
More Common Than You Think: An In-Depth
Study of Casual Contributors

Gustavo Pinto
Informatics Center

Federal University of Pernambuco
Recife, PE, Brazil
ghlp@cin.ufpe.br

Igor Steinmacher
Department of Computing

Federal University of Technology – Paraná
Campo Mourão, PR, Brazil

igorfs@utfpr.edu.br

Marco Aurélio Gerosa
Institute of Mathematics and Statistics

University of São Paulo
São Paulo, SP, Brazil

gerosa@ime.usp.br

Abstract—Source code hosting websites (code forges) have re-
cently changed to more social environments, and the contribution
process evolved to the so-called pull-based development model.
Due to the facilities brought by this evolution, Open Source
Software (OSS) projects are now facing a high exposure, leading
to an increasing number of contributors. However, not all these
contributors want to have a long-term engagement with the
project. In fact, popular projects are known to have a restrict set
of core developers who drive the project, but now these projects
count on a broad set of “not that involved” developers, which are
responsible for a long tail of small contributions. In this paper, we
shed the light on this important but overlooked set of developers:
the casual contributors (also known as drive-by commits). First,
we mined popular software repositories hosted on GitHub to
investigate how common casual contributions are, and what are
their characteristics. Second, we conducted two surveys with (1)
the casual contributors and (2) the project maintainers aimed
at understanding what motivates casual contributors and how
they are perceived. Our results showed that although casual
contributors are rather common (48.98% of the whole population
of contributors in the projects analyzed), they are responsible for
only 1.73% of the total number of commits. We also found that
casual contributions are far from being trivial: even though a
significant proportion of them are fixing typos and grammar
issues (28.64%), we found several of them that have fixed bugs
(30.20%), added new features (18.75%), and refactored code
(8.85%). Still, we found that both casual contributors and project
maintainers believe that casual contributions have more benefits
than drawbacks. As a casual contributor said: “every bit helps”.

I. INTRODUCTION

The development of Open Source Software (OSS) is usually
an activity intrinsically collaborative [63]. More recently, with
the growth of OSS communities, a plethora of social coding
environments were created. These environments changed the
way developers contribute to OSS projects [59], in particular
by providing a single process of contribution, which is called
pull-based model [43]. The contribution process is stream-
lined: interested developers clone (or “fork”) public projects,
implement improvements, and then offer the modifications
back to the original project [59]. As a result of these facilities,
OSS projects are now facing a high exposure, leading to an
increasing number of contributors [43], [44], [59].

This kind of environment, together with its contribution
model, encourages newcomers to participate in the process.
However, despite the facilities aforementioned, newcomers
still need to get acquainted with the project specificities, which

increases the learning curve and may prevent one to contribute.
Consequently, a significant number of newcomers end up
abandoning the project [68]. To mitigate this problem, many
studies have been focusing on different aspects of newcomers
joining process, including how to become a core member,
motivation and retention [67], [70], [37]. These studies were
concerned about the dynamics that drive newcomers to be-
come long-term contributors [39], [66]. However, while some
contributors want to have a key role on the project, some
others do not share the same desire, although they still want to
contribute. In fact, it is well-known that popular projects have a
restrict set of core developers, who drive the project, but also a
broad set of “not that involved” (or inactive) developers, which
are responsible for a long tail of small contributions [42].
Although these developers do not want to become active
members, they foster diversity and collaboration.

In this study, we shed light on what we call “casual
contributors”. This phenomenon is already known in the
software engineering community, and is gaining even more
attention lately [59], [51], [60], [43]. In particular, Pham et
al. [59], [60] was the first to observe this behavior, referring
to it as “drive-by commits.” According to their study, drive-
by commits are “simple commits that leave their creators
rather uninvolved with the project and that can be created
with very little project-specific knowledge”. Interestingly, this
kind of contribution is becoming more common. According
to Gousios et al. [43], casual contributions account for 7%
of the pull-requests made to GitHub projects in 2012. More
interestingly, however, is the belief that these contributions are
based on fixing documentations issues (e.g., a spelling error or
a missing translation), in which the contributor could quickly
make a correction for it.

Despite the growing number of newcomers interested in
contributing to OSS [52], little is known about this particular
kind of contributor: the casual contributor. According to the
literature, more research is needed to better understand the
process, benefits [59] and implications [43], [71] of such con-
tributions. Starting from this premise, this paper presents an
empirical study aimed at illuminating the casual contributors.
In particular, our study is unique in its focus on understanding
(1) how common they are, (2) what are the characteristics of
their contributions, and (3) how they are perceived. Answering

these questions incurs in guidance for software developers,
researchers, tool builders, and educators (§ IV).

In this paper we conducted a two-phase study aimed at
providing answers to these questions. The first phase is based
on a quantitative and qualitative analysis of data from GitHub.
As one of the most popular code forges, with more than 11M
users and 29M projects1, GitHub is often used for software
engineering studies [43], [44], [53], [61]. We complemented
the analysis from GitHub data with our second phase: two
surveys conducted with 197 casual contributors and 65 project
maintainers2. Our study produced a set of findings, many
of which were unexpected. We discuss them in detail in
Section III. In the following, we highlight three of them.

• Casual contributors are rather common. 48.98% of the
overall contributors that we analyzed are actually casual
contributors. However, these contributors are responsible
for only 1.73% of the total contributions in our set of
analyzed projects.

• Casual contributions are far from being trivial. After
a manual inspection of a sample of casual contributions,
we found that although 28.64% of them are related
to grammar and typo fixes, 30.20% of them fix bugs,
18.75% propose new features, and 8.85% refactor code.

• Casual contributions are well liked. Personal needs
was the most reported motivation for the casual contrib-
utors, who claim that lack of time is a reason for not
becoming more active. These contributions are perceived
as a beneficial phenomenon from the perspective of
maintainers and casual contributors. As a shortcoming,
maintainers reported an increasing number of reviews,
which demands time from core developers.

II. STUDY METHODOLOGY

In this section, we describe the research questions (§ II-A),
and the study was conducted (§ II-B and § II-C).

A. Research Questions

Our examination of the literature revealed that the phe-
nomenon of casual contributors (or drive-by commits) is
already known in the software engineering community [43],
[51], [59]. However, these studies do not examine how com-
mon is it or how project maintainers perceive it. With the
growth of popularity of OSS systems, and due to the simplicity
of sending a contribution to these projects, it is important
to expand our understanding about this phenomenon. The
overall research goal of this paper is to gain an in-depth
understanding of the casual contributors, as well as the benefits
and problems behind it. As a first step towards our research
goal, we designed the following research questions:
RQ1. How common are casual contributors in OSS projects?

