

neighbors are non-redundant 

Communication 

Network 

Properties 

(NP) ∗∗

Size ∗ Numeric The number of nodes in the network Based on Conway’s Law ( Conway, 1968; Kwan et al., 

2012 ), which describes the relation between 

communication and software architecture, 

communication network properties may predict 

co-changes. 

Ties ∗ Numeric Number of edges in the network 

Diameter ∗ Numeric The diameter is defined to be the maximum, over all 

pairs of vertices ( u,v) , of the length of the shortest 

path from u to v 

Density ∗ Numeric Density is calculated as the percentage of the existing 

connections to all possible connections in the 

network 

Commit 

Context 

(ComC) 

Committer String The name of the developer that committed the file Developers can contribute to specific parts of the 

software project and they can always commit the 

same files. This indicator can be useful to identify 

when two files are committed together by the same 

set of committers ( Bird et al., 2011; Mockus, 2010 ). 

Is same 

ownership? 

Boolean The ownership of a file is computed in a previous 

release. We ranked the developers per number of 

commits for each file. The Top 10% of developers in 

this ranked list were considered “owners.” We set 

the value to “TRUE” if the actual committer is part of 

the ranked ownership list 

# of lines of 

code added 

Numeric Sum of lines of code added in a commit Code churn or a specific operation (add or delete) on 

lines of codes can indicate specific aspects for 

different co-changes ( D’Ambros et al., 2012; Moser 

et al., 2008; Rahman and Devanbu, 2013 ). 
# of lines of 

code deleted 

Numeric Sum of lines of code deleted in a commit 

Code Churn Numeric Sum of number of lines added and deleted 

∗ Details about how to implement the SNA metrics can be found in the related papers cited ( Bettenburg and Hassan, 2012; Bird et al., 2009; Meneely et al., 2008; Wolf 

et al., 2009a ), or in ( Wasserman and Faust, 1994 ). To compute the SNA metrics we used the JUNG Java framework: http://jung.sourceforge.net/ . 
∗∗ To compute the communication network, we used each developer as node and each message as arc. More details can be found in our previous work ( Wiese et al., 

2014b , 2014c ) 

http://jung.sourceforge.net/
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Fig. 1. An overview of our data extraction and prediction/analysis approaches. 

Table 2 

Characteristics of the studied projects. 

Project Apache CXF Apache Derby 

General information Domain Web services framework Database 

Period of analysis 2007-08-30 to 2015-02-19 2004-10-04 to 2015-01-21 

Release cycle (average time in days) (Min-Max) 992 ± 232 (stdev) (699-1555) 2501 ± 884 (stdev) (469–3266) 

Release versions studied 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, and 

3.0 

10.1, 10.2, 10.3, 10.4, 10.5, 10.6, 10.7, 

10.8, 10.9, 10.10, 10.11 and 10.12 

Data extraction phase 

summarization 

Number of fixed issues associated with a studied 

version 

3095 of 6175 issues collected 3459 of 6787 issues collected 

Number of commits associated with an issue 8975 of 20,288 commits collected 8386 of 10,701 commits collected 

Average of fixed issues per version (Min–Max) 657 ± 201(stdev) (215–950) 404 ± 222 (stdev) (31–808) 

Average of commits per version (Min–Max) 1860 ± 815 (stdev) (344–3025) 1172 ± 603 (stdev) (54–2213) 

Ratio of issues analyzed per total of fixed issues 19.06% (590 of 3095) 20.21% (699 of 3459) 

Ratio of commits analyzed per total of commits 19.35% (1737 of 8975) 20.24% (1697 of 8386) 

Relevant pairs of files 

summarization 

Number of distinct pairs of files analyzed by project 58 relevant Pairs of files 90 relevant Pairs of files 

Total of co-changes Java-Java, Java-Test, Java-XML 155, 17, 17 188, 44, 35 

Total of co-changes Test-Test, Test-XML 1, 0 25, 7 

Total of co-changes Xml-Xml 10 1 

Avg., min. and max. of support per version 2% of Issues ± Stdev (1%) (1–4%) 3% of Issues ± Stdev (1%) (2%-7%) 

Avg., min. and max. of confidence per version 78% ± Stdev (20%) (71%–85%) 74% ± Stdev (22%) (58%–99%) 

Number of defects associated with studied co-changes 22.37% (132 of 590 Issues) 22.32% (156 of 699 Issues) 
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ollected and preprocessed the data, and how we found relevant

o-changes. In the prediction/analysis phase, we describe how we

sed the contextual information to build the prediction models

nd how we evaluated these models. 

.1. Studied software projects 

In order to address our research questions, we studied two

pache projects: CXF and Derby. Apache CXF is an open source

eb services framework. CXF helps developers to build and de-

elop services using frontend programming APIs, like JAX-WS and

AX-RS. Apache Derby is an open source relational database imple-

ented entirely in Java based on the JDBC protocol and the SQL

anguage. 

Table 2 provides an overview of the studied systems. The table

s split in three parts. The first part describes the project charac-

eristics in terms of domain, period of analysis, the average num-

er of days of each release cycle, and the releases that we applied

ur approach to. The second and third parts show results from

he data extraction phase (more details in the next section). Both

rojects were implemented in the Java language. Even though both

rojects are Apache projects, it is important to mention that they

ave different developers who follow different practices to change

he code. Currently, Derby 1 has decreased the amount of commits

ubmitted. Conversely, CXF 2 has increased the amount of commits

nd new contributors to the project according to OpenHub.net. 

Table 3 presents the descriptive statistics for each numeric met-

ic in all releases analyzed for each project. We observe differ-

nces between the two projects with regards to each contextual

imension presented in Table 1 . An analysis of median values for
1 https://www.openhub.net/p/cxf . 
2 https://www.openhub.net/p/derby . 

t  

r  

t  

d

he metrics from the CC, DRC, SH and NP dimensions showed that

pache CXF presented fewer social interactions. For example, the

edian of issue wordiness in Derby was 8 times higher than CXF’s

edian. 

In Apache Derby, developers and users participated more in the

iscussions (higher values of # of issue discussants and # of issue

eveloper commenters ). Because of this, the SNA metrics computed

n the DRC, SH and NP dimensions were also higher in Derby than

n CXF. Considering software changes, the median of lines of code

emoved and code churn in CXF were higher than in Derby. How-

ver, the median of lines of code added in Derby was higher than

n CXF. This shows two distinct evolution patterns: while Derby

ad more code added during its evolution, CXF’s changes often in-

olved removing and modifying lines of code. 

Hence, the studied systems are of different sizes and domains.

ome of their metric values were substantially different, revealing

istinct evolution patterns. 

.2. Data extraction phase 

We used two data sources to conduct this study: Issue Track-

ng Systems (ITS) and Version Control Systems (VCS). An issue is a

evelopment task, such as a bug report or a new feature request.

everal commits may be necessary to close an issue. We collected

he logs containing all the commits made by developers to an is-

ue, and aggregated them into change transactions. 

Issues are often logged in an Issue Tracking System, like Bugzilla

r JIRA, and have a unique identifier (ID). This ID helps to identify

he commits associated with an issue. We extracted data related to

he issues of the studied software projects in order to address our

esearch questions. As can be observed in Fig. 1 , the data extrac-

ion phase (DE) was split into 4 steps. In the following, we briefly

escribe each of these steps. 

https://www.openhub.net/p/cxf
https://www.openhub.net/p/derby
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Table 3 

The descriptive statistics for the numeric metrics listed in Table 1. . 

