
Recommending Tasks to Newcomers in OSS Projects: How Do
Mentors Handle It?

Sogol Balali
Oregon State University
balalis@oregonstate.edu

Umayal Annamalai
Oregon State University

annamalu@oregonstate.edu

Hema Susmita Padala
Oregon State University
padalah@oregonstate.edu

Bianca Trinkenreich
Northern Arizona University

bt473@nau.edu

Marco A. Gerosa
Northern Arizona University

marco.gerosa@nau.edu

Igor Steinmacher
Northern Arizona University
igor.steinmacher@nau.edu

Anita Sarma
Oregon State University

anita.sarma@oregonstate.edu

ABSTRACT
Software developers who want to start contributing to an Open
Source Software (OSS) project often struggle to find appropriate
first tasks. The voluntary, self-organizing distribution of decentral-
ized labor and the distinct nature of some OSS projects intensifies
this challenge. Mentors, who work closely with newcomers, de-
velop strategies to recommend tasks. However, to date neither the
challenges mentors face in recommending tasks nor their strate-
gies have been formally documented or studied. In this paper, we
interviewed mentors of well-established OSS projects (n=10) and
qualitatively analyzed their answers to identify both challenges
and strategies related to recommending tasks for newcomers. Then,
we employed a survey (n=30) to map the strategies to challenges
and collect additional strategies. Our study identified 7 challenges
and 13 strategies related to task recommendation. Strategies such
as “tagging the issues based on difficulty,” “adding documentation,”
“assigning a small task first and then challenge the newcomers
with bigger tasks,” and “dividing tasks into smaller pieces” were
frequently mentioned as ways to overcome multiple challenges.
Our results provide insights for mentors about the strategies OSS
communities can use to guide their mentors and for tool builders
who design automated support for task assignment.

CCS CONCEPTS
• Software and its engineering→Open sourcemodel; •Human-
centered computing → Open source software; • Social and
professional topics→ Project and people management;

KEYWORDS
Task Recommendation, OSS, Mentoring, Newcomers

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
OpenSym 2020, August 25–27, 2020, Virtual conference, Spain
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8779-8/20/08. . . $15.00
https://doi.org/10.1145/3412569.3412571

ACM Reference Format:
Sogol Balali, Umayal Annamalai, Hema Susmita Padala, Bianca Trinkenreich,
Marco A. Gerosa, Igor Steinmacher, and Anita Sarma. 2020. Recommending
Tasks to Newcomers in OSS Projects: How Do Mentors Handle It?. In 16th
International Symposium on Open Collaboration (OpenSym 2020), August
25–27, 2020, Virtual conference, Spain. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3412569.3412571

1 INTRODUCTION
Open collaboration communities, such as many Open Source Soft-
ware (OSS) projects, aim to provide environments with low barriers
to entry in order to onboard and retain newcomers [26]. However,
previous work shows that newcomers to OSS communities face a
variety of barriers that hinder their onboarding [61, 63]. One of the
most common and challenging barriers is choosing an appropriate
task [60]. Selecting an appropriate task is difficult and can be a
time-consuming and frustrating activity; ultimately, this barrier to
onboarding may lead to dropouts [60, 70].

The literature discusses some solutions to support task selec-
tion, such as automated recommendation systems [2, 16, 35, 71].
However, these systems only suggest tasks to developers with pre-
vious interactions in the project, and thus offer limited support
for newcomers (this is known as the "cold start" problem). More-
over, the number of open tasks in popular projects’ issue trackers,
which developers need to skim to find a good match, can reach
hundreds or a couple thousands (e.g., tensorflow, 1 react-native, 2,
LibreOffice Writer, 3). As there is no systematic identification of
strategies to support task recommendation in OSS, project members
and newcomers need to develop their own strategies by trial and
error, leading to the aforementioned barriers [60].

Mentors can provide a valuable perspective since they work
closely with several newcomers and over time develop strategies
for recommending tasks [8, 20]. In fact, mentorship is adopted by
several prominent OSS projects (e.g., RedHat,4 KDE,5 Apache,6 and
OpenStack 7). The literature shows that mentorship is beneficial in
1https://github.com/tensorflow/tensorflow/issues
2https://github.com/facebook/react-native/issues
3https://bugs.documentfoundation.org/buglist.cgi?component=Writer&product=
LibreOffice&resolution=---
4https://wiki.gnome.org/Newcomers/Mentors
5https://community.kde.org/Mentoring
6https://community.apache.org/mentoringprogramme.html
7https://wiki.openstack.org/wiki/Mentoring

https://doi.org/10.1145/3412569.3412571
https://doi.org/10.1145/3412569.3412571
https://github.com/tensorflow/tensorflow/issues
https://github.com/facebook/react-native/issues
https://bugs.documentfoundation.org/buglist.cgi?component=Writer&product=LibreOffice&resolution=---
https://bugs.documentfoundation.org/buglist.cgi?component=Writer&product=LibreOffice&resolution=---
https://wiki.gnome.org/Newcomers/Mentors
https://community.kde.org/Mentoring
https://community.apache.org/mentoringprogramme.html
https://wiki.openstack.org/wiki/Mentoring

OpenSym 2020, August 25–27, 2020, Virtual conference, Spain Sogol Balali et al.

both OSS [20, 21] and closed-source software development [8, 57]
contexts. The literature also shows that OSS mentors are not usu-
ally formally trained and either voluntarily elect to mentor out
of personal interest, or are asked to do so by the community [4].
Since they are untrained, even if they are technically resourceful
mentors are not aware of the strategies that can be used to deal
with task recommendation. No previous research has focused on
the challenges mentors face when recommending tasks for new-
comers nor on the strategies they adopt to recommend appropriate
tasks for their mentees. Thus, scientifically identifying strategies
that mentors adopt to support task recommendation can gener-
ate awareness among OSS communities, mentors, and researchers
about the existing task recommendation challenges and possible
strategies to overcome them.

Our goal is to identify strategies that OSS mentors adopt to
cope with the challenges of recommending tasks to newcomers. To
achieve this goal, we first interviewed OSS mentors to identify an
initial list of strategies, and then conducted a follow-up survey to
triangulate and complement the results obtained in the interviews.
In the context of this research, a mentor is a peer who was assigned
or volunteered to support newcomers who are onboarding to the
project. Mentors are usually peers who succeeded in overcoming
the project challenges and are willing to help others onboard [38].

In summary, this paper contributes to the literature by describ-
ing seven challenges faced by mentors when recommending tasks
for newcomers, categorizing and detailing 13 strategies mentors
employ to recommend tasks for newcomers, mapping mentors’
strategies to challenges, and proposing guidelines to improve task
recommendation for newcomers. Our results benefit newcomers
who struggle with entry barriers associated with task selection,
and mentors who aim to support them. Our results also inform the
broader OSS community and tool builders by providing inputs that
may be used to create mechanisms and processes to better support
task recommendations.

2 RELATEDWORK
Newcomers joining OSS projects face many barriers [61], and task
assignment is a recurrent hurdle [60]. In the following, we pro-
vide more details about the existing literature related to choosing
appropriate tasks for newcomers, strategies to support task recom-
mendation, and mentorship in OSS projects.

2.1 Task recommendation
The OSS literature widely reports the dilemma of finding an appro-
priate task, because new developers find it challenging to identify
bugs that interest them, match their skill sets, are not duplicates,
and are important for the community [60, 71]. For example, Park
and Jensen [45] reported that newcomers need specific guidance on
what to contribute (e.g., open issues, required features, and simple
tasks to start with), while von Krogh et al. [70] reported that com-
munities expect new participants to find tasks to work on, although
they sometimes assign tasks. The literature also shows that new-
comers struggle to find a task [45, 60] while they often also face an
arduous learning curve to handle the technical complexity, given
the lack of domain knowledge or project information available for
starters.

Some initiatives aim to support newcomers to find appropriate
tasks, like Up For Grabs,8 First Timers Only,9 and Awesome for
Beginners,10 which aim to aggregate easy issues from several OSS
projects. GitHub11 encourages projects to tag issues that are easy
for newcomers, which is a strategy also used by communities such
as LibreOffice,12 KDE,13 and Mozilla. 14

The literature also includes findings related to recommending
and filtering out tasks. For instance, Cubranic et al. [16] presented
Hipikat, a tool that builds a group memory and recommends source
code, email messages, and bug reports to newcomers. Similarly,
Wang and Sarma [71] previously developed a Tesseract extension
that enables newcomers to identify similar bugs through synonym-
based searches and to visually explore a bug’s socio-technical de-
pendencies.

Another way to support task recommendation is through sys-
tems that match people to tasks. Macdonald and Ounis [35] used
a voting heuristic based on analyzing the modification history of
each artifact related to the task. Anvik and Murphy [2] similarly use
machine learning in the project’s history to identify and suggest
the developer most familiar with certain artifacts, identifying this
person as an expert. Finally, DebugAdvisor [3] also aims to recom-
mend developers based on expertise on the source code related to
the task.

Although the literature explores strategies for task recommen-
dation in OSS projects, they rely on extensive manual work to tag
the issue tracker, since issue trackers usually either do not consider
newcomers’ skills and interests, or only work with developers who
have previous experience in the project. In this work, we extend
the existing literature by uncovering the strategies mentors use to
recommend appropriate tasks for newcomers.

2.2 Mentoring
Mentoring is explored in several domains and activities: in man-
agement literature is a way to help new employee socialization [1,
46, 67] (e.g., helping newcomers understanding the company’s pro-
cesses, the internal culture), and in education (teaching) literature
is a way to help new teachers acclimate [37, 51, 52] and students
overcome learning challenges [15, 28, 41]. For our purposes, a men-
tor is someone of advanced rank or experience who guides, teaches,
and develops a novice [42]. Some existing literature analyzes the
challenges faced during mentorship. For example, [50] conducts a
literature review analyzing the challenges related to gender in the
mentor-mentee relationship. In the education domain, [37] explores
the problems encountered in mentoring new teachers, while [32]
explore the challenges faced by faculty members while mentoring
online doctoral students.