This research question investigates how commonplace are
casual contributors in our set of projects. As we shall see in
Section II-B, we used GitHubArchive to find representative

1https://github.com/about/press
2The replication package is available at: http://bit.ly/casual-contributors

OSS projects. After identifying our target subjects, we semi-
automatically study their commit logs and file contents.
RQ2. What are the characteristics of a casual contribution?

Here we dig into the details of a casual contribution. First,
we studied the number of additions and deletions performed
in a casual contribution. Second, we selected a representative
sample of 384 casual contributions for a manual inspection.
This sample size provides a confidence level of 95% with a
±5% confidence interval. This manual inspection is aimed at
understanding the intention of a casual contribution.
RQ3. How do casual contributors and project maintainers
perceive casual contributions?

Finally, we investigated what are the motivations of casual
contributors, how project maintainers perceive them, and what
are the benefits and problems behind it. In order to answer this
question, we conducted two surveys with casual contributors
and with the projects maintainers.

B. Study 1: Mining software repositories

We first selected the most popular programming languages
on GitHub, listed elsewhere [61]: C, C++, Clojure, Coffee-
Script, Erlang, Go, Haskell, Java, JavaScript, Objective-C,
Perl, PHP, Python, Ruby, Scala, and TypeScript. For each pro-
gramming language, we created a query using GitHubArchive3

to select the top 20 most popular projects, in terms of the
number of stars. We ran this query on Oct. 6, 2015. Our initial
corpus comprises 320 mature, non-trivial, OSS projects. These
projects had a total of 73,960 contributors whose performed
2,039,376 contributions.

When manually analyzing these projects, we observed some
projects that were wrongly sampled. For example:

1) Projects that the were classified as one programming lan-
guage (e.g., Ruby), but does not use that language inten-
sively. One example is project beautiful-web-type[26],
which is categorized as Ruby, but only 1.1% of its source
code is Ruby code. We hypothesize that this misleading
categorization is because some data on GitHubArchive
is outdated. Thus, when GitHubArchive downloaded the
project it is likely that the project was written mostly
on Ruby, but due to the evolution of the project, the
project started to use other programming languages. We
removed 15 projects using this criterion.

2) Projects that are not software projects. For instance,
we found that some popular projects are textbook
projects [27], or bookmarks projects [14]. We believe it
is important to focus on software projects, because the
particular characteristics of a programming language and
contribution process might influence not only the coding
process, but also the community engagement [61]. We
removed 21 projects that matched with this criterion.

3) Projects that are not collaborative. We removed one
project that was created and maintained by a single
developer [22]. Albeit this project is interesting and
popular, it does not serve for the purposes of this study.

3https://www.GitHubarchive.org/

https://github.com/about/press
http://bit.ly/casual-contributors
https://www.GitHubarchive.org/

We ended up with a curated list of 275 popular, non-
trivial OSS projects. A typical empirical software engineering
paper studies under 10 projects [54]. Table I shows the
descriptive characteristics of our projects in terms of line of
code, organized by programming language.

TABLE I
LINES OF CODE PER PROGRAMMING LANGUAGE.

Language Mean Median Standard Dev. Histogram

C 991,500 114,800 3,052,684

Histogram of vector

vector

F
re

q
u
e
n
c
y

0.0e+00 4.0e+06 8.0e+06 1.2e+07

0
5

1
0

C++ 711,051 115,200 1,192,624

Histogram of vector

vector

F
re

q
u
e
n
c
y

0e+00 1e+06 2e+06 3e+06 4e+06

0
4

8
1
2

Clojure 15,932 5,100 35,042.08

Histogram of vector

vector

F
re

q
u
e
n
c
y

0 50000 100000 150000

0
5

1
0

CoffeeScript 16,640 5,470 34,676.8

Histogram of vector

vector

F
re

q
u
e
n
c
y

0 50000 100000 150000

0
5

1
0

1
5

Erlang 22,400 11,420 24,822.19

Histogram of vector

vector

F
re

q
u
e
n
c
y

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

0
4

8

Go 151,000 30,650 246,005.3

Histogram of vector

vector

F
re

q
u
e
n
c
y

0e+00 2e+05 4e+05 6e+05 8e+05

0
4

8
1
2

Haskell 29,850 14,180 32,069

Histogram of vector

vector

F
re

q
u
e
n
c
y

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

0
4

8

Java 160,100 35,690 238,195.8

Histogram of vector

vector

F
re

q
u
e
n
c
y

0e+00 2e+05 4e+05 6e+05

0
4

8
1
2

JavaScript 81,030 38,960 108,604.1

Histogram of vector

vector

F
re

q
u
e
n
c
y

0e+00 1e+05 2e+05 3e+05 4e+05

0
4

8
1
2

Objective-C 15,050 9,012 14,899.88

Histogram of vector

vector

F
re

q
u
e
n
c
y

0 10000 30000 50000

0
4

8

PHP 71,150 8,465 146,096

Histogram of vector

vector

F
re

q
u
e
n
c
y

0e+00 2e+05 4e+05 6e+05

0
5

1
0

Perl 4,851 12,310 17,856.52

Histogram of vector

vector

F
re

q
u
e
n
c
y

0 20000 40000 60000 80000

0
4

8
1
2

Python 43,340 12,800 63,073.03

Histogram of vector

vector

F
re

q
u
e
n
c
y

0 50000 100000 150000 200000 250000

0
4

8
1
2

Ruby 94,640 14,140 223,956

Histogram of vector

vector

F
re

q
u
e
n
c
y

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

0
5

1
0

Scala 56,520 33,740 69,785.2

Histogram of vector

vector

F
re

q
u
e
n
c
y

0 50000 150000 250000

0
4

8
1
2

TypeScript 59,540 43,230 63,272.07

Histogram of vector

vector

F
re

q
u
e
n
c
y

0 50000 150000 250000

0
4

8

Also, we found contributors who had contributed more
than once using different full names and/or email addresses.
To mitigate these cases, we used a disambiguation technique
proposed by Bird et al. [36]. Although the technique works
on both full names and email addresses, we applied it on
the full names only, since git disambiguates contributors
with the same full name but with different email addresses.
The technique works as follows: For each full name, we
(1) removed all punctuation, accentuation, suffixes (e.g.,“jr”),
(2) turned all whitespace into a single space, and (3) split
the name (using whitespace and commas as cues) into first
name and last name. We consider names similar if the full
names are similar, or if both first and last names are similar.
We removed 1,281 duplicate contributors that matched this
criterion. Table II groups projects according to the number of
different contributors.