Dimension Metric Apache CXF Apache Derby 

Min. Max. Avg. Std. Sum Median Min. Max. Avg. Std. Sum Median 

CC # of issue comments 0 47 2.72 4.74 2238 1 0 175 15.16 17.53 19,680 10 

# of issue discussants 0 6 1.11 1.13 513 1 0 13 3.38 1.90 4386 3 

Issue wordiness 0 10,705 365.31 801.94 300,654 122 8 24,132 1539.47 2318.47 1998,231 806 

# of issue developer 

commenters 

0 4 0.62 0.69 513 1 0 7 1.64 1.10 2129 2 

DRC Betweenness centrality 0 1.95 0.03 0.16 21.28 0 0 7.3 0.37 0.76 482.2 0 

Closeness centrality 0 1 0.15 0.26 126.51 0 0 1 0.26 0.24 335 0.2 

SH Constraint 0 1.26 0.21 0.4 175.65 0 0 1.62 0.61 0.42 792.57 0.76 

Hierarchy 0 1 0.32 0.45 264.39 0 0 1 0.54 0.33 696.34 0.51 

Effective size 0 4.32 0.65 0.93 534 0 0 7.67 2.21 1.37 2865.44 2 

Efficiency 0 1 0.34 0.45 280.5 0 0 1 0.6 0.31 782.61 0.64 

NP Size 0 6 1.11 1.13 911 1 0 13 3.38 1.9 4386 3 

Ties 0 19 1.05 2.24 866 0 0 103 8.58 11.77 11,143 5 

Diameter 0 3 0.42 0.57 342 0 0 5 1.27 0.73 1642 1 

Density 0.5 1 0.91 0.18 751.85 1 0.5 1 0.82 0.18 1059.74 0.83 

ComC # of lines of code 

added 

0 1 0.64 0.29 6672.28 0.67 0 1 0.72 0.3 8304.28 0.81 

# of lines of code 

deleted 

0 1 0.3 0.25 3106.72 0.29 0 1 0.28 0.3 3165.72 0.18 

Code churn 0 2836 50.41 121.75 522,982 20 0 13,944 53.61 260.91 616,871 13 

Proj – project, Rel – release versions, CC – communication context, DRC – developer role communication, NP – network properties , ComC – commit context. 
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( DE Step 1) Commit and issue extraction. We used the CVS-

AnalY 

3 tool to collect and parse commits from the VCS. We ex-

tracted all commits, including commit author, timestamps, and

commit message metadata. We used Bicho 4 to parse and collect

all issues from JIRA. 

(DE Step 2) Transaction aggregation. An issue can be resolved

after several commits. To avoid missing cases of co-changes, we

grouped commits that addressed the same issue. To link commits

to issues, we looked for identifiers of issues (issue number) in the

commit message. Apache projects usually adopt the following pat-

tern [ProjectName-IssueNumber] to indicate that a specific commit

needed to be applied to fix an issue. 

For example, consider the issue 4850 from the JIRA repository

of Apache CXF. 5 We could link it to 4 commits using the pat-

tern in the commit message. One of the commit messages was:

“[CXF-4850] add WebMethod (operationName = ) to the inherit method

to avoid name conflict in wsdl ”. For Derby, a very similar pattern is

used. The only difference is that developers do not use the brack-

ets to highlight the project and issue number. An example is the

message of the commit 6 submitted to fix issue LUCENE-4850 7 in

Derby: “LUCENE-4850: Upgrade Clover version to 3.1.10 (to allow Java

7) ”. 

We also checked whether the commits were made while the

issue was carrying the status open and moved to the status fixed

afterwards. Commits made to issues in any other status (e.g in-

valid, duplicated, won’t fix, not a problem and unresolved) were

dismissed since this source code was not integrated in the project.

We found that 470 commits were made in 244 issues with a sta-

tus other than open in Derby, and 272 commits in 106 issues in

CXF. We can conclude that the number of commits and issues dis-

carded cannot affect the training and test sets significantly, since

we found less than 6% of the commits collected in issues with a

status other than open in the whole history of both projects. 

(DE Step 3) Finding strongly coupled pairs of files. To select

the pairs of files, we mined the change history of each release of
3 https://github.com/MetricsGrimoire/CVSAnalY . 
4 https://github.com/MetricsGrimoire/Bicho . 
5 https://issues.apache.org/jira/browse/CXF-4850 . 
6 http://svn.apache.org/viewvc?view=revision&revision=1457809 . 
7 https://issues.apache.org/jira/browse/LUCENE-4850 . 

 

o  
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a  

s  
ach project. We considered just the changes (commits) submitted

s patches to issues. In cases where an issue had more than one

ommit associated with it, we grouped all the commits into one

ingle change transaction by taking the union of the files in the

hange-sets. After this preprocessing stage, we selected the pairs

f files by picking the top 25 most relevant association rules. In

he following, we describe what association rules are and how we

alculated their relevance. 

An association rule is an implication of the form I ⇒ J, where

 and J are two disjoint sets of items (a.k.a., item sets). A relevant

ule I ⇒ J means that when I occurs, J is likely to co-occur. In other

ords, it implies that transactions that contain I are likely to con-

ain J as well. In the scope of this study, a rule I ⇒ J means that

 is change-coupled to I. We also consider that I and J are file sets

omposed by one single file, where I = {f i } and J = {f j } and f i � =
 j . The relevance of association rules can be measured according

o several metrics. In this study, we employed the metrics of sup-

ort and confidence , which have been extensively used in previous

oftware Engineering research studies ( Canfora et al., 2010; Kagdi

t al., 2013; Zimmermann et al., 2005 ). 

The support of a rule r = I ⇒ J corresponds to the number

f transactions that contain both I and J. Therefore, support deter-

ines how evident a rule is. In turn, confidence is often interpreted

s the strength of a rule. More specifically, given the same rule r, its

onfidence refers to the fraction of transactions containing I where

 also appears. Relevant rules thus have high values for support

nd confidence. In the scope of this study, support and confidence

ere calculated as follows: 

uppor t ( r ) = support ( I ⇒ J ) 

= support ( I ∪ J ) = support 
({ f i } ∪ 

{
f j 
})

= the number of transactions that contain both f i and f j 
 on f idenc e ( r ) = con f id ence ( I ⇒ J ) 

= 

support ( I ⇒ J ) 

support(I) 
= 

support ( I ∪ J ) 

support(I) 
= 

support 
({ f i } ∪ 

{
f j 
})

support ( { f i } ) 
= fraction of transactions containing f i where f j also appears 

For each release, we calculated all possible rules involving pairs

f files. Afterward, for each pair of rules < r 1 = I ⇒ J, r 2 = J ⇒ I

 , we discarded the one with lower confidence (their support is

lways the same). Next, we sorted all remaining rules according to

upport and used confidence as a tiebreaker. We then selected the

https://github.com/MetricsGrimoire/CVSAnalY
https://github.com/MetricsGrimoire/Bicho
https://issues.apache.org/jira/browse/CXF-4850
http://svn.apache.org/viewvc?view=revision&revision=1457809
https://issues.apache.org/jira/browse/LUCENE-4850
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Table 4 

An example of fragment of training/test set. 