Software Engineering has also taken up mentoring as an object
of study [8, 9, 57]. In fact, the importance of mentorship as part of
the knowledge acquisition process for novices is evidenced in the
theory of software development expertise developed by Baltes and
Diehl [6]. In closed source settings, it is common practice to offer

8https://up-for-grabs.net
9https://www.firsttimersonly.com/
10https://github.com/MunGell/awesome-for-beginners
11https://help.github.com/articles/helping-new-contributors-find-your-project-with-labels/
12https://wiki.documentfoundation.org/Development/EasyHacks
13https://community.kde.org/KDE/Junior_Jobs
14https://wiki.mozilla.org/Good_first_bug

https://up-for-grabs.net
https://www.firsttimersonly.com/
https://github.com/MunGell/awesome-for-beginners
https://help.github.com/articles/helping-new-contributors-find- your-project-with-labels/
https://wiki.documentfoundation.org/Development/EasyHacks
https://community.kde.org/KDE/Junior_Jobs
https://wiki.mozilla.org/Good_first_bug

Recommending Tasks to Newcomers in OSS Projects OpenSym 2020, August 25–27, 2020, Virtual conference, Spain

formal mentorship to newcomers to support their first steps [8].
Dagenais et al. [18] reported teams that proactively mentor new-
comers make integration easier.

Formal mentorship in OSS has been attracting the attention of
some researchers. Malheiros et al. [36], Panichella [44], and Canfora
et al. [14] proposed different approaches to identify and recommend
mentors to OSS newcomers, claiming that mentoring benefits new-
comers’ onboarding. Fagerholm et al. [20] conducted a case study
to assess the impact of mentoring support on developers and found
that it significantly improves newcomer onboarding. In addition,
Schilling et al. [56] studied the impact of mentoring on developers’
training and retention in OSS projects. Based on their findings, the
authors proposed mentoring as a training method for OSS projects
and introduced ameasure to assessmentoring’s capacity to facilitate
learning and retention among developers. In contrast, Labuschagne
and Holmes [33], who studied Mozilla, evidenced that onboarding
programs may not result in long-term contributors, even though
mentored newcomers considered the mentorship program valu-
able. In previous work, Balali et al. [4] also analyzed challenges
mentors face when onboarding newcomers. However, while that
work focused on the overall process of onboarding and did not
explore in depth any specific challenges or steps, they did suggest
investigating what strategies mentors use to match tasks to fit a
newcomer’s interests and expertise as a potential fruitful research
direction.

Although the literature shows some interest in OSS mentor-
ship and approaches to support finding an appropriate task for
newcomers, to the best of our knowledge there is no systematic
identification of strategies that mentors employ to help newcomers
select their tasks and the challenges they face in this process. The
present work adds to the OSS onboarding and task recommendation
literature, as well as to the scarce literature about mentoring in
open collaboration environments.

3 RESEARCH PLANNING AND EXECUTION
In this section, we present our study planning (Section 3.1), data
collection (Section 3.2), and analysis (Section 3.3).

3.1 Study Planning
The goal of our study is to identify the challenges mentors face
and the strategies they employ to recommend tasks to newcomers
in OSS projects. To achieve this goal, we defined the following
research questions (RQs):

RQ1.What are the challenges that mentors face when rec-
ommending tasks to newcomers?
RQ2.What are the strategies mentors employ to recommend
tasks?
RQ3.Which strategies help mitigate challenges when rec-
ommending tasks to newcomers?

To answer our RQs, we designed a study combining interviews
and survey. From the interviews, we derived a set of challenges and
strategies. From the survey, we further investigated the mapping of
strategies to challenges and collected additional strategies. Figure 1
depicts the overview of our research method.

Recruiting our participants was challenging since mentors are
usually not listed in the project documentation and some projects
do not formalize this role. Moreover, mentors are often core project

members, performing mentoring activities alongside other techni-
cal ones. Therefore, to recruit the interview participants, we first
contacted two mentors using a convenience sample, and then ap-
plied the snowballing strategy. After completing each interview,
we asked the interviewee to recommend another qualified OSS
mentor for us to contact. Then, we sent the candidate a recruitment
e-mail, which asked them about their experience in onboarding and
mentoring newcomers. We included in our sample mentors from
well-established and largely used OSS projects with at least 2 years
of mentoring experience.

In total, we contacted 18 mentors, of whom we interviewed
ten. Out of these ten participants, two self-identified as women,
and eight as men. All of our interviewees had a minimum of two
years of experience mentoring newcomers in OSS communities.
Additionally, five participants had industry experience, and one had
experience working in academia. All of our interviewees received a
25-dollar gift card in compensation for their participation. Table 1
illustrates the demographic information of our study participants.

Table 1: Demographics for the Interview Participants

Years of experience
ID Gender Mentor OSS Industry OSS Project
P1 M 8 5 11 Apache Lucene, Solar
P2 M 2 3 – Gnome
P3 M 3 3 – RedHat
P4 M 3 5 6 RedHat
P5 M 2.5 7 – Gnome
P6 F 4 11 – Linux Kernel, Apache Spark
P7 M 5 5 37 Not mentioned
P8 M 30 15 > 20 Linux kernel
P9 M 16 9 – KDE
P10 F 4 5 0.5 Open Hatch

For the survey, we sent e-mails and posted advertisements on
social networks and mailing lists. We received 31 answers, from
which we discarded one due to incompleteness. Among our respon-
dents, 24 self-identified as men and 6 as women. Their experience
in open source averaged 6.8 years (min: 3, max: 15), and as a mentor
7.8 years (min: 2, max: 30).

3.2 Study Execution: Data Collection
Our first data set was collected through semi-structured interviews.
The interviews were conducted around the central question: “How
do you recommend tasks to newcomers and what do you take into
consideration?”. We followed up by asking about specific challenges
and scenarios in which the challenges occurred and how they acted
in such cases. To validate our script and measure time, we con-
ducted four pilot studies with Ph.D. students who had mentoring
experience in industry or OSS environments. The results of these
pilot interviews were discarded.

All interviews were remotely undertaken by two researchers
using Skype, Google Hangouts, or phone, and lasted about 40 min-
utes. With participant consent, we audio-recorded all interviews,
which were transcribed for the analysis. The interview script and
the survey instrument are available as part of the supplementary
material.15

The survey comprised three sections: demographics, mapping
of strategies to challenges, and open questions. To map strategies
15https://figshare.com/s/e4d1a8a13a9f5db9202d

https://figshare.com/s/e4d1a8a13a9f5db9202d

OpenSym 2020, August 25–27, 2020, Virtual conference, Spain Sogol Balali et al.

to challenges, we presented a matrix, in which the mentors were
asked to check which of the identified strategies can mitigate the
challenges we identified. In the open questions, we asked about
additional strategies (17 out of 31 answered this question); and
more details about the successful application of any of the strategies
(answered by 24 out of 31 participants).

3.3 Study Execution: Data Analysis
Each interview was manually transcribed, and then the first, third,
and fourth authors followed a card sorting approach [58] to an-
alyze the data. They started by unitizing each interview into in-
dividual cards and applied open coding to classify strategies and
challenges. During five weeks, the partial results were discussed
and validated in a weekly basis with the other three more experi-
enced authors. The whole process was conducted using continuous
comparison [66] during the coding sessions and negotiated agree-
ment [27] (as a group). In the negotiated agreement process, the
researchers discussed the rationale they used to apply particular
codes and reach consensus on which code should be applied for a
given excerpt [25, 27].

For the survey, we quantitatively analyzed the relationships
between challenges and strategies, and conducted a process similar
to the one used for the interviews to gain insights about the use of
the strategies reported in the open-ended questions.

4 RESULTS
Our study revealed challenges faced (RQ1) and strategies employed
(RQ2) by mentors when recommending tasks to newcomers. The
codebook summarizing the categories found is available as a sup-
plementary material.16

The answers to the first two research questions were input to
RQ3, in which we focused on matching strategies and challenges
faced while recommending tasks. In this section, we report our
findings per research question, illustrated by quotes from the par-
ticipants, evidence from the survey, and our observations.

4.1 What are the challenges that mentors face
when recommending tasks to newcomers?
(RQ1)

The analysis of the interviews resulted in seven categories of chal-
lenges faced by mentors while helping newcomers choose their
tasks. These challenges are shown in Table 2 and discussed as fol-
lows.

Table 2: Challenges faced by mentors for recommending
tasks for newcomers

Challenge name ID
Challenging tasks can create social fears in the newcomers C1
Mentors have to deal with newcomers’ lack of holistic understanding
about the project and its culture C2
Lack of information about how newcomer-friendly a task is C3
Difficulty in identifying the complexity of a task C4
Difficulty in estimating the amount of time necessary to finish a task C5
Lack of friendly tasks available for newcomers C6
Lack of available information about newcomer’s skills, interest, and
expertise C7

16https://doi.org/10.5281/zenodo.3970997

(C1) Challenging tasks can create social fears in the newcom-
ers (mentioned by P1, P3, P4, P10). Due to the socio-technical
nature of OSS projects, newcomers may feel fearful of exposing a
weakness or failing. P1 noted that “Usually, because of social fear,
they just back off. They think they aren’t good enough or they don’t
know enough.” P4 also mentioned that ”the biggest barrier is being
afraid of being judged.” P10 similarly stated: "sometimes newcomers
will be shy to ask for help or not actively engaged when not know-
ing where to start." Mentors need to deal with these issues when
directing newcomers to appropriate tasks.
(C2) Mentors have to deal with newcomers’ lack of holistic un-
derstanding about the project and its culture (mentioned by
P1, P2, P3, P4, P9). Projects are a complex socio-technical landscape,
and newcomers have contact with isolated parts of the code or
tasks. As mentioned by P1, “when a newcomer comes in, one thing is
they don’t understand all the moving pieces of the codebase. Even if
they get the code, they don’t get the impact on the bigger scheme of
things.” To make things worse, projects have specific conventions
and protocols, and, as mentioned by P2, “sometimes the people are so
used to these conventions, they have a hard time communicating them
because they don’t realize they exist.” These specifics may especially
harm newcomers or casual contributors [48].
(C3) Lack of information about hownewcomer-friendly a task
is (mentioned by P1, P10). Often, there is a large number of tasks
in the issue tracker—including potentially easy ones—but no direct
way to spot tasks suitable for newcomers. P1 mentioned that “we
don’t know if things are suitable for newcomers.” They complain that
people who add issues do not add relevant information and tags
that would indicate that the issue is simple to fix. Moreover, the tags
that indicate easy tasks only appear for small and isolated tasks.
P10 identified a concern about such tasks for newcomers: “I dislike
having things labeled as ’bite-size’ because it may cause someone to
skip talking to anyone and just grab something. You miss out on a lot
of important social interaction.” According to this mentor, isolation
and lack of interaction for newcomers can increase their social fear
(C1).
(C4) Difficulty in identifying the complexity of a task (men-
tioned by P7, P8). Some mentors also reported difficulties in esti-
mating a task’s complexity. P8 said “We don’t have a good way [to
evaluate the difficulty of a task]. (...) There’s a lot out there to analyze
the complexity of the code, but I’ve found none of it to be helpful in
the Linux Kernel.” Therefore, developers most often rely on their
experience to evaluate a task. However, experts suffer from the
“curse of knowledge”—the difficulty in seeing something from an
outsider’s point of view [53]. This was observed by P7: “A task may
be more involved and technical than we thought initially. Then we
may realize a task isn’t suitable for someone because it’s actually an
expert level task.”
(C5) Difficulty in estimating the time necessary to finish a
task. (mentioned by P1, P8). Complementary to the complexity of
the tasks, mentors are also concerned about task duration. Usually,
mentors do not want to give newcomers long-term assignments
and, sometimes even low complexity tasks can take a long time.
However, determining the time to complete a task is not trivial,
even for easy/non-complex tasks. P8 mentioned this difficulty: “It’s
hard to estimate the time needed for a task. I’m not good at gauging
what is appropriate for a newcomer.” This can be even worse when

https://doi.org/10.5281/zenodo.3970997

Recommending Tasks to Newcomers in OSS Projects OpenSym 2020, August 25–27, 2020, Virtual conference, Spain