As we can see from this table, most of the analyzed projects
have between 10 to 249 different contributors (71.98% of the
total). Interestingly, 15 projects became popular with no more
than 9 contributors. On the other hand, we found that projects
that are able to attract a high number of contributors (e.g.,
+1,000 different contributors), such as django or rails
projects, are exceptions in our dataset. We found only 7
projects with this characteristic. Similarly, Linux is the only
outlier found with more than 10,000 different contributors.

TABLE II
CONTRIBUTORS DISTRIBUTION.

Contributors # % Examples
1 — 9 15 5.45% openbay, misultin, ccv

10 — 49 71 25.81% masscan, websocketd, ruby
50 — 99 65 23.63% picasso, xctool, twemproxy

100 — 249 62 22.54% memcached, sbt, yesod
250 — 499 34 12.36% bitcoin, ipython, jquery
500 — 999 21 7.36% jekyll, cakephp, php-src

1,000 — 4,999 6 2.18% django, homebrew, rails
5,000 — 9,999 0 0% —

≥ 10,000 1 0.36% linux

C. Study 2: Surveys with practitioners

To better understand what motivates casual contributors to
have this behavior, and what are the benefits and drawbacks of
this kind of contribution, we conducted two surveys with (1)
the casual contributors and (2) the project maintainers. Both
surveys were based on the recommendations of Kitchenham
et al. [49], following the phases prescribed: planning, creating
the questionnaire, defining the target audience, evaluating,
conducting the survey, and analyzing the results.

The questionnaire with the casual contributors had 9 ques-
tions and was structured to limit responses to multiple-choice
and open-ended questions. We asked questions about their
contribution behavior and their motivation to make casual
contributions. We selected a random sample of 865 casual
contributors to send the questionnaire. However, 105 emails
returned due to technical reasons (e.g., domain name not
found). A total of 760 emails were successfully sent. Over
a period of 14 days, we obtained 197 responses, resulting in
25.92% of response rate. This response rate is 5 time greater
than the ones found in software engineering surveys [48].

The questionnaire with the project maintainers had 5 ques-
tions and had only free-forms. It focused on better under-
standing their perspective about the casual contributors. Our
target population is formed by software developers that had
contributed the most to our analyzed projects. For each project,
we manually analyzed the top-3 developers with the highest
number of contributions. However, we found cases where the
contributors found performed very few contributions (usually
less than 10). This happens because some projects were mostly
maintained by a single developer. We removed these develop-
ers. We sent the questionnaire to 621 project maintainers, but
13 emails were returned due to technical reasons. 608 emails
were successfully sent. Over a period of 14 days, we obtained
64 responses, resulting in 10.52% of response rate.

We qualitatively analyzed the answers to the open-ended
questions following open-coding and axial-coding proce-
dures [69]. When analyzing the quantitative data from the
casual contributors survey, we observed that 65.8% of our
respondents contribute to OSS at least once per month, and
75.2% of them are used to making casual contributions.
Most surprisingly, however, we received 50+ emails from the
participants, congratulating us for conducting this study. Also,
when asked whether the respondent is interested in receiving

the results of the study, all respondents said yes. This shows
that this is a subject that practitioners are interested in.

III. STUDY RESULTS

In this section, we report the results of our study grouped
by each research question.

A. RQ1. How common are casual contributors in OSS
projects?

To start answering our first research question, Figure 1
presents an overall picture of the studied projects. Here each
histogram groups the projects analyzed of each programming
language. We removed outliers from the histograms that would
otherwise skew the proportion of the figures. Several interest-
ing observations can be derived from this figure. First, to some
extent, the analyzed projects have a similar characteristic: most
of the contributors perform very few contributions (contribu-
tions per contributor: median: 2, mean: 27.57, 3rd Quartile: 4,
Std. deviation: 238.69).

Interestingly, we found that a non-negligible number of
contributors (48.98%) performed a single contribution. Based
on this finding, we decided that the casual contributor is a
contributor that performed at most one commit to a software
project. Still, we observed that the more long-lived the projects
are, the more likely they are to receive a high number of
casual contributions. For instance, the linux project, which
has about 20 years of coding history, received a total of
5,626 casual contributions (39.28% of the total). Similarly, the
rails project, with 11 years old, and the django project,
with 10 years old, received respectively 1,860 (54.21%) and
687 (61.57%) casual contributions.

This significant number of casual contributors might lead
one to believe that an important proportion of the projects are
intrinsically made by casual contributions. In reality, we found
the opposite: these casual contributors are responsible for only
1.73% of the total number of contributions in our corpus
of OSS projects (linux: 1.02%, rails: 3.46%, django:
3.19%). For a more detailed perspective, Figure 2 shows the
percentage of the casual contributors (top) and contributions
(bottom) for each programming language analyzed.

These figures shows a couple of interesting information.
First, it reinforces our first finding (and corroborates Gousios’s
findings [43]): a large group of contributors are responsible
for a long tail of small contributions. One of the possible
explanations for this behavior is because GitHub provides
low-barrier mechanisms to one get involved with an OSS
project. Thus, the barrier for performing simple contributions,
such as fixing a typo, is negligible. Second, we can see
that the programming language used matters. For instance,
projects written in static typed programming languages (e.g.,
C, TypeScript and C++) seem to be less favorable to receive
casual contributions than those using dynamic typed ones (e.g.,
Ruby, Python and JavaScript). There are some exceptions,
though. PHP (a dynamic weakly typed programming language)
have a similar percentage of casual contributors as C or C++
(two static strongly typed ones). One possible explanation for

40

45

50

55

60

C
Ty

p
e
S

cr
ip

t

C
+
+

E
rl
a
n
g

P
H

P
H

a
sk

e
ll

S
ca

la
C

lo
ju

re G
o

Ja
va

C
o
ffe

e
S

cr
ip

t

P
e
rl

R
u
by

P
yt

h
o
n

O
b
je

ct
iv

e
−
C

Ja
va

S
cr

ip
t

Programming Languages

(%
)

Percentage of Casual Contributors

1

2

3

4

Ty
p
e
S

cr
ip

t C

C
+
+

E
rl
a
n
g

S
ca

la

Ja
va

P
H

P

G
o

H
a
sk

e
ll

P
yt

h
o
n

C
lo

ju
re

P
e
rl

R
u
by

O
b
je

ct
iv

e
−
C

Ja
va

S
cr

ip
t

C
o
ffe

e
S

cr
ip

t

Programming Languages

(%
)

Percentage of Casual Contributions

Fig. 2. Percentage of casual contributors and contributions per programming
language.

this fact is because scripting programming languages are more
concise than procedural and object-oriented ones [56], and size
really matters when it comes to casual contributors. Similarly,
pure functional programming languages (e.g., Haskell, Clojure
and Erlang) seem to be less favorable to receive casual contri-
butions than scripting ones (e.g., Ruby, Python and JavaScript).
We believe that part of this is because functional programming
is still becoming popular among software developers.