Pair of files Commit ID # Issue Set of metrics from contextual information (issues, developers’ communication and commit) Class 

JMSConduit.java –

JMSOldConfigHolder.java 

1 1760 Issue Type = Bug, Issue Reopened = 0, Assignee = ffang, Reporter = ffang, # of commenters = 3, 

# of dev commenters = 2, wordiness = 438…

0 

JMSConduit.java –

JMSOldConfigHolder.java 

13 1773 Issue Type = Improvement, Issue Reopened = 0, Assignee = njiang, Reporter = 

chris@die-schneider.net, # of commenters = 4, # of dev commenters = 3„ wordiness = 576…

0 

JMSConduit.java –

JMSOldConfigHolder.java 

1450 1832 Issue Type = Improvement, Issue Reopened = 0, Assignee = chris@die-schneider.net, Reporter = 

chris@die-schneider.net, # of commenters = 3, # of dev commenters = 2, wordiness = 764…

1 

JMSConduit.java –

JMSOldConfigHolder.java 

1700 2207 Issue Type = Bug, Issue Reopened = 0, Assignee = njiang, Reporter = liucong, # of commenters = 

2, # of dev commenters = 1, wordiness = 311…

0 

JMSConduit.java –

JMSOldConfigHolder.java 

1701 2207 Issue Type = Bug, Issue Reopened = 0, Assignee = njiang, Reporter = liucong, # of commenters = 

2, # of dev commenters = 1, wordiness = 311…

0 

JMSConduit.java –

JMSOldConfigHolder.java 

2115 2316 Issue Type = Improvement, Issue Reopened = 0, Assignee = dkulp, Reporter = marat, # of 

commenters = 1, # of dev commenters = 0, wordiness = 43…

1 

JMSConduit.java –

JMSOldConfigHolder.java 

… … … ... 
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op 25 rules, which we deemed as the pairs of files to be analyzed

n that release. 

In Table 2 we show details about the pairs of files selected by

ssociation rules. For example, in the CXF project, the rules com-

rise 58 unique pairs of files from 9 releases. In Derby, 90 pair of

les were selected from 12 releases. Applying the prediction mod-

ls to these co-changes we covered almost 22% of the defects for

ach project and almost 20% of the commits made in the projects.

ur main reason to study the strongly coupled pairs of files is that

e want to compare the models based on contextual information

ith association rules. According to Zimmermann et al. (2005) as-

ociation rules can be useful to recommend co-changes when they

ave high values of confidence and support values of 2% for the

ransactions analyzed. A similar justification can be also found in

avota et al. (2013) . 

In Table 2 we also reported that the pairs of files used in CXF

ccurred in an average of 2% of the issues, and 3% in Derby consid-

ring the support value, and, we obtained rules with at least, 70%

f confidence on average. For this reason, we decided to pick only

he top 25 most relevant association rules in each release analyzed.

(DE Step 4) Co-change summarizer. We recovered all issues

nd commits from each pair of files selected in the previous step.

his process was followed for each release version. In this step,

e computed the metrics for contextual information of issue re-

orts, developers’ communication, and commit metadata for each

o-change found in our list of the 25 most relevant association

ules. 

Table 4 presents an example of the metrics computed for each

o-change. We collected the metrics to build the training and test

ets when the issues were carrying the status closed/fixed . The col-

mn "Pair of files" indicates the pair of files analyzed. In this ex-

mple, file I (JMSConduit.java) is the Left File, and file J (JMSOld-

onfigHolder.java) is the Right File identified by the relevant asso-

iation rule. As we mentioned, all metrics were computed to file I.

n this sense, the set of metrics was extracted from each commit

nd issue (indicated in columns “Commit” and “Issue”) when the

le I (JMSConduit.java) was changed. 

Tagging co-changes. In order to assess the co-change predic-

ion, we built training and test sets to compare the results of our

pproach with the actual changes that occurred in each project. To

ag each co-change, we looked at the Right File. 

Each commit containing file I (Left File) was checked, and when

he commit propagated changes to file J (Right File), we assigned

he commit to class “1 ′′ . Otherwise, we assigned it to class “0 ′′ 
o indicate that only file I was changed in a certain issue. Hence,

he value 1 indicates that the Left File (file I) and the Right File

file J) were committed together. The lines of Table 4 indicate that
le I had 6 commits in 5 distinct issues. Rows 3 and 6 show the 
a  
xamples of change propagation between files I and J (Class col-

mn = 1). 

.3. Data analysis phase (prediction task) 

On the right-hand side of Fig. 1 , we present an overview of the

ata Analysis Phase. In this phase, we performed and evaluated the

rediction. Classifiers were built using the training set, and their

erformance was evaluated on issues in the test set. We briefly

escribe each step in our analysis below. 

(DA Step 1) Classifier construction. To build the classifiers we

eed to use a training set. For each release of Apache CXF and

erby, we generate a .csv file similar to Table 4 to use as training

r test set. The release version N is used as training set and the

elease version N + 1 is used as test set. We run the random forest

echnique to construct classifiers to predict the co-changes. 

Considering the advantages, Random forests are frequently used

n classification problems since the models are fast, scalable, and

t is not necessary to worry about tuning a number of parame-

ers like in other machine learning algorithms. The models can be

sed with large and small datasets, and also can handle problems

f missing data ( Breiman, 2001 ). 

The random forest technique was already used in many differ-

nt areas like biology/medicine, pattern recognition, traffic control,

mage classification ( Breiman, 2001 ), and in software engineering

 McIntosh et al., 2014 ). Since we did not know the size of the

rojects that we could apply our approach to, how much training

ata all pairs of files identified in those projects, we chose the ran-

om forest algorithm to build our models. 

The random forest technique builds a large number of decision

rees at training time using a random subset of all the attributes.

n our study, these attributes correspond to the contextual infor-

ation from issue report, issue communication, and commit meta-

ata. 

The technique performs a random split to ensure that all of the

rees have a low correlation between them ( Breiman, 2001 ). Using

n aggregation of votes from all trees, the random forest technique

ecides whether the final score is higher than a chosen threshold

o determine if a co-change will be predicted as true or not. 

We construct classifiers using all metrics described in Table 1 .

n order to check which predictor has the best performance, we

un a feature selection algorithm combined with random forest

lassifiers. We implement our classifiers using the R package Caret

 Kuhn, 2008 ) . 

Feature selection analysis: We performed the feature selec-

ion analysis using the Recursive Feature Selection (RFE), also using

he Caret R package ( Kuhn, 2008 ) . The RFE function implements

 backward selection of predictors based on predictor importance
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Fig. 2. Classifier evaluation steps. 

Table 5 

The confusion matrix. 

Predict as Observed as 

changed Not changed 

Changed TP (true positive) FP (false positive) 

Not changed FN (false negative) TN (false positive) 
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ranking. The predictors were ranked and the less important ones

were sequentially eliminated prior to modeling. 

The RFE algorithm can be used for predictor selection, model

fitting, and performance evaluation. We used the training data

with the RFE algorithm to select the predictors. According to

Kuhn (2008) the RFE algorithm is useful to improve the model in-

terpretability, decreasing the training times and enhancing gener-

alization by reducing overfitting . 

(DA Step 2) Classifier evaluation. To evaluate our classifier,

we used training and test sets generated for each release of each

project studied. The steps are summarized in Fig. 2. 

Basically, for each release, we found the relevant association

rules and we selected the top 25 relevant rules. Each one of these

25 rules is related to a pair of files that was analyzed. Each pair

of files has at least one co-change in the analyzed release. Using

data from one release we built a training set. In the consecutive

releases, we verified if there was at least one co-change between

the pair of files and then we built the test set to make the predic-

tions. 

A concrete example. The pair of files JMSConduit.java and JM-

SOldConfigHolder.java was found in our list of 25 most relevant as-

sociation rules in release 2.0. We found at least a single co-change

between these two files in the consecutive release (2.1), thus, we

built a test set for release 2.1 as a .csv file – similar to Table 4 –

and used it to make the predictions and evaluate our model. 