Discussion/
Agreement

Transcription

Qualitative
Analysis

Resulting Barriers and
Strategies

Semi-structured
interviews

Follow up
survey

Figure 1: Research method overview

newcomers’ tasks need to be reviewed by other stakeholders for
compliance or other reasons, as mentioned by P1: “Newcomers have
to wait a while sometimes for a review, and it may even take months to
get a review because people are busy and there aren’t many committers
to review. Also, sometimes, after a few months, the project has changed
to the point where the originally submitted patch cannot even be used
anymore.”
(C6) Lack of newcomer-friendly tasks available (mentioned by
P2, P4, P5). Sometimes, there are no easy-enough tasks available at
the moment. Some interviewees reported that: “if you’re a newcomer
and come at a time when there aren’t many tasks open for newcomers,
. . . then the difficulty lies in finding something in a certain application
to turn into a newcomer task” [P2].
(C7) Lack of available information about newcomer’s skills,
interests, and expertise (mentioned by P2, P4, P7, P9). Since men-
tors may lack information to help them assess newcomers’ charac-
teristics, they often misjudge newcomers’ abilities, as P9 mentioned:
“sometimes you think they can take on more than they, in reality, are
capable of.” Mentors often do not have access to a portfolio, or a
set of previous work to evaluate the newcomers’ abilities, as P4
said “some [newcomers] are very good but they don’t have some work
portfolio to show their previous skills.” As P8 explained, "we don’t
have a good way to match a task with a developer."

4.2 What are the strategies applied by the
mentors to recommend tasks? (RQ2)

We identified 13 strategies employed by mentors, as presented in
Figure 2. We classified the strategies into five main categories, as
described below. For each strategy, after their name we list the
mentors who mentioned it.

4.2.1 Strategies to identify task complexity. As already mentioned,
identifying task complexity is challenging, even for mentors (C4).
We explicitly asked our participants if they use a tool to help de-
termine a task’s difficulty. Eight out of ten participants mentioned
that they do not use any tool. Although mentors rely on human
judgment, they employ some strategies to support their analysis.
We identified five strategies that mentors employ to identify task
complexity (Table 3).

Table 3: Strategies to identify task complexity

Category Strategy Name

Identify task complexity

Reproducing the bug
Comparing the complexity of new bugs
with existing bugs in bug tracker
Tagging the task based on difficulty
Adding documentation
Discussing tagging in the conferences

Reproducing the bug (P2). For bug-related tasks, mentors repro-
duce the error to further understand it. As P2 explained, “First of
all, we reproduce the bug and try to see what is causing it and find
out what is necessary to fix it. Then we assess whether the skill level
is similar to what a newcomer would have to fix it.”

Comparing the complexity of new bugs with existing bugs
in the bug tracker (P2). To further understand task complexity,
mentors use previously tagged issues as a scale, comparing the
complexity of new tasks with existing ones to find newcomer-
friendly tasks, as P2 stated: “we use, for example, the bug tracker to
figure out if a bug is at the same level as other newcomer bugs we
have.”

Tagging the task based on difficulty (P1, P2, P4, P5, P6, P7).
Six mentors reported that tasks in their projects are tagged based
on difficulty. Tags make newcomer-friendly tasks more visible to
and identifiable by mentors and newcomers. As P5 also pointed out,
“Mentors are strongly encouraged to tag tasks for newcomers based on
complexity (how many concepts does a newcomer need to know, how
deep should one’s knowledge be).” In Figure 3, we can see examples
of issues labeled as “good first issues.” As P4 described, “we have
this tool called Bugzilla, which we are tracking all the bugs. When we
file a bug we find to be easy; instead of going directly to fix it, we tag
it with a newcomer tag so that we have in our website a list of bugs
that are suitable for newcomers.” P6 adds: “we basically tag things
that are good starter issues. If someone asks, we show them these
starter tasks list. It’s not perfect, but it works.” On the other hand, P7
shared that newcomers do not want to only work on beginner tasks
and that labelling a task “beginner” is not very rewarding to those
working on the tasks. This mentor also reported having “medium”

OpenSym 2020, August 25–27, 2020, Virtual conference, Spain Sogol Balali et al.

Identify task complexity

Identify newcomer's
characteristics

Identify skills required for
finishing a task

Scaffold newcomer's skill
acquisition

Restructure project's task
landscape

Reproducing the bug

Comparing the complexity of new bugs with the existing bugs in bug tracker

Tagging the task based on difficulty

Adding documentation

Discussing tagging in conferences

Asking newcomers directly about their interest and expertise

Evaluating previous contributions

Breaking the code into sections and identifying the involved concepts/algorithms

Giving small issues followed by more complex ones

Assigning repetitive tasks

Encouraging newcomers to add functionalities

Dividing tasks into smaller pieces

Figure 2: Overall view of the strategies

and “major” tags, which people can progress through. However,
P10 reiterates that evaluating task difficulty is complicated: “You’re
describing the relationship between the person solving it and the task
itself. For one person, it may be easy, and for someone else it may not,
it depends on the background. Some tasks are more difficult for more
people, so you can say it’s difficult overall.”

However, as aforementioned, the lack of information about how
newcomer-friendly a task is (C3) was frequently cited as a challenge,
and P10 points out that tags might not be enough: “it can be tough
if a project doesn’t do a good job grooming tasks. When you label
something as a good task for newcomers, it’s necessary to check out
some things before making that assessment that it’s an easy task.”

Adding documentation (P2, P4). Sometimes, project members
also add information in the issue tracker to help newcomers, as
explained by P4: “we put in the description how we want the contri-
bution to be and which file they should look at. So we are pretty much
tagging bugs and creating tutorials on how to fix this specific bug so
they can learn the whole process of how to make their contribution.”
P4 further explained that the required skills should also be clear:
“You look at the description of the task, you should be able to see if
it requires familiarity with C, JavaScript, regular expressions, etc.”
P2 added: “usually when mentors assign the newcomer tag, we add
clarifying info for the newcomer to read... we also provide specific
resources for specific projects.”

Discussing tagging in conferences (P1). Due to the relevance
of tagging tasks in OSS project environments, members of OSS
projects hold discussions to improve tagging, as P1 explains: “Some
committers get together at conferences and meetups to discuss ideas to

help newcomers when getting involved... We discuss tagging at those
conferences.”

4.2.2 Strategies used to identify skills required for finishing a task.
Besides determining task complexity, mentors and newcomers need
to understand the necessary skills to complete a task. We found
that mentors usually employ two strategies to identify the skills
needed for working on a task, as listed in Table 4.

Table 4: Strategies to identify the skills required to finish a
task

Category Strategy Name

Identify skills required
for finishing a task

Breaking the code into sections and identify
the concepts/algorithms involved in that task
Forming a mental model to help assess a task

Breaking the code into sections and identifying the involved
concepts/algorithms (P5, P6, P10). Breaking the code into pieces
may help to identify required skills, as explained by P5: “To measure
the skills, I go through the code line by line and break it into sections to
tell what concepts are needed. I determine what algorithms they would
need to know, what hardware they need to know, and what coding
skills they need to work the bug.” However, recognizing the required
skill set for finishing a task is not an easy endeavor for mentors, as
P10 stated: “[identifying what skill is required for finishing a task] is
a little tough because there may be some unexpected elements.”

Forming a mental model to help assess a task (P6, P10). We
noticed that our participants reported forming amodel of the project
structure in their minds, which helped them recommending the

Recommending Tasks to Newcomers in OSS Projects OpenSym 2020, August 25–27, 2020, Virtual conference, Spain

Figure 3: JabRef’s issue tracker with labels (“good first issues”) to help newcomers identifying appropriate tasks

appropriate tasks for newcomers. For instance, P6mentioned “When
I see a task, I can make a mental model of where it may fit.” Mental
models are internal representations of the world that help humans
understand, describe, and anticipate events and situations [30, 31].
P10 reported that she thinks through a workflow model to consider
the required skills and possible locations for a bug.

4.2.3 Strategies to identify newcomer’s characteristics. Another im-
portant aspect of supporting task selection is determining new-
comers’ characteristics, including but not limited to their interests,
expertise, and areas of improvement. Mentors report identifying
newcomers’ characteristics as challenging (C7). Eight out of ten of
our participants mentioned they evaluate newcomers’ expertise,
and five out of ten mentioned they look for what newcomers are
interested in before recommending tasks to them. Our interviewees
highlighted that they avoid recommending tasks that newcomers
will not like. As P3 states, “I like to ask them if they would be in-
terested in a task before assigning.” Therefore, it is important that
mentors identify newcomers’ interests and areas of expertise. From
the analysis of the interviews, we found two strategies mentors
apply to help identify newcomers’ characteristics, as presented in
Table 5.

Table 5: Task recommendation strategies to identify the
newcomers’ characteristics

Category Strategy Name

Identify newcomer’s
characteristics

Asking newcomers directly about
their interests and expertise
Evaluating previous contributions

Asking newcomers directly about their interests and exper-
tise (P1, P3, P4, P6, P7, P9, P10). Our participants learn about
newcomers’ interests and characteristics by directly asking them
what they like and what their past experiences involved. P10 men-
tioned “I try to talk to them and help them before sending them off
to look at the issue tracker. I gauge their interests and their mindset
about the process to find a task for them.” P6 complements this view:
“I will ask someone what they are excited about and what they think
their skills are, and then I’ll tell them where to look, and they’ll come
back with some issues.”