Since we observed that dynamic languages are more likely
to receive casual contributions, Figure 3 shows the percentage
of casual contributors and contributions of projects written
with the Ruby programming language.

As we can see in this figure, even though the rails
project has a total of 1,860 casual contributors (54.19%
of the total contributors), it is not the Ruby project the
presents the highest proportion of casual contributors. In fact,
67.76% of contributors of the capistrano project are casual
contributors. These casual contributors are responsible for
11.60% of the overall contributions performed in this project.
Differently, we observed that the ruby project, which is the
implementation of the Ruby language, was not capable of
attracting casual contributors. Only 5.26% of its contributors
are casual contributors, which are responsible for only 0.01%
of the contributions performed in this project.

B. RQ2. What are the characteristics of a casual contribution?

In this RQ, we analyzed the characteristics of the casual
contributions in both quantitative and qualitative terms. Fig-
ure 4 shows the median of additions, deletions, and files
touched of each casual contribution performed on the Ruby
projects analyzed.

C

of contributions

#
 o

f
c
o

n
tr

ib
u

to
rs

0 5 10 15 20

0
4

0
0

0
1

0
0

0
0

C++

of contributions

#
 o

f
c
o

n
tr

ib
u

to
rs

0 5 10 15 20

0
4

0
0

0
1

0
0

0
0

Clojure

of contributions

#
 o

f
c
o

n
tr

ib
u

to
rs

0 5 10 15 20

0
4

0
0

0
1

0
0

0
0

CoffeeScript

of contributions

#
 o

f
c
o

n
tr

ib
u

to
rs

0 5 10 15 20

0
4

0
0

0
1

0
0

0
0

Erlang

of contributions

#
 o

f
c
o

n
tr

ib
u

to
rs

0 5 10 15 20

0
4

0
0

0
1

0
0

0
0

Go

of contributions

#
 o

f
c
o

n
tr

ib
u

to
rs

0 5 10 15 20

0
4

0
0

0
1

0
0

0
0

Haskell

of contributions

#
 o

f
c
o

n
tr

ib
u

to
rs

0 5 10 15 20

0
4

0
0

0
1

0
0

0
0

Java

of contributions

#
 o

f
c
o

n
tr

ib
u

to
rs

0 5 10 15 20

0
4

0
0

0
1

0
0

0
0

JavaScript

of contributions

#
 o

f
c
o

n
tr

ib
u

to
rs

0 5 10 15 20

0
4

0
0

0
1

0
0

0
0

Objective−C

of contributions

#
 o

f
c
o

n
tr

ib
u

to
rs

0 5 10 15 20

0
4

0
0

0
1

0
0

0
0

Perl

of contributions

#
 o

f
c
o

n
tr

ib
u

to
rs

0 5 10 15 20

0
4

0
0

0
1

0
0

0
0

Python

of contributions

#
 o

f
c
o

n
tr

ib
u

to
rs

0 5 10 15 20

0
4

0
0

0
1

0
0

0
0

Ruby

of contributions

#
 o

f
c
o

n
tr

ib
u

to
rs

0 5 10 15 20

0
4

0
0

0
1

0
0

0
0

Scala

of contributions

#
 o

f
c
o

n
tr

ib
u

to
rs

0 5 10 15 20

0
4

0
0

0
1

0
0

0
0

TypeScript

of contributions

#
 o

f
c
o

n
tr

ib
u

to
rs

0 5 10 15 20

0
4

0
0

0
1

0
0

0
0

Fig. 1. Number of contributors and contributions per programming language (without outliers).

20

40

60
ru

by
d
ia

sp
o
ra

h
u
g
in

n
d
is

co
u
rs

e
h
o
m

e
b
re

w
sp

re
e

ra
ils

g
ra

p
e

si
n
a
tr
a

je
ky

ll
re

sq
u
e

ca
py

b
a
ra

a
ct

iv
e
a
d
m

in
ca

rr
ie

rw
av

e
p
a
p
e
rc

lip
d
ev

is
e

o
ct

o
p
re

ss
ca

n
ca

n
ca

p
is

tr
a
n
o

Ruby Projects

(%
)

Percentage of Casual Contributors

0

5

10

ru
by

d
ia

sp
o
ra

d
is

co
u
rs

e
h
u
g
in

n
sp

re
e

h
o
m

e
b
re

w

ra
ils

je
ky

ll
si

n
a
tr
a

ca
py

b
a
ra

a
ct

iv
e
a
d
m

in
re

sq
u
e

g
ra

p
e

ca
rr

ie
rw

av
e

o
ct

o
p
re

ss
d
ev

is
e

ca
n
ca

n
ca

p
is

tr
a
n
o

p
a
p
e
rc

lip
Ruby Projects

(%
)

Percentage of Casual Contributions

Fig. 3. Percentage of casual contributors and contributions in Ruby Projects.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

2

4

6

8

10

#
 M

e
d
ia
n
 o
f
A
d
d
s/
D
e
ls

Dels
Adds

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

#
 M

e
d
ia
n
 o
f
Fi
le
s
U
se
d

Files

Fig. 4. The average number of additions, deletions, and files touched of
each casual contribution performed on the Ruby projects analyzed. From left
to right, projects are: 1. activeadmin, 2. cancan, 3. capistrano, 4.
capybara, 5. carrierwave, 6. devise, 7. diaspora, 8. discourse,
9. grape, 10. homebrew-cask, 11. huginn, 12. jekyll, 13.
octopress, 14. paperclip, 15. rails, 16. resque, 17. ruby, 18.
sinatra, and 19. spree.

As we can see in Figure 4, the number of additions,
deletions and files touched of contributions do not vary signifi-
cantly among the analyzed projects. The project paperclip
is the one with the highest number of additions and deletions
among the Ruby projects (Adds mean, 3rd Quartile, and Std.
deviation: 4.15, 5.75, and 1.72. Dels mean, 3rd Quartile, and
Std. deviation: 1.02, 1.0, and 0.26). With more than 8 years
old, 63% of its contributors are casual ones, who contributed
to 12.74% of the project. Analyzing the contributions with the
highest number of additions and deletions, we found that these
casual contributions are far from being trivial. For instance,
user geemus implemented an integration with fog [34], a
library to manage cloud services. This contribution has 225

additions (98 lines of Ruby code, 107 lines of testing code, and
22 lines of configuration code) and 2 deletions (in a configu-
ration file), performed in 6 different files. In this contribution,
the author added an isolated module, which did not require
him to deal with details of existing code. Conversely, the
contribution 4b8dce4 [4], which has 184 additions and 63
deletions in 2 different files, added a support for blacklisting
certain content types. For this case, the contributor needed
to understand the internal details of existing code in order to
improve it. Yet, this contribution was also backed up with new
155 lines of testing code.