After the evaluation, we moved to the next release (2.2) to find

if there is at least one co-change between JMSConduit.java and JM-

SOldConfigHolder.java. If it is true, we used the data from release

2.1 as training set and the data from release 2.2 as test set. If it

is false, we discarded the release as test set. For example, in this

case, as in the release 2.3 we did not find these files being changed

together, we stopped to create training and test sets for JMSCon-

duit.java and JMSOldConfigHolder.java. 

The performance of the classifier was measured in terms of re-

call, precision, area under the curve (AUC) and Mathews correla-

tion coefficient (MCC). To compute these metrics it is necessary to

use a confusion matrix, as shown in Table 5. 

Recall (R): We calculated recall to identify the proportion of in-

stances that the model nominated for changing together and that

actually changed. To obtain the recall value, we used the following

formula: TP/TP + FN. 
Precision (P): We measured precision to identify the rate of co-

hanges that have actually changed together. To obtain the preci-

ion value, we used the following formula: TP/TP + FP. 

F-measure (F1): is the harmonic mean of precision and recall.

e used the following formula: 2 ∗(precision 

∗recall)/(precision +
ecall). 

Area Under the Curve (AUC): The area under the curve that

lots true positive rate against the false positive rate, for various

alues of the chosen threshold used to determine whether a file is

lassified as part of a co-change or not. Values of AUC range from

 (worst performance) to 1 (best performance). 

Mathews Correlation Coefficient (MCC): MCC is a correla-

ion coefficient between the observed and predicted classification

 Powers, 2011 ). This measure takes into account TP, FP, TN, and FN

alues and it is generally regarded as a balanced measure, which

an be used even if the classes are unbalanced. 

Matthews Correlation Coefficient (MCC) is used to show the

uality of our predictions. For binary classification tasks, MCC has

ttracted the attention of the machine learning community as a

ethod to summarize the confusion matrix into a single value

 Baldi et al., 20 0 0 ). An MCC coefficient of + 1 represents a per-

ect prediction and 0 means a random prediction. We calculated

CC using the following expression ( Powers, 2011 ): 

CC = 

( T P ∗ T N ) − ( F P ∗ F N ) √ 

( T P + F P ) ∗ ( T P + F N ) ∗ ( T N + F P ) ∗ ( T N + F N ) 

For the results discussion, we report the AUC, MCC, precision,

ecall and the confusion matrix values. 

. Results 

The main goal of this work was to evaluate the potential of con-

extual information gathered from issues and commit metadata to

redict co-changes between two files. In the following sections, we

iscuss the results for each research question. 

Using data from 9 releases from Apache CXF we covered 19.06%

f the fixed issues from their software history, considering 19.35%

f the commits. For Apache Derby we collected data from 20.21%

f the fixed issues and 20.24% of the commits. It is important to

ighlight that these values are low because we are filtering and

esting only the most frequent co-changes in each release. 

Considering the co-changes identified by association rules (our

op 25 ranked pairs) used as input to make the predictions, we

ound that 77.5% of the pairs of files inspected in Apache CXF are

o-changes between Java files. For Apache Derby, we detected that

2.7% of the pairs of files also involved co-changes between Java

les. Few co-changes occurred between configuration files (e.g. xml

les) and test files. Considering the number of defects, the co-

hanges were associated with 22% of the defects from each project.

he percentage of defects is expressive if we consider that the de-

ects are related to 58 distinct co-changes that were identified in

pache CXF and 90 distinct relevant pairs of files in Apache Derby.

.1. (RQ1) Can we accurately predict co-changes between two 

rtifacts using contextual information from issues, developers’ 

ommunication, and commit metadata? 

Approach. We built one classifier for each co-change identified

or each release of Apache CXF and Derby. We measured the per-

ormance of each classifier analyzing the precision, recall, F1, AUC

nd MCC. We also used the confusion matrix to evaluate the false

ositive and false negative rates, since high values of these two

easures can reduce the usability of the classifiers in practice. 

Results. Our classifiers improve the precision values com-

ared to the association rules model and vastly outperform ran-

om classifiers for both projects. 
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Table 6 

Confusion matrix by release for all co-changes. 

Project Release version Confusion matrix 

TP FP FN TN 

Apache CXF 2.1 237 29 21 292 

2.2 125 14 13 243 

2.3 23 6 2 28 

2.4 195 19 21 543 

2.5 150 13 24 382 

2.6 96 10 28 217 

2.7 135 18 23 262 

3.0 86 10 5 134 

Total 1047 119 137 2101 

Apache Derby 10.2 264 6 19 721 

10.3 62 9 15 195 

10.4 327 37 25 875 

10.5 83 12 16 214 

10.6 166 13 31 626 

10.7 92 5 16 250 

10.8 54 2 3 97 

10.9 262 18 31 662 

10.10 101 10 16 219 

10.11 63 3 11 86 

10.12 15 0 1 16 

Total 1489 115 184 3961 
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Table 7 

Comparsion of recall and precision values. 

Project Our approach Association rules 

R P F1 R P F1 

CXF 88.42% 89.79% 89.09% 100% ∗∗ 34.25% 51.02% 

Derby 89.00% 92.83% 90.87% 100% ∗∗ 30.22% 46.41% 
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In Table 6 , we present a more fine-grained analysis using the

onfusion matrix for each test set in each project version. We re-

ort values of TP, FP, FN and TN. 

Results in absolute terms showed that, for Apache CXF, we pre-

icted 1047 correct couplings. Our models presented 119 (10.25%)

alse positives, predicted as changed when the files did not change

ogether. For Apache Derby, we obtained 1489 correct commits

gainst 115 false positives (7.16%). 

As our models were designed to predict when a co-change will

ccur, we also can present the results considering when the co-

hange didn’t happen and just one file changed. In these cases, for

pache CXF we obtained 2101 correct predictions for the Left file

hen the Right file did not change. We obtained 137 false nega-

ives (6.12%). For Apache Derby, we obtained 3961 correct predic-

ions against 184 false negatives (4.43%). 

These results are particularly interesting because false positive

alues can cause overhead to developers if the approach was used

n a real scenario. For example, with many false positives, a clas-

ifier could predict that Left file and Right file changed together

hen they would actually not change, warning a developer at least

o take a look at Right file without need, causing an unnecessary

verhead in a developer task. 

Another important result was related to the small amount of

alse negatives reported. In these few cases, classifiers could pre-

ict just a change for Left file, forgetting to alert the developer to

hange the Right file, causing possible software defects or future

aintenance. 

.1.1. Does the contextual information improve the precision and 

ecall values compared to a baseline model? 

Previous work ( Canfora et al., 2010 ) reported precision values

etween 70% and 90%, while the recall values were reported often

etween 25% and 10% when co-change prediction is done using

ssociation rules models. On the other hand, a direct comparison

s difficult to do because the techniques were used to predict co-

hanges of different sets of artifacts in different projects. 

However, to make the comparison fairer, since we are predict-

ng co-changes considering two files, we re-implemented the asso-

iation rule algorithm used in the literature ( Canfora et al., 2010;

agdi et al., 2013; Zimmermann et al., 2005 ) and used it as base-

ine model to compare our results. We used the association rules
s described in Section 3 - (DE Step 3) Finding strongly coupled

airs of files. 