P10 explains that her first question is usually: “what is your
background?” She also explicitly asks about previous experience
with the platform: “If a person says they haven’t worked on GitHub,
that lets me know a big part of their first contribution will be getting
to know how to use these basic tools. So maybe they will do something
like fix a typo, very straightforward.” Mentors also take into account
the initial confidence of newcomers toward a specific task before
assigning it to them. When people are initially confident, they
associate success with their ability and failure with bad luck [24].
In this sense, P1 stated that “If they’re confident with their technical
skills, we point them towards stuff involving what they know.”

Besides the current skills, mentors also ask newcomers what
they want to improve, as P10 explains: “The two main things are:
their [newcomers’] experience and how much they are looking to learn
within a specific task. Do you want something easy for you? Or do
you want to jump into something above your skill level?” Mentors
report that having had some experience with the task creates a
positive impact on their performance and motivation, as P1 stated:
“If someone is good with ZooKeeper interactions, we would point them
towards areas that focus on that.”

Evaluating previous contributions (P4, P9, P10). Previous con-
tributions provide evidence about newcomers’ expertise, as ex-
plained by P4: “If we have some way to see past contributions of the
newcomer, you can easily see it is something related to that they have
done before.” However, the mentor added that “Some students are
very good, but they don’t have some work portfolio.”

4.2.4 Scaffolding newcomer’s skill acquisition. Mentors frequently
mentioned how they recommend a sequence of tasks to onboard
newcomers, as presented in Table 6 and described below.

Table 6: Strategies to scaffold newcomers’ skills acquisition

Category Strategy Name

Scaffold newcomer’s
skill acquisition

Assigning a small task first and then
challenging the newcomers with bigger tasks
Recommending repetitive tasks

Assigning a small task first and then challenging the new-
comers with bigger tasks (P3, P7). According to our intervie-
wees, offering newcomers small starter tasks provides mentors the

OpenSym 2020, August 25–27, 2020, Virtual conference, Spain Sogol Balali et al.

opportunity to evaluate newcomers’ skills and interests and support
them through the learning curve. Regarding this, P7 stated: “Some-
times . . . you have to start on the basic tasks and go from there. We see
how they are doing and then move forward.” Furthermore, mentors
state that assigning small tasks that newcomers can complete keeps
them motivated. P3 explained the task “has to be technically very
simple[...] For example, one of the tasks we have for newcomers is
modifying strings on the UI, so they get excited about having made
that first contribution and see that everyone is using it. Since they
face so many other barriers, the first task should not be technical.
They have to figure out the tooling and Bugzilla so there is a lot they
must overcome.” Mentors adjust the trajectory of tasks based on
how they see the newcomers’ performance: “if the task should take
about a week and the person finishes in a couple of days, you think
‘hmm this may be too easy for them’.”

Recommending Repetitive Tasks (P3).Mentors also use a strat-
egy of assigning newcomers repetitive tasks to help them master
specific skills and gain confidence before they move to more com-
plex tasks. For example, P3 mentioned that“I usually choose tasks
that are repetitive but not very technical, so maybe modifying many
lines of code in the same way. It is not very technical, but then they
learn a bit more about the programming language or the API.” P6
complements this view: “Usually, it’s better if they don’t have to
learn a new skill right away.”

Letting newcomers choose their tasks (P1, P2, P4, P5, P6, P8,
P9). This was not classified as a strategy, but we want to highlight
that some mentors prefer to let newcomers find tasks that suit their
expertise and interests, as P5 explains: “I don’t assign tasks. One step
of being a contributor is choosing your own task. We use Bugzilla,
which lists all the bugs and tasks, and newcomers go there and pick
something to work on. People come to me when they don’t know what
to do. Then, I guide them about what is easier and more complex and
give them pointers.” This view is shared with P1: “they usually just
pick up something they know they would like.” Our interviewees (7
out of 10) mentioned that they usually identify a subset of tasks
and allow newcomers to choose the tasks they are more willing to
accomplish.

4.2.5 Restructure project’s task landscape. There are times during
the project life cycle in which no newcomer-friendly task exists [4];
this was mentioned as a challenge by our mentors (C6). In these
cases, mentors apply strategies to restructure the project’s task
landscape to explore or define newcomer-friendly tasks. We found
two strategies that mentors employ to achieve this goal, as can be
seen in Table 7.

Table 7: Strategies to restructure the task’s landscape

Category Strategy Name

Restructure project’s
task landscape

Dividing tasks into smaller pieces
Encouraging newcomers to add
functionalities

Dividing tasks into smaller pieces (P2, P3).Whenever possible,
mentors divide tasks into smaller pieces, as P3 explained: “usually
we can divide the tasks based on the project itself and knowledge about

specific parts of the project.” This mentor preferred to create tasks
related to the user interface: “There are parts of the projects that
are low-level and parts using the UI. The UI parts are less technical
and less demanding for a contributor while low-level tasks are more
demanding.”

Encouraging newcomers to add functionalities (P5). Another
strategy reported by our interviewees involves encouraging new-
comers to propose and add new functionalities to the project. Re-
garding this, P5 stated “In Gnome To Do, in the beginning, there were
6 tasks which were big and not suited to newcomers. Because I didn’t
have any easily fixable tasks, I encouraged newcomers to add new
functionality as a way to contribute.”

4.3 Which strategies help mitigate challenges
when recommending tasks to newcomers?
(RQ3)

Although some of the interviewees spontaneously reported some
connections between strategies and challenges, this was not an
explicit goal of our interviews. In the follow-up survey, as described
in Section 3.1, we asked the respondents to identify which of the
strategies they used to mitigate each of the challenges we identified;
we also asked them (using open-ended questions) to provide any
other strategies they used, and to mention the strategies that they
have applied with success.

Table 8 presents the number of survey answers (out of 30) that
link the strategies to the challenges. We present the cells as a heat
map, in which the darker cells represent themost recurrent matches,
while the lighter cells represent the least recurrent ones. Moreover,
cells marked with * represent those for which the link also sponta-
neously appeared in the interviews. It is worth highlighting that
each participant could checkmultiple strategies per challenge. From
the table, it is possible to capture which kinds of strategies are ap-
plied to solve each challenge. For example, we can observe that to
mitigate C4 (Difficulty in identifying the complexity of a task), the
most applied strategies are tagging the task and comparing the new
bugs with existing ones. We also observed that some challenges
may be softened by multiple strategies (e.g., C2), while for others
some specific strategies may be more appropriate than others (e.g.,
C6).

The table also helped us to explore a particular strategy’s rel-
evance. For example, the strategies “tagging the issues based on
difficulty” and “adding documentation” are the most selected (77
and 85 times, respectively). Of the challenges these strategies help
to overcome, one notices that the smallest number of matches for ei-
ther strategy is 7. Tagging was the most mentioned strategy during
our interviews (7 out of 10 mentors), which indicates that adding
signs and more information to the issues may be a good way to
help mentors and newcomers find appropriate tasks. Moreover,
both were mentioned by 4 respondents (in the open questions) as
successful ways to support task recommendation.

“Assigning a small task first and then challenge the newcomers
with bigger tasks” and “dividing tasks into smaller pieces” were also
selected several times (69 times each) as ways to overcome multiple
challenges. Interestingly, when we asked participants through open
questions which strategies they found to be the most successful,
eight mentioned “start by assigning a small task, and then challenge

Recommending Tasks to Newcomers in OSS Projects OpenSym 2020, August 25–27, 2020, Virtual conference, Spain

Table 8: Strategies used to overcome challenges (C1–C7); the cells are shaded to reflect the number of times survey participants
mentioned thesemappings (darker cells meanmorementions). Each participant could checkmultiple strategies per challenge.
Cells marked with * represent the matches identified in the interviews.

Strategy C1 C2 C3 C4 C5 C6 C7
Reproducing the bug 1 15 15 4* 6 9 15
Comparing new bugs with the existing bugs in bug tracker 1 5 12 16* 10 5 3
Tagging the task based on difficulty 7 7* 11* 19* 12 13 8*
Adding documentation 11 19* 20* 12 7 9 7
Discussing tagging in conferences 11 7 10* 7 7 7 6
Breaking the code into sections and identifying the involved concepts/algorithms 7 15* 10 12 10 3 10
Asking newcomers directly about their interests and expertise 14 7 4 2 2 2 20*
Evaluating previous contributions 3 6 2 3 4 1 21*
Assigning a small task first and then challenge the newcomers with bigger tasks 15 19 3 8 7 7 10
Recommending repetitive tasks 11 14 3 2 4 7 12
Encouraging newcomers to add functionalities 8 14 3 2 0 5* 12
Dividing tasks into smaller pieces 4 11 9 13 12 15* 5
C1: Newcomers’ social fear; C2: Lack of holistic understanding about the project; C3: Newcomers’ lack of information about how newcomer-friendly a task is;
C4: Difficulty in identifying the complexity of a task; C5: Difficulty in estimating the amount of time necessary to finish a task; C6: Lack of friendly tasks available for newcomers;
C7: Lack of available information about newcomer’s skills, interest, and expertise

the newcomers with bigger tasks.” One of them explicitly noted
that “giving a small task to onboard the newcomer is the best.”

We also observed that some of the strategies were applied to
specific challenges. The best examples are the strategies of “ask-
ing newcomers directly about their interests and expertise” and
“evaluating previous contributions,” which heavily focus on finding
information about newcomers’ skills (to overcome C7).

In addition, we observed that the challenge of estimating the time
necessary to finish a task (C5) is still open, with no strategy standing
out as a way to help to overcome it. The most recurrent strategy for
these challenges was “tagging the task based on difficulty.” Finally,
multiple strategies were selected by different respondents as a
way to overcome the problems with newcomers’ lack of a holistic
understanding of the project (C2).

In general, the challenges with the highest number of matches
in the survey are those that were also identified during the inter-
views. An exception is the category “assigning a small task first
and then challenge the newcomers with bigger tasks.” The respon-
dents pointed out that it may help to overcome C1 (newcomers’
experiencing social fears about working on challenging tasks) and
C2 (newcomers’ lack of holistic understanding about the project
and its culture), but no explicit link emerged in the interviews. For
the strategy “Reproducing the Bug,” while half of the respondents
mapped it to C2, C3, and C7, only four said that it helps to overcome
C4 (difficulty in identifying the complexity of a task), which was the
challenge to which the strategy was linked during the interviews.
We hypothesize that this difference occurred because the survey
was not explicit about who was responsible for reproducing the
bug.

Lastly, we also asked the respondents tomention any other strate-
gies that they use to recommend tasks to newcomers. Although we
received 17 answers for this open question, the reported strategies
could be classified into two types: strategies that are more gen-
eral, related to onboarding or mentoring in general (not specifically
for task recommendation); and replication or specialization of the
strategies mentioned by our interviewees.