To provide a different perspective, we also analyzed the con-
tributions with the lowest number of additions and deletions.
In fact, 22.7% of the casual contributions performed on Ruby
projects changed a single line of code (22.93%, when consid-
ering all analyzed projects). Even though the size of them are
rather small, the intentions of the contributions vary greatly.
For instance, some of them are aimed at (1) preventing a type
from being null [21], (2) updating documentation files [29],
(3) setting an option to a default value [15], or (4) improving
performance [33]. In particular, this performance contribution
is an interesting example of how these contributions can be
challenging and, at the same time, concise. In this contribution,
the author inlined two methods (thus decreasing the number
of virtual function calls). Such one-line modification was done
in a file with 595 lines of code, and required the author an in-
depth knowledge of the application source code. These results
suggest that the casual contributions cannot be seen as trivial.

To further investigate this matter, we selected a statically
significant sample of 384 casual contributions. These contri-
butions were performed in 138 different projects and have,
on average, 107.9 additions, 29.88 deletions, performed in
2.02 different source code files. For each contribution, we
studied the commit message and the code changes. Since some
code changes require an in-depth knowledge of the application
domain, we also searched in mailing lists, Q&A websites,
and the issue associated with it, if available. We identified
8 categories of casual contributions, summarized at Table III.
Discussions for each one of them are provided next.

TABLE III
THE CATEGORIZATION OF THE CASUAL CONTRIBUTIONS.

Category # %
Bug Fix 116 30.20%
Documentation 110 28.64%
Add New Feature 72 18.75%
Refactoring 34 8.85%
Update Version/Dependencies 25 6.51%
Improve Error/Help Messages 14 3.64%
Improve Resource Usage 8 2.08%
Add Test Cases 5 1.30%

Bug fix (116 occurrences). It is the most common kind
of casual contribution found in our dataset. Also, the kind of
bug fix, as well as the solution employed, are rather diverse.
Some examples include: layout fix [17], fixing compilation
problems [8], and fixing a broken URL [10]. Still, some bug

fixes are far from being trivial, as the one that fixed a race
condition at the linux operating system [24]. Not only difficult
to identify (such bugs are non-deterministic), the solution
employed was also scattered between C preprocessors, which
difficulties the reasoning of the compiled program. Yet, we
found that some of these bugs were discovered by the casual
contributor, and were unknown from the core developers, as
stated in a commit message: “Ran into some issues with
sending an unescaped apostrophe, but by adding it to the list
of characters to escape, this problem is now fixed for me.” [9].
Also, only 28 bug fixes were associated with a Github issue.
We believe that if more bugs were reported with issues, more
casual contributors would work on them.

Documentation (110 occurrences). This category includes
fix for typos, grammar, translation, formatting, and documen-
tation issues. We believe that these contributions are popular
because programmers are still getting acquainted with the
project. Thus, while reading the documentation or the source
code, they might found an issue and decided to fix it. Although
these contributions do not require significant programming
effort, we found contributions that have thoroughly rewritten
the original material (e.g., translations usually require dozens
of additions [28]). Also, we found that 27 out of these 110
contributions were fixing typos on code examples. This finding
reinforces the importance of complete and verified working
code examples [64].

Add New Feature (72 occurrences). This category groups
contributions that add new features, plugins, notification mech-
anisms, and/or drivers. Some of the examples include (1)
adding a new option for a command line tool [6], (2) adding
support for disabling an option [18], and (3) adding support
for IPv6 remote hosts [5]. Interestingly, 24 out of the 72
contributions in this category were performed at the Linux
operating system. Most of them were adding support for a
new driver/device, which usually require few additions. For
instance, a contribution that added support for a new USB
device just needed to add two global variables, which holds the
serial id of the USB device, and then add these two variables
to the array of device ids [31], totalizing 8 additions.

Refactoring (34 occurrences). Refactorings are code-to-
code transformations that change the internal structure of
a program but not its behavior [41]. While some of the
refactorings are straight-forward to be performed, e.g., re-
moving unused variables [30], some others require better
technical skills, significant effort, and a good knowledge of
the application source code, e.g., composing several methods
into a single one [25].

Update Version/Dependencies (25 occurrences). This cat-
egory summarizes contributions that are aimed at upgrading
the version of a software or its dependencies. This can happen
on build files [3], configuration files [12], or on its dependen-
cies [23]. More interestingly, however, is that although these
modifications do not require one to be strongly familiar with
the source code, it does require the casual contributor to be
familiar with the project file cycle. This finding suggests that,
although some casual contributors do not actively contribute

to OSS projects, they closely follow their evolution.
Improve Error/Help Messages (14 occurrences). In this

category, we grouped contributions that improved error/warn-
ing/help messages. Examples include: downgrading the log-
ging level from error to warning [1], or providing more
detailed help messages [2]. We hypothesize that the casual
contributors have faced unclear/annoying error messages, and
decided to improve them, as one casual contributor reported:
“The condition is harmless and no need to scare the user”.

Improve Resource Usage (8 occurrences). Here we
grouped casual contributions that are aimed at improving
resource usage, typically CPU [32], but we also found con-
tributions that deal with network bandwidth [16], and disk
space [13]. In particular, we found one interesting example
in which the contributor updated the URI of an image, from
a relative location, to an absolute one, thus avoiding HTTP
roundtrips [19]. This contribution, albeit straight-forward to
implement, requires one to understand details of the appli-
cation source code. As another example of the non triviality
of these contributions, we found a contribution aimed at im-
proving the performance of system call at the linux operating
system [20]. As the casual contributor described: “the syscall
personality (PER LINUX32) has poor performance because it
failed to find the Linux/x86 execution domain. [..] To resolve
the issue, execution domain Linux/x86 is always registered in
initialization time for IA-64 architecture”.

Add test cases (5 occurrences). Finally, we found casual
contributions with the unique intention to improve the test
suite. These contributions did not add new functional code,
only testing code. Interestingly, one user submitted a failing
test case to report a failure in the software [7]. Also, none
of these contributions were associated with an issue, which
suggests that the contributor felt the necessity of improving
the test suite, or reporting an error. Still, we observed that
the test cases are rather simple. On average they have 18
additions and 0.4 deletions. In all cases, the project that
received the contribution had an existing test suite, and the
contributor added new testing code using the existing testing
infrastructure.