Since each co-change has a rule indicating that this pair of

les was prone to change in the consecutive release, we used this

ecommendation and assume (with support and confidence range

isted in Table 2 ), that all issues involving the pairs within the co-

hange set were prone to change in the consecutive release. Be-

ause of this, Table 7 presents the values of recall of our Baseline

odel as 100% ( ∗∗). On the other hand, the precision values of as-

ociation rules are lower, because all changes related to file I did

ot propagate to file J, thus, the association rules obtained many

alse positives recommending changes when they did not occur. 

In Table 7 we note that the average precision was improved.

he precision values (P) obtained by our models were 89.79% and

2.83% for Apache CXF and Derby, respectively. Considering the

aseline Model recall values, we note that our classifiers obtained

 difference of 55.54% for Apache CXF and 62.61% for Apache Derby

n terms of precision. 

Even considering a “perfect” predictor of co-changes as our

aseline model, the difference between the recall values (R) was

ower than the improvements in precision values. Considering the

-measure (F1) values we also note differences in both projects.

or CXF we obtained 89.09% against 51.02% for the baseline model,

nd for Derby we got 90.87% vs 46.41%. 

Qualitative inspection. To give more details about the com-

arison of contextual information we inspect the results and de-

cribe the practical aspects related to each approach describing a

eal case from the CXF project. 

Calculating the frequency of past changes (association

ules), we find that jaxrs/client/ClientProxyImpl.java and 

axrs/interceptor/JAXRSOutInterceptor.java changed together in 

4 commits during release 2.6. Analyzing ClientProxyImpl.java’s

hanges, we find that it did not changed with JAXRSOutIntercep-

or.java in 35 commits. We could infer that this coupling is strong

fter analyzing the distribution of co-changes and finding that this

air of files was found in our TOP 25 list. 

Based on this coupling information it seems reasonable to in-

er that both files are prone to change together in the consecu-

ive release (2.7). For release 2.7, coupling-based approaches would

orrectly predict co-changes in 12 commits. However, in another

6 commits, ClientProxyImpl.java changed in the release 2.7, but

ithout a corresponding change in JAXRSOutInterceptor. Analyz-

ng all commits involving ClientProxyImpl.java in version 2.7, ap-

roaches based on coupling would always recommend a co-change

ith JAXRSOutInterceptor.java, since this is the only association

ule found in the software history related to ClientProxyImpl.java.

n this case, the coupling-based approaches would raise 16 false

ositives, in which commits affected ClientProxyIm pl.java but not

AXRSOutInterceptor.java. 

In our approach, we collect contextual information for each

ommit to ClientProxyImpl.java for release 2.6. Based on this in-

ormation we are able to predict, for release 2.7, 8 co-changes be-

ween both files and 16 commits in which ClientProxyImpl.java

hanged, but not JAXRSOutInterceptor.java. Our approach gives 4

alse positive recommendations. For this pair, the most influential

ontextual information was the number of lines added, the num-

er of lines deleted and amount of words in the discussion. 
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Table 8 

similarity over releases comparing the number of co-changes among the pairs of 

files analyzed. 

Project Release version Similarity (Jaccard index) 

Apache CXF 2.0/2.1 0.70 

2.1/2.2 0.38 

2.2/2.3 0.40 

2.3/2.4 0.61 

2.4/2.5 0.44 

2.5/2.6 0.65 

2.6/2.7 0.73 

2.7/3.0 0.75 

Median 0.63 

Apache Derby 10.1/10.2 0.60 

10.2/10.3 0.60 

10.3/10.4 0.40 

10.4/10.5 0.46 

10.5/10.6 0.48 

10.6/10.7 0.41 

10.7/10.8 0.36 

10.9/10.9 0.51 

10.9/10.10 0.24 

10.10/10.11 0.34 

10.11/10.12 0.13 

Median 0.41 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Heat map of overlapping co-changes between pairs of files over releases. 
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Considering this example, our approach wrongly predicted 4 co-

changes between both files (false positives). In total, in a real sce-

nario, models based on contextual information would be wrong

in 4 cases considering the 28 commits tested. Comparing our ap-

proach with coupling-based approaches, contextual information re-

duced the number of false alerts by 43% (12 commits). 

We inspect the dataset analyzing how much overlap we could

find between a pair of files and the number of co-changes over

the releases. We would like to check if the pair of files had co-

changes localized in two releases or if the co-changes were spread

over releases. 

This analysis helps us to understand why the values of recall

and precision are higher in our approach then the association rules

and why we only used the previous release to build the training

set to make the prediction, instead of aggregating the full history

of changes, since we built one prediction model per pair of files. 

We used the Jaccard index to calculate the similarity and diver-

sity of co-change occurrences over the releases. The Jaccard index

is defined as the size of the intersection divided by the size of the

union of the sample sets ( Pang-Ning et al., 2006 ). Each sample in

our study is the number of co-changes that occurred in one re-

lease. In this sense, we considered as intersection if a specific pair

of files had at least one co-change in a release (e.g. release N) and

one co-change in the consecutive one (e.g. release N + 1). 

In Table 8 we note that the similarity for Apache CXF ranges

from 0.38 to 0.75, and for Apache Derby it ranges from 0.13 to

0.60. Observing the median values calculated over releases we find

more overlap in Apache CXF than Apache Derby. In Apache CXF,

the values of similarity are higher in the beginning of the releases

analyzed, decrease in the middle, and then start to increase again.

In Apache Derby, the similarity values obtained show that pairs of

files changed together in the first releases. 

The results suggest that co-changes in CXF are more prone to

propagate to the next release than in Apache Derby, however, this

overlap in less than 63%. As we selected for this work only the

top 25 pairs of files with relevant rules, we can note that even

considering the best rules obtained by association rules, the co-

changes cannot hold the assumption associated with the baseline

approach. 

Fig. 3 presents the heat map showing the overlap of co-changes

between pairs of files. In the Heat map, the more red the color,
he more co-changes occurred between the pair of files. The green

olor means that the pair of files did not change together in a re-

ease. The yellow color indicates numbers between 2 and 20. Or-

nge indicates numbers between 21 and 80. The red color indicates

umbers above 80. 

We found that both projects have similar co-change overlaps

etween the releases. The values for Jaccard similarity were very

lose and the Fig. 3 shows a “stairs pattern”. It means that a pair

f files co-changed, in general, in two or three releases. Because

f that we can note a few “line bursts” of yellow, orange or red

ines. This pattern shows that it is very hard to find relevant con-

extual information through the history, because the artifacts ana-

yzed changed in a specific period of software evolution. 

Our classifiers outperform the association rules in both 

projects considering the precision values. Consequently, 

fewer false positives were obtained by models based on con- 

textual information. 

.1.2. Does the contextual information perform better than the 

andom classifier? 

The AUC metric was designed such that a random classifier

ould achieve an AUC of 0.5. However, some authors consider

hat the AUC and accuracy can give a misleading picture of the

odel performance, especially in case of imbalanced data learn-

ng ( Powers, 2012 ), ( Powers, 2011 ). In these cases, MCC is recom-

ended as a better option to evaluate the results ( Baldi et al.,

0 0 0 ). 

In our case, the imbalance values can be observed in Table 6 .

e computed the ratio of imbalance by dividing the total instances

y the total number of times that Left and Right Files changed to-

ether. For Apache CXF, we found 1166 instances where Left File

nd Right File changed together and 2238 instances where the Left

ile changed without the Right File. The ratio of imbalance for CXF

as 35.29%. 

Considering Apache Derby, the ratio was 27.90%, since 1604 in-

tances represented changes for Left and Right file together and

145 instances occurred when Left File changed without the Right

ile. 