For the first type (strategies related to onboarding or mentoring
in general), for example, one respondent mentioned “daily quick
meetings with newcomers” as a good way to maintain consistent
contact and follow-up with newcomers during the onboarding

process (they could perhaps also recommend tasks during these
meeting). In another case, a respondent offered a set of tips to
support newcomers’ attraction, training, and onboarding: “[Help
them to] get the software up and running with less effort; run coding
workshops so people can work on issues together and support each
other; give talks about our OSS, so people get curious.”.

For the second type (replication or specialization of the strategies
mentioned by our interviewees), for example, people reported the
usefulness of documentation (e.g., “documentation is a big one”); and
the potential use of different kinds of tagging (“continual tagging of
difficulty levels for issues”; “tagging issues based on the skills and/or
technologies that will be required to solve them.” ; “we tag and have
identified mentors who are ready to assist”. In other cases, people
mentioned ways to assign small tasks and gradually increase com-
plexity (e.g., “ask newcomers to do those small tasks and when it
comes to complex ones, we give them the chance to choose from a set
of tasks.” ; “assign easy tasks to them. Real beginners might need to
touch one class, plus test, only.”. Participants also mentioned ways
to ask newcomers directly (e.g., “personal conversation with the
newcomer. . . that paints the newcomer and mentor in the same boat.”
They confirmed that, through personal contact, “usually newcomers
show their interest in contributing to specific areas”. In summary, the
analysis of the answers to the open question did not reveal new
categories of strategies; however, it provided insights that the strate-
gies uncovered during the interviews are relatively comprehensive
and cover different specific methods mentors use to recommend
tasks.

5 DISCUSSION
In the section, we discuss task recommendation to newcomers in
light of our results and related literature by proposing guidelines
based on the identified challenges and strategies.
An overview of task recommendation bymentors. Finding an
appropriate task to work in OSS projects is a hard task for newcom-
ers [60]. This was also reported by Ann Barcomb and colleagues [7]
in the context of episodic contributors. They found that community
managers find it difficult to identify and maintain a list of tasks
that they can be picked up by these contributors, who are essen-
tially newcomers to the project. In this paper, we evidenced that
this process involves multiple challenges related to understanding

OpenSym 2020, August 25–27, 2020, Virtual conference, Spain Sogol Balali et al.

newcomers’ backgrounds and having a comprehensive knowledge
about the tasks in the project. We also observed that the mentors
have different strategies to overcome the challenges, usually not
by relying on automated processes.

In particular, identifying task complexity is relevant since new-
comers may feel demotivated if tasks are too simple or too complex.
To determine task complexity, mentors reproduce the bugs, com-
pare the bugs to other bugs on the issue tracker, and rely on tags,
documentation, and conferences. Besides identifying task complex-
ity, mentors determine the skills required for finishing the tasks.
Although some mentors are aware of tools that can help identifying
the complexity of the tasks and the required skills, they do not find
them useful for this purpose and instead rely on their judgment.
When they are unable to find any tasks that would be appropriate
for newcomers, mentors work to improve the project’s task land-
scape by introducing additional functionality to the project and
dividing tasks into smaller pieces.

Regarding the newcomers, mentors mentioned that they identify
newcomers’ characteristics by evaluating their interests and exper-
tise, their confidence levels, and the skills they want to improve.
Based on their mental models and the self-assessment of newcom-
ers, mentors try to match newcomers and tasks. To support skill
acquisition, mentors progressively increase the task complexity
level to challenge newcomers and also assign repetitive tasks.

Concerning the strategies applied to identify and recommend
the tasks to newcomer, we noticed that the findings of this study
presents a considerable intersection with the practices proposed
by Ann Barcomb et al. [7]. For example, similar “Tagging the task
based on difficulty,” they report that “Identify appropriate tasks”
and “Define one-off tasks” are good practices for community prepa-
ration to episodic contributors. Still, they identified “Detail how
to complete a task” as a practice used to support the onboarding.
Here we found indication that “Adding Documentation” helps to
overcome most of the challenges faced when mentors recommend
tasks to newcomers. This evidences that, while the strategies are
not formally documented, they are widely used.
Provide easily accessible information about the tasks. When
mentors assign tasks to newcomers, they need to filter them based
on factors such as complexity and required skills. Without proper
information, they must sift through the available tasks and read
descriptions to triage tasks that may be newcomer-friendly, or “low-
hanging fruits” [72]. Depending on the size and complexity of the
project and the number of available tasks, this can be a complicated
and tedious activity. For example, the project kubernetes17 had
more than 2,000 open tasks when this paper was written.

Labeling/tagging is a widespread practice for providing support
in task selection. During this process, project members add labels to
tasks, as described by our interviewees (Section 4.2.1). Our survey
respondents acknowledged that this strategy aids in overcoming
most of the challenges (see Table 8). Adding detail to a task can
help both mentors and newcomers develop a more holistic picture
of its complexity and solution, which facilitates the assessment
of whether a task matches a newcomer profile. We suggest that
tags inform about the tasks’ appropriateness for newcomers in
terms of required skills, priority, estimated effort, and difficulty.
Although tagging is an approach recommended by GitHub and OSS

17https://github.com/kubernetes/kubernetes/issues

project guidelines, sometimes projects do not have the capacity to
triage and label tasks. This may lead to another problem: the lack of
(explicitly) available tasks (C3). When a project adopts the labeling
strategy, it is important to maintain and update the labeled issues
to prevent newcomers from taking on already fixed or outdated
issues [59, 63]. Providing automated ways of tagging and better
supporting human annotators are still open research opportunities
that could provide great help to mentors and newcomers.
Explore different ways to understand newcomers’ skills.Our
results indicate that expertise and skill identification (C7) is a key
challenge for mentors while recommending a task to newcomers.
The evidence collected here extends the understanding that aware-
ness of developers’ skills is the foundation for building productive
teams [23]. This result may also trigger several discussions and can
be analyzed through the lens of the existing literature and theories.
A recent study from Baltes and Diehl [6] presented a theory map-
ping the main traits of software developers’ expertise. Mentoring
is explicitly presented as a central part of the theory, since it helps
“building knowledge and thus contributes to the development of
expertise.” This theory also highlights that mentorship is a feedback
mechanism that may help developers gain task-specific and general
knowledge. Although the theory shines light on the importance
of mentorship in knowledge acquisition, the authors of the theory
could not find appropriate ways to objectively assess expertise. Our
results echo this evidence, since we noticed that the mentors did
not provide any objective way to assess newcomers’ expertise.

In fact, mentors usually interact with newcomers to collect addi-
tional information to match their current skill level with the skills
required for a specific project or task. This unstructured commu-
nication creates a strong mentor-mentee bond and facilitates the
formation of ties that may influence future engagement. This strat-
egy is in line with the landscape feature of proactive assistance
and mentoring culture stated by Dagenais et al.’ [18], which was
considered by their study as the most influential in how pleasant
and efficient the integration experience was for the newcomer, and
was also mentioned by 7 survey respondents as an effective way
to reduce social fear (C1). However, sometimes the gathered infor-
mation can be subjective and influenced by low or high levels of
self-confidence. Their self-assessment may not be accurate [6], be-
cause “if a person’s pattern of past performance was highly variable
in relation to relatively constant evaluation criteria [they] would
not be able to form a stable assessment of his ability . . . highly vari-
able tasks may not be characterized by a person as skill task at all
but as involving factors beyond his control.” [24].

The strategy of directly asking newcomers to identify their skills
may also be impacted by communication issues. The literature
points out that professional developers experience gaps in com-
munication (both written and oral communication) [49] and ne-
gotiation skills [34]. Additionally, the completely remote mentor-
ing (e-mentoring) approach usually employed in OSS, as opposed
to face-to-face interactions, may reduce trust between the par-
ties [65] and likewise decrease communication effectiveness [12].
Thus, in some cases it may not reduce or eradicate newcomers’
social fears [68], especially in the initial (or introductory) phase of
the joining process [43]. Miscommunication on text-based channels
is common, since context and expression is often lost [65]. How-
ever, as the literature indicates, e-mentoring—a computer-mediated

https://github.com/kubernetes/kubernetes/issues

Recommending Tasks to Newcomers in OSS Projects OpenSym 2020, August 25–27, 2020, Virtual conference, Spain

alternative to the classic face-to-face mentoring—can scale up men-
toring, providing more information to mentees and enabling them
to connect with more people than classic face-to-face mentoring
would allow [64]. E-mentoring has a particular applicability for
OSS communities, as the work is conducted in a distributed way
[69].

As several of our interviewees reported, another way to iden-
tify existing skills is by relying on a portfolio built on data from
previous interactions with repositories and technical communities.
This is understandable since software development leaves traces of
development activities in the repository, which can then be used
for inferring the expertise of developers [17]. Existing tools such
as “My GitHub Resume”18 and “Visual Resume” [54] may help to
assess developers’ skills based on real interactions. However, these
tools are not widely-used by OSS developers. Moreover, sometimes
no historic data of a newcomer’s contributions is available to eval-
uate expertise. Therefore, mentors who are unable to promptly
identify newcomers’ skills, can instead evaluate them by giving
small tasks to the newcomers. This strategy allows them to explore
the project while they have the chance to evaluate the newcomer’s
performance. This manner of assessing skills may be effective for
contextualizing the newcomer’s background within the project
boundaries. However, it may create further issues if the tasks used
for this evaluation are too easy or too complex, including demo-
tivating newcomers and reducing retention. Therefore, mentors
should explore multiple ways to understand newcomers’ skills.
Create a pathway for newcomer learning and retention. Ac-
cording to our survey respondents, starting with smaller tasks and
following them with more complex tasks is an effective strategy.
Creating an adequate path and providing appropriate encourage-
ment and support may also help in engaging and retaining newcom-
ers. Creating these pathways depends not only on the skills of the
newcomers, but on aspects such as developers’ goals, motivations,
and availability [55]. One option is to provide tasks that require
higher competence of a particular skill and then move on to more
complex and broad tasks. Another option is to keep newcomers
working on tasks that fit their current skill set. The choice for the
most appropriate alternative should align with the newcomers’
goals, which requires constant follow-up from the mentor. The
theory of Legitimate Peripheral Participation (LPP) has been widely
adopted and describes how participation, situated learning, and
identity construction are interrelated, and can evolve as a person
joins a community of practice [29]. Instead of processing infor-
mation in an isolated style, situated learning occurs though social
interactions and puts a strong focus on practicing the acquired
knowledge [19]. Fang et al. [22] suggested that OSS developers’
learning behavior is situated in their everyday activities and that
newcomer retention can occur after having repeated positive sit-
uated learning and identity construction social interactions. The
strategy mentioned by our participants of creating an appropriate
and evolutionary pathway of tasks with appropriate encouragement
and support is also aligned with the situated learning of identity
construction LPP.
Help newcomers develop a holistic view of the project. One
challenge reported by mentors was that newcomers tend to lack a
holistic understanding of the project (C2). This is a problem that has

18https://resume.github.io/

been previously mentioned in the literature. For example, Dagenais
et al. [18] mention that newcomers are like explorers who must
orient themselves within an unfamiliar landscape. Although this
is not directly related to task recommendation, this challenge may
have implications related to ’hidden’ skills that the task may require
(e.g., libraries, frameworks, social skills, and tools). Therefore, it is
important that newcomers have a high-level view of the project
so they can identify key components, tools, structures, processes,
and practices and how they are related to the project. Providing
upfront information is important and may guide newcomers by
acting as maps and signs [62]. This was acknowledged by 19 survey
respondents (63%), whomentioned adding documentation as a good
way to overcome this challenge.