C. RQ3. How do casual contributors and project maintainers
perceive casual contributions?

As mentioned before, we conducted two surveys to better
understand the phenomenon of casual contributions from the
perspective of both casual contributors and maintainers. The
answers to the open questions were qualitatively analyzed,
using an open coding approach.

We explicitly asked casual contributors and maintainers
“what motivates casual contributors’ behavior.”, and the top
cited perceived motivation was scratch their own itch, highly
mentioned by both casual contributors (90 out of 197) and
maintainers (23 out of 64). Developers reported that when
they are blocked by or bugged with some issue, they fix it and
send it back to the community. In many cases, this is related
to something that blocks or impacts developers own projects
or their work. For example, casual contributor reported that

“urgent bug fix or feature requirement for my projects” are
motivators; and a maintainer said that “being blocked by the
bug is a big motivator”. This finding corroborates with the
high number of bug fixes found in RQ2. Also, it indicates that
the the claim made by Eric Raymond [62] that “every good
work of software starts by scratching a developer’s personal
itch” is valid, and is in accordance to what is reported by
Fogel [40]: “software results when the programmer has a
personal interest in seeing the problem solved”. It seems that
scratching itches is becoming easier and more common given
the high frequency observed in this work.

Part of this high number of casual contributions can be
explained by the pull-request model, which provided a clear
and easy contribution process. It was mentioned by 9 out
of 64 maintainers. Therefore, there are indications GitHub
tools facilitates the scratching personal itches. This was clearly
explained by a maintainer: “[Casual Contributors] have a
minor itch to scratch, the barrier to contributing is low
(GitHub makes it easy; source is pretty simple to modify;
standard structure) so there’s no artificial reason you wouldn’t
see a lot of small contributions”.

Aligned with some studies on the motivation behind OSS
contributors [72], [50], we found that give back to community
fosters casual contributions, as said by one casual contributor
“As I use a lot of OSS projects, I like to give back to
the community”. Another motivation that is inline with the
literature is gaining reputation and prestige [57], [45], [46].

Not among the top cited motivations, we found that four ca-
sual contributors reported that their motivation was improving
the project. The following quotes clearly illustrate such moti-
vation: “I want to improve the quality of the project”, “That
the project is in better shape after my contribution”. Although
they do not explicitly mention what kind of improvement they
refer, they can be related to the categories of contributions
reported under RQ2, namely refactoring, improve error/help
messages, improve resource usage and add test cases.

In addition to motivation, we investigated the reasons why
casual contributors do not become full active contributors.
Lack of time was far the most cited reason by the casual
contributors (96 out of 197), like one mentioned “I don’t have
time to devote to a more active role”. Some of them justifies
it because they already spend too much time in their job, or
because there is no income from it (“not paid to do so”,
one contributor said). It seems that OSS projects are receiving
more contributions from developers that work on commercial
closed-source industry, which software relies on OSS projects.
From the perspective of the maintainers, Lack of time was also
the most mentioned reason why casual contributors do not
become a long term contributor (17 out of 64 respondents).
The following quote exemplify it: “People often don’t have
the time or desire to be long term contributors”.

Another recurrently mentioned reason to not become an
active contributor was actually the top cited motivation to
contribute. Both casual contributors and maintainers reported
that developers mainly want to scratch their own itch, so,
since the beginning, they are not willing to actively contribute.

Some casual contributors mentioned that this is usual, and
when they face some small issue or something blocking their
work, they easily drop a contribution to the projects without
any further commitment: “I just need a bug fixed, I don’t aim
to improve the project substantially”, reported a contributor.

Aligned with the answers received from the casual contrib-
utors, maintainers mentioned that, as soon as the contributors
are done scratching their itches, they usually do not need or do
not want to get back: “They saw something simple that needs
fixing and fixed it. They don’t necessarily want to actively
follow the project”.

We also found people who reported that they do not con-
tribute because of their limited skills or knowledge. Some also
mentioned that the effort and knowledge needed to become
a full contributor was to high In both cases, they prefer to
work on small or peripheral issues, which do not need specific
abilities and low effort. Like one of them said: “lack of skills
(most of the low hanging fruit is gone)”.

Maintainers noticed this, and eight participants mentioned
that code/project is hard to learn was a reason why casual
contributors do not become more active. They reported that
casual contributors send a fix to a simple bug or a small
feature, but they do not have the skills or the capability
to go deeper in the code, as illustrated by the following
quote: “Interest in particular projects wanes quickly (like
any other sort of aspirational project), and actually going
deeper to solve real problems or add bigger features is in
another difficulty class from what most of our contributors are
capable of as beginners”. Interestingly, however, one casual
contributors suggested the opposite, as one mentioned: “While
I only have one commit in the Linux kernel [..] I’m a Debian
developer, where I maintain multiple packages, among them a
patched Linux kernel. I’ve reported multiple bugs against the
Linux kernel, helped testing fixes, follow multiple mailing lists
etc”. Therefore, although some of the casual contributors can
be considered beginners, some of them are highly skilled.

We found other less recurrent reasons. For example, the
respondents reported that casual contributors are usually
active in other projects, and, sometimes they need to im-
plement a feature or fix a bug from a specific project. One
maintainer mentioned that “...they’re working on a higher-
level problem and have been blocked by our lower-level
library for some reason”, and another pointed that “Casual
contributors on our project may also be active contributors on
other projects in the ecosystem”. This reason was confirmed
by 13 casual contributors. They mentioned that they do not
have enough time to contribute to other projects, because they
maintain or actively contribute to other OSS projects. Another
group (8 people) mentioned that they do not become active
contributors because there are too many project they use and
make contributions eventually. Thus, instead of being loyal
with a few set of projects, they make sparse contributions.

An interesting reason reported by the one maintainer was
that: “the maintainers fail to encourage more contributions
which ideally leads to active contributors. A welcoming and
friendly project with professionalism that treats everyone with

respect and gives the required credit is the first thing a
project has to get right”. This was also reported by two
casual contributors (“the project is not very welcoming for
new contributors”). Surprisingly, some casual contributors
attributed the reason to their satisfaction with the product (“the
project is good enough on its own for my needs”) and to their
feeling that projects do not need more active contributors, like
one of them mentioned “Projects that I use daily [..] have
enough contributors”. In these cases, it would be important to
make it clear for the casual contributors that, if the project is
maintained by volunteers, it is necessary to have a continuous
influx of long term contributors.