Since the AUC metric is much more commonly used to report

esults, we report values of AUC and MCC against each other in a

ean plot in Figs. 4 and 5 . Bean plots are boxplots in which the ver-
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Fig. 4. The AUC values for all classifiers built to predict co-changes over the re- 

leases of Apache CXF and Derby. 

Fig. 5. The MCC values for all classifiers built to predict co-changes over the re- 

leases of Apache CXF and Derby. 
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Fig. 6. Box plot comparing the number of selections for each dimension (set of 

metrics) for each project. 
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ical curves summarize the distributions of different datasets. The

orizontal black lines indicate the median values ( Kampstra, 2008 ).

We can observe that both projects presented median values for

UC of around 0.95. The other important result is that most clas-

ifiers are much better than the random classifier (AUC = 0.5). 

Inspecting the results, we note that only seven classifiers ob-

ained AUC below 0.8 for Apache CXF. The values were 0.723 (rank

, release 2.0), 0.756 (rank 7, release 2.1), 0.494 (rank 7, release

.3), 0.611 (rank 8, release 2.2), 0.714 (rank 13, release 2.1), 0.714

rank 18, release 2.6) and 0.793 (rank 23, release 2.5). For Apache

erby, only two models generated AUC results below 0.80. The val-

es were 0.559 (rank 11, release 10.3) and 0.768 (rank 22, release

0.2). The ranks listed in brackets are related to the rule position

n our TOP 25 relevant rules. 

In Fig. 5 , we observe that the values of MCC were very consis-

ent, since the median of the MCC values obtained during the pre-

ictions was around 0.85 for both projects. We consider as high

orrelation all those models that obtained MCC of at least 0.8 be-
ween the observed co-changes and the prediction results. Consid-

ring Apache CXF, 49 out of 68 classifiers had high correlation. For

pache Derby 93 out of 123 classifiers obtained high correlation. 

Our classifiers yielded good results for AUC and MCC (above 

0.85). We also obtained less than 10.25% false positives and 

7.16% false negatives, reducing possible issues for adoption 

of our approach in practice. 

.2. (RQ2) What are the most important kinds of contextual 

nformation when predicting co-changes? 

Approach. To study the most important co-change character-

stics in our random forest classifiers, we computed the variable

mportance score for each studied contextual information. The

eneric function varImp was used to characterize the general ef-

ect of predictors on the model. The larger the score obtained, the

reater is the importance of the co-change contextual information.

For each model we logged the metrics selected. To summarize

he importance of each set of metrics we report a boxplot compar-

ng each dimension in Fig. 6 . Table 9 presents an aggregated num-

er for each metric selected by release. The red column indicates

he metric most selected for each dimension. We also aggregated

he total by set of metrics in line “Dim”. 

Results. Commit Context was an important explanatory fac-

or of co-change prediction for both projects. The other dimen-

ions presented different explanatory power for each project.

he number of changed lines (commit context), issue reporter

issue context), number of words (communication context) and

loseness (developers’ roles) were the most selected. 

To compare the number of selections among the dimensions

sets of metrics), we used the Kruskal-Wallis rank sum test: a non-

arametric inferential test that compares the distribution of three

r more unmatched groups under the null hypothesis that the lo-

ation parameters of the distribution are the same within each

roup. 

After running the test, using a 0.05 significance level, we con-

luded that for both projects the number of selections for each

imension followed a non-identical distribution. For Apache CXF

he p-value turned out to be 0.0 0 02853 (chi-squared 23.3821, df

 5). Apache Derby presented a p-value of 0.006985 (chi-square =
5.9511, df = 5). 
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Table 9 

Analysis of contextual information importance by feature selection analysis. 

Rel Ver. – Release Versions, Tot - Total, Dim - Sum by dimension, Issue Context (IC), Communication Context (CC), Developer Role Communication (DRC), Structural Role 

(SH), Network Properties (NP), Commit Context (ComC), (1) Reporter, (2) Issue Type, (3) Assignee, (4) is Issue Reopened? (5) Developer Commenters (6) Comments, (7) 

Commenters, (8) Wordiness, (9) Closeness, (10) Betweenness (11) Efficiency (12) Effective Size (13) Hierarchy (14) Constraint (15) Density (16) Diameter (17) Ties (18) Size 

(19) Changed Lines (20) Added Lines (21) Deleted Lines (22) Same Ownership (23) Committer. 
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Fig. 6 shows a boxplot comparing both projects and the number

of selections for each set of metrics. We can observe that commit

metadata has a mean higher than 30 considering all releases of

each project. On the other hand, Developer Role got fewer selec-

tions. Since we found differences using a Kruskall-Wallis test, we

performed a posthoc test using Mann-Whitney-Wilcoxon to com-

pare groups against each other and check if the difference in num-

ber of selections was statistically different. 

The results showed that, for Apache CXF, there were significant

differences between Commit Context and Structural Hole (p-value

< 0.006759), between Issue Context and Developers Roles Context

(p-value < 0.007501), and between Network Properties and Devel-

opers Roles (p-value < 0.0498). We did not find differences be-

tween Commit Context and Issue and Communication Context. We

also did not find differences between Commit, Communication and

Issue Context. 

The same happened when we compared Network Properties

against the Structural Hole. Based on this comparison, we could

notice that Commit, Communication, and Issue Context were the

most relevant sets of metrics for Apache CXF. In second position:

Network Properties and Structural Role. We used as tie breaker the

median of each set of metrics. 

Considering Apache Derby, we found significant differences be-

tween Commit Context and Communication Context (p-value <

0.01033) and between Issue Context and Network Properties Con-

text (p-value < 0.03678). We also found a significant difference be-

tween Network Properties and Developers Roles Context (p-value

< 0.02006). We did not find differences between Commit Context

and Issue Context and Structural Hole. 

The same happened when we compared Communication Con-

text against Network properties. After the statistical analysis for

Apache Derby, the sets of metrics were sorted and Commit Con-

text, Issue Context and Structural Hole appeared in the first po-

sition. Network Properties and Communication Context appeared

in second place. We also analyzed each metric individually. We

found that the most selected metrics for Commit, Issue, Commu-

nication Context and Developers Roles were the same for both

projects. 
We qualitatively inspected the models built for both projects.

onsidering all the 144 classifiers built for Apache CXF, 71.53% of

he models used metrics from more than one dimension (28.47%

sed a unique dimension, 21.53% two dimensions, 15.28% three

imensions, 6.94% four dimensions, 9.03% five dimensions and

8.75% all dimensions). For Apache Derby 62.55% of the models

sed metrics from more than one dimension (37.25% used a unique

imension, 25.51% two dimensions, 11.11% three dimensions, 3.70%

our dimensions, 7.00% five dimensions and 15.23% all dimensions).

More than one dimension was frequently selected by our clas- 

sifier. This finding shows that co-change prediction is a multi- 

dimensional phenomenon. 

. Related work 

Some artifacts are frequently changed together throughout soft-

are development. Ball et al. (1997) introduced the concept of

hange coupling, which captures the notion of some artifacts

requently changing together during software development. The

ore two artifacts are committed together (co-changes), the more

hange-coupled they become ( Ball et al., 1997; Ying et al., 2004 ).

ome benefits of change coupling analysis were discussed by

’Ambros and colleagues (20 06, 20 09; Oliva and Gerosa, 2015b ).

or example, change couplings reveal relationships not present

n the code or in the documentation. Other researchers showed

hat change couplings affect software quality ( Cataldo et al., 2009;

’Ambros et al., 2009; Kirbas et al., 2014 ). 