However, creating and maintaining this high-level (yet thorough)
information may be challenging. In particular, summarizing and
structuring information in a manner that does not overload the
reader but still hits all relevant points is no easy feat. In addition,
creating documentation aimed at newcomers may be challenging
when diversity needs to be considered. Different newcomers may
have different learning styles [13], requiring information to be dis-
played in various forms and depths. It is important to leverage
information architecture techniques to design an appropriate way
to display information to newcomers. Another challenge is main-
taining documentation. According to the Open Source Survey [73],
“incomplete or outdated documentation is a pervasive problem, ob-
served by 93% of respondents, yet 60% of contributors say they
rarely or never contribute to the documentation.” Thus, although
important, documentation is usually overlooked by the commu-
nity. Failing to maintain documentation in the project may lead to
untruthful or misleading information.

5.1 Future Opportunities and Implications
In this subsection, we discuss how different stakeholders can lever-
age our results. We also discuss gaps that were uncovered by our
results and can be seen as potential future research streams.
OSS communities and mentors.We found that providing up-to-
date and straightforward documentation of available open issues
and precise tagging of available open issues are some techniques
that OSS communities can utilize to support both newcomers and
mentors. Moreover, we identified a set of task recommendation
strategies and provided guidelines that can be used by mentors to
recommend tasks to newcomers.
Researchers. This research described several challenges and strate-
gies that could be further investigated and supported. Research is
needed to help the community develop a more precise description
of newcomer-friendly tasks. Observational studies may be con-
ducted to understand what information newcomers look for when
selecting a task and to provide insights about the dimensions that
should become labels. Information needs and mentoring strategies
for newcomers with different learning styles [13] could also be
investigated. In addition, exploring how the newcomers actually
find information may inform machine learning approaches to auto-
matically suggesting labels for issues. Moreover, identifying better
ways to elicit newcomers’ characteristics, evaluate their effective-
ness, and propose novel and more effective methods of evaluating
newcomers’ characteristics can be a potential research topic. Fur-
thermore, as a continuation of this work, future work may focus on

 https://resume.github.io/

OpenSym 2020, August 25–27, 2020, Virtual conference, Spain Sogol Balali et al.

investigating how each strategy influences newcomers’ motivation
to work, retention in the project, and assertiveness in recommended
tasks.
Education and Training Personnel. People interested in educa-
tion and training can make use of our findings to identify effective
ways to assign tasks to newcomers in OSS projects. Mentors play an
important role in assigning tasks to newcomers and guiding them
in finding appropriate tasks for themselves. When asked whether
they had been trained to act as a mentor, all of our participants
answered “no.” Given the number of social barriers revealed by the
participants, it is important that (future) professionals acquire the
proper social skills that will better prepare them to mentor. There-
fore, OSS communities and educators can devise specific training on
the skills needed to be a mentor and on the best strategies to recom-
mend tasks. For newcomers’ education and training, the challenges
evidenced here serve as a starting point for making instructors
aware of what to expect when incorporating OSS projects in their
teaching, which is becoming more common [11, 40, 47].

6 LIMITATIONS
Although we collected data from mentors with different back-
grounds and continued interviewing until we were not able to
identify any new challenges or strategies in 2 interviews in a row,
we likely did not discover all possible challenges and strategies
or provide complete explanation of them. To mitigate this, in our
follow up survey we asked the mentors if they applied any addi-
tional strategies and no new strategy was found. Still, we are aware
that the OSS universe is vast, and strategies can differ according to
projects.

We acknowledge that the size of our samples can be consid-
ered small. However, the amount of participants is in line with
the anthropology literature, which mentions that a minimum of 10
knowledgeable people is enough to uncover and understand the
core categories in a study of lived experience [10], and a minimum
of six interviews for phenomenological studies [39]. Moreover, we
reinforce that identifying people who are mentors in OSS projects
is not trivial. Finding participants for this study was challenging
because mentoring in such non-structured environments can take
place through private, not publicly visible communication chan-
nels [20]. To increase the number of respondents in our study, we
deployed multiple tactics to reach mentors, including reaching out
to personal contacts (and snowballing) and previous contacts with
Google Summer of Code mentors, social media posts, and OSS-
related mailing lists. We preferred not to reach people through
project-specific mailing lists or communication channels to avoid
spamming lists created for purposes not described in the code of
conduct of the projects (which may lead to ethical concerns) [5].
Moreover, we relied on self-reported experience in mentoring to
select our participants. During the analysis of the interviews we
looked for evidence of their mentoring experience and we could not
find any case for which we identified a mentor with low experience.

Since we employed a snowballing approach to sampling our
participants, we acknowledge that sampling bias affects our inter-
viewees’ selection, including self-selection and social desirability
biases. However, we counteracted this effect by seeking out differ-
ent perspectives, inviting people with different profiles and diverse
backgrounds and from various projects, and adding the survey.

Still, since our survey was anonymous, we cannot discard the po-
tential intersection between survey respondents and interviewees.
Although this is unlikely to happen, in the worst case our popula-
tion was increased 200%. Moreover, even if interviewees responded
to the survey, they were exposed to consolidated strategies, giving
them a chance to reevaluate what was found.

Another potential threat to the results’ validity is the subjectivity
of the interview data classification. To avoid this threat, we used an
approach in which all analysis was thoroughly grounded in the data
collected and exhaustively discussed amongst the whole team to
reach an agreement. The team includes researchers with extensive
experience in qualitative methods, and precautions were taken to
mitigate bias in the data collection, analysis, and report.

This research focused on OSS settings to gain a deeper under-
standing of this specific community. Challenges and strategies may
be different for companies, other online communities, and differ-
ent types of users. Future research should focus on analyzing the
commonalities and differences among task assignment strategies in
different domains to build generalized models and theories about
onboarding and mentorship in open collaboration communities.

7 CONCLUSION
In this paper, we analyzed data collected through interviews and
a survey conducted with mentors from different OSS communi-
ties to identify challenges faced and strategies used by mentors to
recommend tasks to newcomers. In our analysis, we identified 7
challenges that mentors face when recommending tasks to new-
comers. The identified challenges range from handling newcomers’
low self-efficacy (C1) and understanding their background—with
regard to the project (C2) and technical skills (C7)—to dealing with
poor (or lack of) information about the tasks available at hand (C3-
C6). Regarding the strategies, we identified 13 approaches to task
recommendation. We further classified them into 5 umbrella cat-
egories: identify newcomers’ characteristics, scaffold newcomers’
skill acquisition, identify task complexity, identify skills required
to finish a task, and restructure task landscape.

In our survey, we mapped the task recommendation strategies
to the challenges faced by the mentors. Our analysis revealed that
these strategies serve different goals (helping mitigating specific
challenges), and some help dealing with multiple challenges, for
instance, “Tagging the issues based on difficulty” and “adding doc-
umentation” are perceived as good approaches to dealing with
multiple challenges that hinder task recommendation.

Scientifically identifying mentors’ practices when recommend-
ing tasks for newcomers is, to the best of our knowledge, still
unexplored research. Our results provide insights into how men-
tors perform these strategies and can be used by: newcomers and
mentors to collaboratively devise strategies for skill acquisition
and successful onboarding to OSS projects; mentors to guide their
choices of strategies; OSS communities to improve the project’s task
landscape; and researchers and tool developers to design automated
support for the strategies employed by OSS mentors.

ACKNOWLEDGEMENTS
We thank all interviewees and survey participants for their great
contribution to this research. This work is partially supported by

Recommending Tasks to Newcomers in OSS Projects OpenSym 2020, August 25–27, 2020, Virtual conference, Spain

the National Science Foundation under Grant Numbers 1815486,
1815503, 1900903, and 1901031.

REFERENCES
[1] Tammy D Allen, Lillian T Eby, Georgia T Chao, and Talya N Bauer. 2017. Taking

stock of two relational aspects of organizational life: Tracing the history and
shaping the future of socialization and mentoring research. Journal of Applied
Psychology 102, 3 (March 2017), 324–337. https://doi.org/10.1037/apl0000086

[2] John Anvik and Gail C. Murphy. 2011. Reducing the Effort of Bug Report Triage:
Recommenders for Development-oriented Decisions. ACM Trans. Softw. Eng.
Methodol. 20, 3, Article 10 (Aug. 2011), 35 pages. https://doi.org/10.1145/2000791.
2000794

[3] B. Ashok, Joseph Joy, Hongkang Liang, Sriram K. Rajamani, Gopal Srinivasa, and
Vipindeep Vangala. 2009. DebugAdvisor: A Recommender System for Debugging.
In Proceedings of the the 7th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on The Foundations of Software
Engineering (ESEC/FSE ’09). ACM, New York, NY, USA, 373–382. https://doi.org/
10.1145/1595696.1595766

[4] Sogol Balali, Igor Steinmacher, Umayal Annamalai, Anita Sarma, and Marco Au-
relio Gerosa. 2018. Newcomers’ Barriers. . . Is That All? An Analysis of Mentors’
and Newcomers’ Barriers in OSS Projects. Computer Supported Cooperative Work
(CSCW) 27, 3 (01 Dec 2018), 679–714. https://doi.org/10.1007/s10606-018-9310-8

[5] Sebastian Baltes and Stephan Diehl. 2016. Worse than spam: Issues in sampling
software developers. In Proceedings of the 10th ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement. 1–6.

[6] Sebastian Baltes and Stephan Diehl. 2018. Towards a theory of software develop-
ment expertise. In ACM Symposium on the Foundations of oftware Engineering
(FSE 2018). 187–200.

[7] Ann Barcomb, Klaas-Jan Stol, Brian Fitzgerald, and Dirk Riehle. 2020. Managing
Episodic Volunteers in Free/Libre/Open Source Software Communities. IEEE
Transactions on Software Engineering (2020).