We also asked the participants their opinion about the main
benefits and problems brought by the casual contributors phe-
nomenon. The overall impression is that the benefits overcome
the drawbacks brought by this phenomenon. One quote from
a maintainer shows: “Every little piece helps everyone else.
We stand on the shoulders of many small giants. Problems?
None”. Among the answers received from the maintainers, the
most reported perceived benefits were Small peripheral issues
solved quickly (mentioned by 16 maintainers), Bugs that
would never appear are closed (a new set of eyes) (mentioned
by 13 maintainers) and the continuous code improvement
(mentioned by 6 maintainers). Regarding the last mentioned
category, once again we could triangulate our findings with the
categories of contributions found in RQ2. In the following
quote we can see a report from a maintainer that explicitly
mentioned an improvement received from a casual contributor:
“Some [contributions] are more substantial. e.g. The other day
a guy reached out to me cold and offered a simple numerical
trick that speed up my automatic differentiation package by 2
orders of magnitude in one mode”.

On the other side, the most reported problems were Time
spent by the core members to review newcomers’ code
(reported by 12 people) and contributions may go unmain-
tained (reported by 5 people). One interesting thing called our
attention in this question: 10 maintainers mention they see no
notable problems with casual contributions. One maintainer
was a little sarcastic while answering that: “What are the
problems? I think this is the wrong question. You’re just going
to go down a rabbit hole of people whining and complaining
about sloppy code, and contributors not understanding various
complications within the code structure”.

IV. IMPLICATIONS

This research has implications for different kinds of stake-
holders. Five of them are discussed below.

Casual Contributors. Software developers that do not want
to become active members of OSS projects can take advantage
of this study in several ways. First, they can see that they
are not alone, and this behavior is, in fact, rather common in
OSS communities (RQ1). Second, we found that 22.93% of
the casual contributions changed a single line of code (RQ2).
Thus, a developer does not need to be shy to contribute, even
though her contribution is small. Third, this study revealed
that project maintainers believe that casual contributions are a

healthy way of contributing to OSS (RQ3). Therefore, casual
contributors can become even more motivated to do this kind
of contribution.

Project owners. We found that although 28.64% of the
casual contributions were related to fixing documentation
issues, several other kind of contributions were performed
(RQ2). Project owners can benefit from this finding, by
labeling tasks specific for casual contributors. Similarly, some
casual contributors are more comfortable on solving low effort
tasks (RQ3). Thus, project owners can create specific roles for
casual contributors (e.g., casual translators), which could also
foster more engagement. Also, we found 5 contributions that
only added new test cases. These contributions happened only
because the project had an existing testing infrastructure. This
finding may encourage project owners to create and maintain a
testing infrastructure, in case it does not exist. Still, we found
that the majority of the contributions analyzed were bug fixes.
However, only 24.13% of them were associated with a Github
issue. We believe that, if project maintainers open more bug fix
issues, new casual contributors would work on them. Finally,
since several project maintainers do not have enough time to
review casual contributions, they can introduce “contributions
guidelines”, so that newcomers can read and get acquainted
with them, therefore reducing code review effort.

Reseachers. Researchers can also benefit from this study.
As we found that “Time spent by the core members to review
newcomers code” is the most common problem that the casual
contributions bring (RQ3), researchers can introduce new
techniques to ease source code review. Also, researchers can
propose techniques aimed at assigning reviews to the core
members that might be more familiar with the code.

Tool Builders. In this study we found that a significative
proportion of the contributors of the analyzed projects are
actually casual contributors (RQ1). Tool builders can take
advantage of this finding and improve visualization tools. For
instance, Github could provide a feature to present the “degree
of casual contributions”. Therefore, casual contributors could
easily identify projects that are more likely to receive these
kind of contributions. Tools builders can go further and provide
mechanisms to notify core members when newcomers arrive
in the project, so that core members can provide further
assistance on the onboarding process.

CS Professors. As we found that several contributions do
not require a high number of source code modifications (RQ2),
professors can better motivate students to start collaborating
with OSS projects. One way to do this is assigning students
to work on real-world software issues. Also, since we found
that project “maintainers fail to encourage the newcomers
to stay” (RQ3), professors can help them in this direction
by providing long-term open-source assignments for students.
Although some students might quit the project after the course
is done, some may get interested and stay longer.

V. RELATED WORK

Park and Jensen [58] studied the information needs that
newcomers have. The authors showed that visualization tools

support the first steps of these newcomers. Also, the authors
observed that the newcomers that use these tools finish their
contributions faster, and have better code comprehension. Von
Krogh et al. [73] studied the joining process of FreeNet
project. They found that newcomers follow the project ac-
tivities before making a contribution. Despite their interest
on the onboarding process, they focused on the contributors
that become active members of the project, not taking into
consideration the ones that place casual contributions.

Some other studies analyzed how social factors influence
the retention of newcomers on OSS projects [74], [38], [35].
These studies studied social networks (e.g., mailing lists) in
order to understand (1) with whom newcomers collaborate,
and (2) how the network evolve along the years. Similarly,
these studies do not focus on the contributors that do not
focus on long-term commitment. Moreover, Jensen et al. [47]
analyzed four projects to understand if newcomers are quickly
answered, if their gender and nationality impact the kind of
answer that they receive, and if the treatment they receive is
similar to the ones that other members of the project receive.

Nakakoji et al. [55] studied four OSS projects aimed at
understanding the evolution of its communities. Among the
contributions, the authors coined the term onion patch, which
refers to the 8 roles of the project members. The hypothesis
is that new contributors start as a “lurker”, then they join a
mailing list, watch other interactions, afterwards they slowly
become more involved in the project, contributing with code
and becoming active member. In our study we observed that it
is common to find casual contributors that are highly motivated
by their “own itches”, and do not necessarily follow this model
or want to become active members.

Some parts of the literature focus on the forces of motivation
that drive newcomers toward projects. Lakhani and Wolf [50],
for example, found that extrinsic benefits primarily motivate
new contributors, together with enjoyment, challenges and
improving programming skills. Hars and Ou [45] reported that
internal motivation plays a role, but note that external factors,
such as building human capital and personal software solution
needs, are more influential. Shah [65] distinguished between
two different contributors: need-driven and hobbyists. In our
study we could evidence that “scratching own itches” (personal
and institutional needs) was by far the most reported motiva-
tion. This can be an indication that this kind of contribution
is primarily driven by extrinsic motivation.

Finally, as regarding the casual contributors, several authors
have acknowledged the existence and the growth of this
behavior [60], [59], [43], [71]. However, even though some of
these authors suggest that it is important to further understand
the impact of this kind of contribution in the projects that
receive it, as well as its problems and benefits, to the best of
our knowledge, there is no prior work in the literature that
addresses this topic in details.