Based on the idea that artifacts that changed together in the

ast are prone to change together in the future, researchers lever-

ged change couplings to predict co-changes. Zimmermann and

olleagues ( Zimmermann et al., 2005 ) built an Eclipse plug-in that

ollects information about source code changes from repositories

nd warns the developers about probable co-changes. They used

ssociation rules to suggest change coupling among files at method

nd file level. The authors reported precision values around 30%
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nd recommended that the analysis should be made at the file-

evel instead of method-level. 

Canfora et al. ( Canfora et al., 2010 ) showed that change de-

endencies detected with the Granger causality test can be com-

ined with association rules to identify co-changes among files.

he combination of both techniques can improve the accuracy of

he association rules. The authors showed that the combination of

ranger and association rules can lead to prediction models with

-measure values around 30%. 

Impact Miner ( Dit et al., 2014 ) was proposed to enable devel-

pers to extract co-changes from SVN repositories at method level

ranularity. The tool was designed to help developers during fea-

ure location, based on different types of queries combining differ-

nt techniques (Information Retrieval, dynamic analysis of source

ode and repository mining), based on the available sources of in-

ormation. 

Zhou et al. ( Zhou et al., 2008 ) proposed a model to predict

o-changes using Bayesian networks. They extracted features like

tatic source code dependencies, past co-change frequency, age of

hange, author information, change request, and change candidate.

hey conducted experiments on two open source projects (Azureus

nd ArgoUML) and reported precision values around 60% and recall

alues of 40%. 

In general, we found similar results for precision when com-

ared to the studies reported, however it is hard to compare works

ecause datasets are different, presenting different techniques and

o-changes analyzed. Because of this difficulty to compare we used

he association rules as baseline model. Comparing with this ap-

roach, widely used in the literature, we obtained better results in

erms of recall and F-measure. 

Our paper also differs from previous work in that we are con-

idering contextual information that had not been used before.

sing information related to developers’ communication and is-

ue context is new and presented promising results to reduce the

umber of false positives and negatives of the previous approaches.

. Discussion 

.1. Advantages and disvantagens of contextual information models 

Zimmermann and colleagues ( Zimmermann et al., 2005 ) re-

orted that it is very difficult to have precise and a large number of

ecommendations. Models may make many suggestions and issue

any false alarms, or make fewer suggestions and be more precise.

n this sense, we investigate the effectiveness of contextual infor-

ation to predict co-changes involving files that co-changed often

n each project. 

The related work presented in the previous section uses commit

ata and source code, meanwhile, our approach can be more pre-

ise to predict co-changes, but has limitations in terms of covering

ll commits or files. In this sense, there is a trade-off to be decided

y software managers and developers when they are choosing an

pproach to guide them during the software evolution. 

In this study for example, by relaxing the values of support and

onfidence used by the baseline approach, it is possible to receive

ore recommendations, however penalizing the precision of those

ecommendations. In this sense, it is important to mention that

he effort to collect data is higher in the contextual information

odels because association rules only depend on the commit data.

Considering the parameters that need to be configured to use

odels based on contextual information and the baseline mod-

ls, there is an advantage to use our approach, since we built

he prediction models using a random forest algorithm with de-

ault configuration without configuring the parameters to obtain

he results. Hence, models based on contextual information are

impler because they do not require prior configuration instead
f the baseline models which require a previous configuration of

upport and confidence values. This problem was also pointed out

y Zimmermann et al., (2005) who argued that defining the best

hresholds of support and confidence is not easy because they de-

end on the particular project. 

An important question that arises from our case study is re-

ated to the period when the training and test sets were created.

he release period represents the life cycle to achieve an aim, for

xample, correct critical bugs, refactor some part of the project, or

mplement new features. It is not clear what the effect of choos-

ng this timeframe was. We conjecture that a release can capture

related context” to build training sets. 

.2. Does co-change context add anything to the prediction power of 

xisting models? 

In this work, we investigated different dimensions from soft-

are development that we conjecture can improve the co-change

rediction since they represent the context that describes the cir-

umstances of each co-change. In the literature, there are results

hat suggest that each change has a different proposal, and can

e influenced by different reasons ( Beyer and Noack, 2005; Can-

ora et al., 2014; Oliva et al., 2013; Shihab et al., 2012; Tao et al.,

012 ). Recently, we also found that there is less relation than ex-

ected between structural coupling and code changes, suggest-

ng that structural coupling is not a good predictor for software

hanges ( Oliva and Gerosa, 2015a ). 

Different from the state of the art of bug prediction, where

odels are normally built using information gathered from all files,

e decided to build models for each pair of files. Our decision to

uild models at pair-level instead of file-level is based on the re-

ults obtained in the RQ1. We found that pairs of files co-changed

n two or three consecutive releases and that co-changes rarely

pread over the releases. This lower overlap between releases and

o-changes corroborates our assumption that the recent context is

seful to predict co-changes in the consecutive releases, and it is

ot necessary to aggregate longer periods of history to build mod-

ls. 

In the RQ2, we found that more than one kind of context tends

o be used to build the models (dimensions and metrics from

able 1 ). This result suggests that better models involve more than

ne source of information, and this is different from the litera-

ure, since previous work in this area was based on coupling, using

ource code or the version control system as source to predict co-

hanges. 

A challenge that arises from our results is how we can integrate,

reprocess, and use different sources of information at a large scale

o build co-change prediction models. We described these steps in

ection 3 , but they were designed for the Apache Community and

robably need to be adapted to other communities or projects. 

As we also noticed in RQ2, different sets of contextual informa-

ion were selected by each co-change prediction model. Since we

bserved that commit meta-data was the best dimension, we built

odels using only contextual information from this dimension to

ompare the results with the best subset of metrics selected for

ach co-change model. 

Analyzing the results for CXF, using only commit metadata con-

extual information listed in Table 1 , we obtained recall values of

5%, and precision values of 75% (F1 value of 79%). We found that

ecall values were almost the same, but the precision was worse

han using the best metrics. In practical terms it means that us-

ng only 4 metrics (2 metrics less than the average) we obtained

imilar values of recall but the models used increase the number

f false positives by 15%. For the Derby project, we obtained recall

alues of 79%, precision values of 78% (F1 value of 79%). To derby
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project we observed that recall and precision values decreased by

around 10%. 

In practical terms, these results suggest that there is a tradeoff

between collecting only one dimension of contextual information

or using feature selection analysis after collects all contextual in-

formation proposed in this work. In terms of recommendations, at

least, using only the commit metadata after 100 recommendations

given, the models will return at least 15 wrong recommendations.

However, the effort to collect the contextual information and run

the models would be simplified. 

6.3. Practical aspects of contextual prediction models 

We sent messages to mailing lists of both projects to report the

results obtained and obtain feedback from each community. Four

developers (2 from each project) answered the e-mail. 

Recent studies from our research group ( Pinto et al., 2016;

Steinmacher et al., 2016 ) found that newcomers need to overcome

many barriers to push their first contribution to the community.

For example, setting up the environment, debugging the code, and

finding useful documentation are examples of these barriers. Be-

sides that, software communities have been receiving a lot of con-

tributions of casual contributors that give one or two contributions

and then abandon the project. In this case, we believe that our ap-

proach can help these kinds of developers to navigate the code, or

to find undeclared (hidden) association in the source code. 

For example, a Derby developer said: “this tool [approach] could

be useful in tracking down methods whose switch statements need to

be updated when, say, you add a new enum value. In general, this tool

could be useful wherever you have undeclared dependencies among

files and components, which the compiler can’t track.”