[8] Andrew Begel and Beth Simon. 2008. Novice Software Developers, All over Again.
In Proceedings of the Fourth International Workshop on Computing Education
Research (ICER ’08). ACM, New York, NY, USA, 3–14. https://doi.org/10.1145/
1404520.1404522

[9] Lucy M. Berlin. 1992. Beyond Program Understanding: A Look at Programming Ex-
pertise in Industry. Technical Report HPL-92-142. Hewlett-Packard Laboratories,
Palo Alto, CA, USA. http://www.hpl.hp.com/techreports/92/HPL-92-142.html.
Accessed in 18 February 2018.

[10] H Russell Bernard. 2017. Research methods in anthropology: Qualitative and
quantitative approaches. Rowman & Littlefield.

[11] Judith Bishop, Carlos Jensen, Walt Scacchi, and Arfon Smith. 2016. How to Use
Open Source Software in Education. In Proceedings of the 47th ACM Technical
Symposium on Computing Science Education (SIGCSE ’16). ACM, New York, NY,
USA, 321–322. https://doi.org/10.1145/2839509.2844665

[12] Kevin Buffardi. 2017. Comparing Remote and Co-located Interaction in Free
and Open Source Software Engineering Projects. In Proceedings of the 2017 ACM
Conference on Innovation and Technology in Computer Science Education. 22–27.

[13] Margaret Burnett, Anicia Peters, Charles Hill, and Noha Elarief. 2016. Finding
Gender-Inclusiveness Software Issues with GenderMag: A Field Investigation. In
Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems
(CHI ’16). ACM, New York, NY, USA, 2586–2598. https://doi.org/10.1145/2858036.
2858274

[14] Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and Sebastiano
Panichella. 2012. Who is Going to Mentor Newcomers in Open Source Projects?.
In Proceedings of the ACM SIGSOFT 20th International Symposium on the Foun-
dations of Software Engineering (FSE ’12). ACM, New York, NY, USA, Article 44,
11 pages. https://doi.org/10.1145/2393596.2393647

[15] Gloria Crisp and Irene Cruz. 2009. Mentoring college students: A critical review
of the literature between 1990 and 2007. Research in higher education 50, 6 (2009),
525–545. https://doi.org/10.1007/s11162-009-9130-2

[16] Davor Cubranic, Gail C. Murphy, Janice Singer, and Kellogg S. Booth. 2005.
Hipikat: a project memory for software development. IEEE Transactions on
Software Engineering 31, 6 (June 2005), 446–465.

[17] Jose Ricardo da Silva, Esteban Clua, Leonardo Murta, and Anita Sarma. 2015.
Niche vs. breadth: Calculating expertise over time through a fine-grained analysis.
In 2015 IEEE 22nd International Conference on Software Analysis, Evolution, and
Reengineering (SANER). IEEE, 409–418.

[18] Barthélémy Dagenais, Harold Ossher, Rachel K. E. Bellamy, Martin P. Robil-
lard, and Jacqueline P. de Vries. 2010. Moving into a New Software Project
Landscape. In Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering - Volume 1 (ICSE ’10). ACM, New York, NY, USA, 275–284.
https://doi.org/10.1145/1806799.1806842

[19] Amy Edmondson. 1999. Psychological Safety and Learning Behavior in Work
Teams Amy Edmondson. Administrative Science Quarterly 44, 2 (1999), 350–383.

[20] Fabian Fagerholm, Alejandro S. Guinea, Jürgen Münch, and Jay Borenstein. 2014.
The Role of Mentoring and Project Characteristics for Onboarding in Open
Source Software Projects. In ACM/IEEE International Symposium on Empirical

Software Engineering and Measurement (ESEM ’14). ACM, 55:1–55:10. https:
//doi.org/10.1145/2652524.2652540

[21] Fabian Fagerholm, Patrik Johnson, Alejandro Sanchez Guinea, Jay Borenstein,
and Jürgen Münch. 2014. Onboarding in Open Source Projects. IEEE Software 31,
6 (Nov. 2014), 54–61. https://doi.org/10.1109/MS.2014.107

[22] Yulin Fang and Derrick Neufeld. 2009. Understanding Sustained Participation in
Open Source Software Projects. Journal of Management Information Systems 25,
4 (April 2009), 9–50. https://doi.org/10.2753/MIS0742-1222250401

[23] Samer Faraj and Lee Sproull. 2000. Coordinating expertise in software develop-
ment teams. Management science 46, 12 (2000), 1554–1568.

[24] N. T. Feather. 1969. Attribution of responsibility and valence of success and failure
in relation to initial confidence and task performance. Journal of Personality and
Social Psychology 13(2) (1969). https://doi.org/10.1037/h0028071

[25] Jane Forman and Laura Damschroder. 2007. Qualitative content analysis. Empir-
ical methods for bioethics: A primer 11 (2007), 39–62.

[26] Andrea Forte and Cliff Lampe. 2013. Defining, Understanding, and Support-
ing Open Collaboration: Lessons From the Literature. American Behavioral
Scientist 57, 5 (2013), 535–547. https://doi.org/10.1177/0002764212469362
arXiv:https://doi.org/10.1177/0002764212469362

[27] D Randy Garrison, Martha Cleveland-Innes, Marguerite Koole, and James Kap-
pelman. 2006. Revisiting methodological issues in transcript analysis: Negotiated
coding and reliability. The Internet and Higher Education 9, 1 (2006), 1–8.

[28] Susan Gershenfeld. 2014. A Review of Undergraduate Mentoring Programs.
Review of Educational Research 84, 3 (2014), 365–391. https://doi.org/10.3102/
0034654313520512 arXiv:https://doi.org/10.3102/0034654313520512

[29] Karen Handley, Andrew Sturdy, Robin Fincham, and Timothy Clark. 2006. Within
and beyond communities of practice: Making sense of learning through participa-
tion, identity and practice. Journal of management studies 43, 3 (2006), 641–653.

[30] P. N. Johnson-Laird. 1983. Mental Models: Towards a Cognitive Science of Language,
Inference, and Consciousness. Harvard University Press, Cambridge, MA, USA.

[31] Philip N. Johnson-Laird. 2010. Mental models and human rea-
soning. Proceedings of the National Academy of Sciences 107,
43 (2010), 18243–18250. https://doi.org/10.1073/pnas.1012933107
arXiv:http://www.pnas.org/content/107/43/18243.full.pdf

[32] Swapna Kumar, Melissa Johnson, and Truly Hardemon. 2013. Dissertations
at a distance: Students perceptions of online mentoring in a doctoral program.
International Journal of E-Learning & Distance Education 27, 1 (2013). http:
//www.ijede.ca/index.php/jde/article/view/835

[33] Adriaan Labuschagne and Reid Holmes. 2015. Do Onboarding Programs Work?.
In Proceedings of the 12th Working Conference on Mining Software Repositories
(MSR ’15). IEEE Press, Piscataway, NJ, USA, 381–385. https://doi.org/10.1109/
MSR.2015.45

[34] Timothy C Lethbridge. 2000. What knowledge is important to a software profes-
sional? Computer 33, 5 (2000), 44–50.

[35] Craig Macdonald and Iadh Ounis. 2006. Voting for candidates: adapting data
fusion techniques for an expert search task. In Proceedings of the 15th ACM
international conference on Information and knowledge management. ACM, 387–
396.

[36] Yuri Malheiros, Alan Moraes, Cleyton Trindade, and Silvio Meira. 2012. A Source
Code Recommender System to Support Newcomers. In Proceedings of the IEEE
36th Annual Computer Software and Applications Conference (COMPSAC ’12). IEEE,
Los Alamitos, California, USA, 19–24. https://doi.org/10.1109/COMPSAC.2012.11

[37] Kay Martinez. 2004. Mentoring New Teachers: Promise and Prob-
lems in Times of Teacher Shortage. Australian Journal of Educa-
tion 48, 1 (2004), 95–108. https://doi.org/10.1177/000494410404800107
arXiv:https://doi.org/10.1177/000494410404800107

[38] Ann Mihkelson. 1997. A Model of Research Mentoring for Higher Education–An
Overview. (1997).

[39] Janice M Morse. 1994. Designing funded qualitative research.. In Handbook of
qualitative research. Sage Publications, Inc, 220–335.

[40] Debora Nascimento, Kenia Cox, Thiago Almeida, Wendell Sampaio, Roberto
Bittencourt, Rodrigo Souza, and Christina Chavez. 2013. Using Open Source
Projects in software engineering education: A systematic mapping study. In IEEE
Frontiers in Education Conference. IEEE, 1837–1843. https://doi.org/10.1109/FIE.
2013.6685155

[41] Katherine E Nugent, Gwen Childs, Rosalind Jones, and Pamela Cook. 2004. A
mentorship model for the retention of minority students. Nursing Outlook 52, 2
(2004), 89–94. https://doi.org/10.1016/j.outlook.2003.09.008

[42] Gordon O’Brien. 1967. Methods of Analyzing Group Tasks. (1967), 1–40. https:
//doi.org/dtic/tr/fulltext/u2/647762.pdf

[43] Ilan Oshri, Julia Kotlarsky, and Leslie P Willcocks. 2007. Global software develop-
ment: Exploring socialization and face-to-face meetings in distributed strategic
projects. The Journal of Strategic Information Systems 16, 1 (2007), 25–49.

[44] Sebastiano Panichella. 2015. Supporting newcomers in software development
projects. In IEEE International Conference on Software Maintenance and Evolution
(ICSME 2015). IEEE, 586–589. https://doi.org/10.1109/ICSM.2015.7332519

[45] Yunrim Park and Carlos Jensen. 2009. Beyond pretty pictures: Examining the
benefits of code visualization for open source newcomers. In Proceedings of the
5th IEEE International Workshop on Visualizing Software for Understanding and

https://doi.org/10.1037/apl0000086
https://doi.org/10.1145/2000791.2000794
https://doi.org/10.1145/2000791.2000794
https://doi.org/10.1145/1595696.1595766
https://doi.org/10.1145/1595696.1595766
https://doi.org/10.1007/s10606-018-9310-8
https://doi.org/10.1145/1404520.1404522
https://doi.org/10.1145/1404520.1404522
https://doi.org/10.1145/2839509.2844665
https://doi.org/10.1145/2858036.2858274
https://doi.org/10.1145/2858036.2858274
https://doi.org/10.1145/2393596.2393647
https://doi.org/10.1007/s11162-009-9130-2
https://doi.org/10.1145/1806799.1806842
https://doi.org/10.1145/2652524.2652540
https://doi.org/10.1145/2652524.2652540
https://doi.org/10.1109/MS.2014.107
https://doi.org/10.2753/MIS0742-1222250401
https://doi.org/10.1037/h0028071
https://doi.org/10.1177/0002764212469362
http://arxiv.org/abs/https://doi.org/10.1177/0002764212469362
https://doi.org/10.3102/0034654313520512
https://doi.org/10.3102/0034654313520512
http://arxiv.org/abs/https://doi.org/10.3102/0034654313520512
https://doi.org/10.1073/pnas.1012933107
http://arxiv.org/abs/http://www.pnas.org/content/107/43/18243.full.pdf
http://www.ijede.ca/index.php/jde/article/view/835
http://www.ijede.ca/index.php/jde/article/view/835
https://doi.org/10.1109/MSR.2015.45
https://doi.org/10.1109/MSR.2015.45
https://doi.org/10.1109/COMPSAC.2012.11
https://doi.org/10.1177/000494410404800107
http://arxiv.org/abs/https://doi.org/10.1177/000494410404800107
https://doi.org/10.1109/FIE.2013.6685155
https://doi.org/10.1109/FIE.2013.6685155
https://doi.org/10.1016/j.outlook.2003.09.008
https://doi.org/dtic/tr/fulltext/u2/647762.pdf
https://doi.org/dtic/tr/fulltext/u2/647762.pdf
https://doi.org/10.1109/ICSM.2015.7332519

OpenSym 2020, August 25–27, 2020, Virtual conference, Spain Sogol Balali et al.

Analysis (VISSOFT ’09). IEEE, 3–10.
[46] Stephanie C Payne and Ann H Huffman. 2005. A longitudinal examination of the

influence of mentoring on organizational commitment and turnover. Academy
of Management Journal 48, 1 (February 2005), 158–168. https://doi.org/10.5465/
AMJ.2005.15993166

[47] Gustavo Pinto, Igor Steinmacher, Fernando Figueira Filho, and Marco A. Gerosa.
2017. Training the Next Generation of Software Engineers using Open-Source
Software: An Interview Study. In IEEE 30th International Conference on Software
Engineering Education and Training (CSEET 2017). IEEE, Los Alamitos, California,
USA, 5.

[48] Gustavo Pinto, Igor Steinmacher, and Marco Gerosa. 2016. More Common Than
You Think: An In-Depth Study of Casual Contributors. In SANER. 112–123.

[49] Alex Radermacher and Gursimran Walia. 2013. Gaps between industry expec-
tations and the abilities of graduates. In Proceeding of the 44th ACM technical
symposium on Computer science education. 525–530.

[50] Belle Rose Ragins. 1989. Barriers to Mentoring: The Female Manager’s
Dilemma. Human Relations 42, 1 (January 1989), 1–22. https://doi.org/10.1177/
001872678904200101

[51] Donna Redman, Sharon Conley, and Terrence E. Deal. 2015. A cultural approach
to mentoring new teachers. In Mentoring for school quality: How educators can
be more professional and effective, Bruce S. Cooper and Carlos R. McCray (Eds.).
Rowman & Littlefield, Lanham, Maryland, 65–80.

[52] Jonah E Rockoff. 2008. Does mentoring reduce turnover and improve skills of new
employees? Evidence from teachers in New York City. Technical Report. National
Bureau of Economic Research.

[53] Neil J Salkind. 2008. Encyclopedia of educational psychology. Sage Publications.
[54] Anita Sarma, Xiaofan Chen, Sandeep Kuttal, Laura Dabbish, and Zhendong

Wang. 2016. Hiring in the Global Stage: Profiles of Online Contributions. In 2016
IEEE 11th International Conference on Global Software Engineering (ICGSE). 1–10.
https://doi.org/10.1109/ICGSE.2016.35

[55] Anita Sarma, Marco Aurélio Gerosa, Igor Steinmacher, and Rafael Leano. 2016.
Training the Future Workforce Through Task Curation in an OSS Ecosystem. In
24th ACM SIGSOFT International Symposium on Foundations of Software Engi-
neering (FSE 2016). ACM, New York, NY, USA, 932–935. https://doi.org/10.1145/
2950290.2983984

[56] Andreas Schilling, Sven Laumer, and Tim Weitzel. 2012. Who Will Remain?
An Evaluation of Actual Person-Job and Person-Team Fit to Predict Developer
Retention in FLOSS Projects. In Proceedings of the 2012 45th Hawaii International
Conference on System Sciences (HICSS ’12). IEEE Computer Society, 3446–3455.
https://doi.org/10.1109/HICSS.2012.644

[57] Susan E. Sim and Richard C. Holt. 1998. The ramp-up problem in software
projects: a case study of how software immigrants naturalize. In Proceedings
of the 20th International Conference on Software Engineering (ICSE ’98). IEEE,
361–370. https://doi.org/10.1109/ICSE.1998.671389

[58] Donna Spencer. 2009. Card sorting: Designing usable categories. Rosenfeld Media.
[59] Igor Steinmacher, Ana Paula Chaves, and Marco Aurélio Gerosa. 2013. Awareness

Support in Distributed Software Development: A Systematic Review andMapping
of the Literature. Computer Supported Cooperative Work (CSCW) 22, 2-3 (2013),
113–158. https://doi.org/10.1007/s10606-012-9164-4

[60] Igor Steinmacher, Tayana Conte, and Marco Aurélio Gerosa. 2015. Understanding
and Supporting the Choice of an Appropriate Task to Start With In Open Source
Software Communities. In 2015 48th Hawaii International Conference on System
Sciences (HICSS ’15). IEEE, 5299–5308.

[61] Igor Steinmacher, Tayana Conte, Marco Aurélio Gerosa, and David F. Redmiles.
2015. Social Barriers Faced by Newcomers Placing Their First Contribution in
Open Source Software Projects. In Proceedings of the 18th ACM Conference on
Computer Supported Cooperative Work & Social Computing (CSCW ’15). ACM,
New York, NY, USA, 1379–1392. http://doi.acm.org/10.1145/2675133.2675215

[62] Igor Steinmacher, Tayana Uchoa Conte, Christoph Treude, and Marco Aurélio
Gerosa. 2016. Overcoming Open Source Project Entry Barriers with a Portal for
Newcomers. In 38th International Conference on Software Engineering (ICSE ’16).
ACM, New York, NY, USA, 273–284. https://doi.org/0.1145/2884781.2884806

[63] Igor Steinmacher, Christoph Treude, and Marco Gerosa. 2018. Let me in: Guide-
lines for the Successful Onboarding of Newcomers to Open Source Projects. IEEE
Software (2018), 1–1. https://doi.org/10.1109/MS.2018.110162131

[64] Heidrun Stoeger, Xiaoju Duan, Sigrun Schirner, Teresa Greindl, and Albert Ziegler.
2013. The effectiveness of a one-year online mentoring program for girls in STEM.
Computers & Education 69 (2013), 408–418.

[65] Margaret-Anne Storey, Alexey Zagalsky, Fernando Figueira Filho, Leif Singer,
and Daniel M German. 2016. How social and communication channels shape and
challenge a participatory culture in software development. IEEE Transactions on
Software Engineering 43, 2 (2016), 185–204.

[66] Anselm Strauss and Juliet M. Corbin. 2007. Basics of Qualitative Research :
Techniques and Procedures for Developing Grounded Theory (3rd ed.). SAGE
Publications.

[67] Chris Street. 2004. Examining Learning To Teach through a Social Lens: How
Mentors Guide Newcomers into a Professional Commuity of Learners. Teacher
Education Quarterly 31, 2 (2004), 7–24.

[68] Gil Taran and Lynn Carter. 2010. Improving distance mentoring: Challenges and
how to deal with them in global development project courses. In Conference on
Software Engineering Education and Training (CSEET). IEEE, 97–104.

[69] Erik H Trainer, Arun Kalyanasundaram, and James DHerbsleb. 2017. E-mentoring
for software engineering: a socio-technical perspective. In 2017 IEEE/ACM 39th
International Conference on Software Engineering: Software Engineering Education
and Training Track (ICSE-SEET). IEEE, 107–116.

[70] Georg von Krogh, Sebastian Spaeth, and Karim R. Lakhani. 2003. Community,
joining, and specialization in open source software innovation: A case study.
Research Policy 32, 7 (2003), 1217–1241.

[71] Jianguo Wang and Anita Sarma. 2011. Which bug should I fix: helping new
developers onboard a new project. In Proceedings of the 4th InternationalWorkshop
on Cooperative and Human Aspects of Software Engineering (CHASE ’11). ACM,
New York, NY, USA, 76–79.

[72] Vincent Wolff-Marting, Christoph Hannebauer, and Volker Gruhn. 2013. Patterns
for tearing down contribution barriers to FLOSS projects. In Proceedings of the
12th International Conference on Intelligent Software Methodologies, Tools and
Techniques (SoMeT ’13). IEEE, 9–14. https://doi.org/10.1109/SoMeT.2013.6645669

[73] Frances Zlotnick. 2017. GitHub Open Source Survey 2017.
http://opensourcesurvey.org/2017/. (jun 2017). https://doi.org/10.5281/
zenodo.806811

https://doi.org/10.5465/AMJ.2005.15993166
https://doi.org/10.5465/AMJ.2005.15993166
https://doi.org/10.1177/001872678904200101
https://doi.org/10.1177/001872678904200101
https://doi.org/10.1109/ICGSE.2016.35
https://doi.org/10.1145/2950290.2983984
https://doi.org/10.1145/2950290.2983984
https://doi.org/10.1109/HICSS.2012.644
https://doi.org/10.1109/ICSE.1998.671389
https://doi.org/10.1007/s10606-012-9164-4
http://doi.acm.org/10.1145/2675133.2675215
https://doi.org/0.1145/2884781.2884806
https://doi.org/10.1109/MS.2018.110162131
https://doi.org/10.1109/SoMeT.2013.6645669
https://doi.org/10.5281/zenodo.806811
https://doi.org/10.5281/zenodo.806811

	Abstract
	1 Introduction
	2 Related work
	2.1 Task recommendation
	2.2 Mentoring

	3 Research Planning and Execution
	3.1 Study Planning
	3.2 Study Execution: Data Collection
	3.3 Study Execution: Data Analysis

	4 Results
	4.1 What are the challenges that mentors face when recommending tasks to newcomers? (RQ1)
	4.2 What are the strategies applied by the mentors to recommend tasks? (RQ2)
	4.3 Which strategies help mitigate challenges when recommending tasks to newcomers? (RQ3)

	5 Discussion
	5.1 Future Opportunities and Implications

	6 Limitations
	7 Conclusion
	References