According to developers from CXF and Derby, they were sur-

prised by the results because usually to change artifacts to com-

plete an issue, they start debugging the source code or think about

some architectural aspect that could help during the task. Devel-

opers also pointed out that newcomers have difficulty to navigate

the existing code because they are not familiar with the software

architecture. In this sense, developers from both communities sug-

gested that the proposed approach could help newcomers to navi-

gate through the source code to complete tasks. 

A developer from CXF told us “well, the long-term contributors

usually know how the files are connected but I agree with Christian it

might help the newcomers navigate via a project, et c.”

In addition, developers from CXF and Derby suggested that the

proposed approach could be implemented as an IDE plugin or like

a maven tool that after the first commit the developers could re-

ceive suggestions. 

“Think the idea of giving people some hint that classes are con-

nected (according to your rules) makes a lot of sense. Like you said

this can help newcomers to navigate around the code. For this pur-

pose, an IDE plugin makes sense.”

On the other hand, developers disagreed that the approach

could help during the code review, as experienced developers

know which files change together in a task. This statement can be

perceived by a comment we received from the CXF project “I am

not sure about the review part. As a reviewer you will always see the

change set and you know you got to review all changes. Your tool

could report a file that was expected to be also changed but was not.

As this would probably mean that something was forgotten to change

a test should catch that.”

However, a developer from Derby pointed out a different per-

spective concerning the practical aspects of the proposed approach

“…also through code review, running tests, and messages from the

compiler. Is your idea that, given a database of change history as you

have described it, some tool would be able to notice when the devel-

oper makes a certain type of change, and then suggest other related
hanges that are typically made at the same time? I think that’s a

retty interesting idea.”

. Threats to validity 

The first concern is generalizability. In our analysis, we pre-

ented two case studies. However, based on this limited scope, our

esults might not generalize to other projects and domains. To re-

uce these threats, we used several releases to evaluate our results.

owever, again, projects with other community organization and

rocess of development can present different results. The choice of

wo projects and the evaluation made considering the co-changes

dentified by relevant association rules allowed us to better control

nd understand the data being analyzed. Replication of this work

n a large set of systems is required in order to arrive at conclu-

ions that are more general. 

Set of metrics: The set of metrics used might not be complete.

e dealt with this threat by performing a selection of measure-

ents along different dimensions of software development. We

hose metrics from contextual information related to issue, com-

unication and commit metadata. To select the set of metrics, we

ere inspired by previous work on prediction models ( Hall et al.,

012; Wiese et al., 2014a ). 

We collected the metrics to build the training and test sets

hen the issues were in the status of closed/fixed. In this sense,

ome test sets could have been associated to communication met-

ics that happened after the commit. We inspected the test set

o evaluate the effects of this threat and found that only 351 of

238 comments to CXF and 1279 of 19,109 comments to Derby

ere made in this situation. To avoid this threat, we are building a

ool to collect data from different sources and generate the test set

n the moment that each commit occurs in the repository. Thus,

he developer can receive the recommendations immediately after

heir commit. 

Co-changes: A threat related to co-change identification are

angled commits ( Herzig and Zeller, 2013 ). This term is related to

he interaction between version control systems and developers.

evelopers often commit unrelated or loosely related code changes

n a single transaction. In our study, this threat is limited as we

re grouping commits per issue. In addition, we performed a care-

ul selection of issues, using issues that were closed, fixed and for

hich the source code was integrated. Considering the Power Law

istribution in software engineering analysis, our co-changes files

omprise the most important files in that moment of development

nd contain files with a large number of change couplings between

les (see Table 2 , support value ). 

Linking issues to commits: As we mentioned in

ection 3.2 (DE Step 2), Apache projects usually adopt the

attern [ProjectName-IssueNumber] in the commit message to

ink commits to issues. With this heuristic, we were able to link

975 out of 20,288 (44.2%) commits in Apache CXF. In the Apache

erby project, the heuristic performed much better, as we could

ink 8386 out of 10,701 (78.4%) commits. Discovering issue ID in

ommit messages to link commits to issues is a heuristic that

as been applied several times in the literature ( D’Ambros et al.,

012; McIntosh et al., 2014 ; Śliwerski et al., 2005). On the other

and, Wu et al., (2011) showed that, for many projects, the links

etween issues and commits are not explicitly reported in the

ommit message nor in the issue description. The development

f more sophisticated linking mechanisms is a current research

ubject ( Wu et al. (2011) and Le et al. (2015) ). 

Overfitting: Overfitting occurs when a prediction model has

andom error or noise instead of an underlying relationship. It is

mportant to mention that our models were planned to be more

fitted” to each co-change. In this sense, our classifiers are built

or each co-change and rely on a specific subset of the contextual



I.S. Wiese et al. / The Journal of Systems and Software 128 (2017) 220–235 233 

i  

i  

i  

t  

o  

I  

w

8

 

a  

m  

t  

p  

a  

i

 

C  

n  

p

 

t

 

a  

t  

t  

d

 

n  

f  

t  

f

 

t  

I  

i  

s

 

t  

t  

p  

f  

a  

p

A

 

C  

G  

f  

f

R

B  

 

B  

B  

 

B  

B  

 

B  

 

 

B  

 

B  

 

 

B  

B
B  

 

B  

 

C  

 

C  

C  

 

C  

 

C

D  

 

D  

 

D  

 

D  

 

 

 

 

D  

 

 

D  

 

D  

 

 

G  

G  

 

G  

 

H  

 

H  

H  

K  

K  

K  

 

 

 

K  
nformation. To treat the overfitting of our classifiers, we are apply-

ng feature selection analysis to reduce the amount of contextual

nformation used in each model. We do not use a cut-off threshold

o select the metrics. The RFE algorithm made the selection based

n the performance of each model built to predict the co-changes.

t is important to highlight that on average 6 out of 23 metrics

ere necessary to build good classifiers. 

. Conclusions and future work 

Change artifacts are a central aspect of software evolution

nd maintenance. When developers modify software entities, they

ust ensure that other entities in the software system are updated

o be consistent with these new changes. Co-change prediction ap-

roaches aim to assist developers in understanding their software

nd determining the extent of the propagation of each change,

dentifying artifacts that are more likely to change together. 

Hence, in this paper, we set out to answer this central question:

an contextual information extracted from issues, developers’ commu-

ication, and commit metadata improve the accuracy of co-change

rediction? 

Through a study of two important Apache projects, we found

hat the answer is: 

RQ1. Our classifiers were able to predict co-changes achieving

n AUC of 0.90 on average for both projects and outperforming

he association rules considering the precision values. We also ob-

ained fewer false positives (10.25%) and false negatives (7.16%) re-

ucing barriers to a possible adoption of our approach in practice. 

RQ2. We observed that co-change is a multidimensional phe-

omenon. Our classifiers derive much of their explanatory power

rom commit metadata, as well as issue and communication con-

ext. We found that at least 62.75% of the classifiers used metrics

rom more than one dimension to predict the co-changes. 

Limitation. Our classifiers inherently depend on traces of con-

extual information obtained from the history of software changes.

n different scenarios, for example, where the developers are work-

ng on a new module in a project, we recommend the use of

tatic/dynamic analysis to predict co-changes. 

Future work. To use our classifiers, developers need to know

he first artifact they need to change. This action is known as “fea-

ure location analysis”, but is beyond the scope of this paper. We

lan to combine our approach with feature location analysis. As

uture work, we plan to extend the analysis to other pairs of files,

nd compare our classifiers with other heuristics and co-change

rediction approaches. 
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