VI. THREATS TO VALIDITY

Internal Validity. First, although we mitigated the problem
of contributors using different full names, therefore being

wrongly categorized as casual contributors, the technique was
not effective in solving all these problems. For instance, we
found some contributors that used a common name (e.g.,
Paul) as their full names. This fact prevents disambigua-
tion techniques from being successful. One might suggest to
disambiguate these contributors using the ones that Github
shows on the project’s webpage. However, although Github
shows the total number of contributors of a given project,
it lists only the top 100 most active ones, and a significant
proportion of projects analyzed are far beyond this number
(See Table II). Thus, using Github as our ground truth, we
manually compared the total number of contributors that we
found, with the ones that Github reports. We found that our
study reports between 7% to 10% of additional contributors.
However, we believe that this data is not sufficient to skew
the main results of our study — as showed, on average,
48.98% of the contributors are casual ones. Second, we
selected projects based on their popularity (number of stars)
on Github. This means that these projects are not necessarily
popular because they are highly used. For instance, we found a
project that created the “Arnold Schwarzenegger programming
language”[11]. Although this project is interesting, it is not
likely that it will be adopted in practice.

External Validity. Although we investigated 275 popular
OSS projects written in, at least, 17 different programming
languages, we likely did not discover all possible characteris-
tics of casual contributions. We are aware that each project has
its singularities and that the OSS universe is large and deep,
meaning the amount and the perception of the casual contribu-
tions can differ according to the project or the ecosystem. Our
strategy was to focus on GitHub popular projects, and cannot
be generalized to other projects hosted on other forges. With
our methodology, we expected that similar analysis can be
conducted by others when they become relevant.

VII. CONCLUSION

In this paper we conducted an in-depth study on the casual
contributions made into 275 non-trivial OSS projects. For
each project, we initially analyzed quantitative characteristics
of these contributions. We found that casual contributors are
rater common. More than 48% of the contributors are actually
casual ones. Also, after a manual inspection of a representative
sample of 384 casual contributors, we discovered that the con-
tributions are far from being trivial. Indeed, several solutions
require an in-depth knowledge of the application source code.
Still, we asked casual contributors and project maintainers
about what drives this behavior. Most of the casual contributors
and maintainers suggested that they are motivated by their
personal needs (“scratching own itches”), that in most cases
are related to fixing bugs that block or impact the development
of other projects that depends on the analyzed projects. Yet,
there are evidence that casual contributors do not become more
active mainly because of time constraints. Finally, we found
that although these contributions bring many benefits, they also
cause some problems, mainly related to time required from
core members reviewing the quality of code.

REFERENCES

[1] Acpi: Change package length error to warning. https://github.com/
torvalds/linux/commit/1371c89. Accessed: 2015-11-07.

[2] Add more help messages to cloudcfg utility. https://github.com/
kubernetes/kubernetes/commit/dd04554. Accessed: 2015-11-07.

[3] Add rubinius to build matrix with allowed failure. https://github.com/
discourse/discourse/commit/53f35cc. Accessed: 2015-11-07.

[4] Add support for blacklisting certain content types. https://github.com/
thoughtbot/paperclip/commit/4b8dce4. Accessed: 2015-11-07.

[5] Add support for ipv6 remote hosts. https://github.com/apenwarr/sshuttle/
commit/95c9b78. Accessed: 2015-11-07.

[6] added –get-id option to print video ids. https://github.com/rg3/
youtube-dl/commit/1a2adf3. Accessed: 2015-11-07.

[7] Added failing test to demonstrate digest authentication failure. https:
//github.com/rails/rails/commit/53c1ae9. Accessed: 2015-11-07.

[8] Added flexiblecontexts extension in parser.hs to fix compilation. https:
//github.com/koalaman/shellcheck/commit/f054e2e. Accessed: 2015-11-
07.

[9] Added single quote to the chars to escape. https://github.com/
AFNetworking/AFNetworking/pull/713. Accessed: 2015-11-07.

[10] airchat.pl: Fixed broken, space-laden url/href. https://github.com/
lulzlabs/AirChat/commit/03cd91d. Accessed: 2015-11-07.

[11] Arnold schwarzenegger based programming language. https://github.
com/lhartikk/ArnoldC. Accessed: 2015-11-07.

[12] Bump mono-mdk to version 4.2.0. https://github.com/caskroom/
homebrew-cask/commit/4984e28. Accessed: 2015-11-07.

[13] Change ios logging directory to use cache directory instead of documents
directory. https://github.com/CocoaLumberjack/CocoaLumberjack/
commit/3bf4585. Accessed: 2015-11-07.

[14] A curated list of awesome python frameworks, libraries and software.
http://github.com/vinta/awesome-python. Accessed: 2015-11-07.

[15] Default fog public option to true (as stated in documentation). https:
//github.com/thoughtbot/paperclip/commit/62a9f64. Accessed: 2015-11-
07.

[16] Disable auto-saves until the data has been loaded. https://github.com/
github/hubot-scripts/commit/2b20f1d. Accessed: 2015-11-07.

[17] Ensure hud overlaywindow is visible above other windows. https:
//github.com/TransitApp/SVProgressHUD/commit/eebd6ec. Accessed:
2015-11-07.

[18] feat(ngoptions): add support for disabling an option. https://github.com/
angular/angular.js/commit/da9eac8. Accessed: 2015-11-07.

[19] fix: direct links for celery man. https://github.com/github/hubot-scripts/
commit/a33c8ba. Accessed: 2015-11-07.

[20] fix personality(per linux32) performance issue. https://github.com/
torvalds/linux/commit/839052d. Accessed: 2015-11-07.

[21] Fixed ’type’ being nil on windows 7 error. https://github.com/thoughtbot/
paperclip/commit/6f2ca93. Accessed: 2015-11-07.

[22] jquery bracket library for organizing single and double elimination
tournaments. http://github.com/teijo/jquery-bracket. Accessed: 2015-
11-07.

[23] lyx.rb: update to 2.1.4. https://github.com/caskroom/homebrew-cask/
commit/3046a4d. Accessed: 2015-11-07.

[24] ppc32: fix destroy context() race condition. https://github.com/torvalds/
linux/commit/ddca3b8. Accessed: 2015-11-07.

[25] Routing methods dsl refactored to get rid of explicit paths parameter.
https://github.com/ruby-grape/grape/commit/d3f0c29. Accessed: 2015-
11-07.

[26] A showcase of the best typefaces from the google web fonts directory.
https://github.com/ubuwaits/beautiful-web-type. Accessed: 2015-11-07.

[27] The swift programming language in chinese. https://github.com/
numbbbbb/the-swift-programming-language-in-chinese. Accessed:
2015-11-07.

[28] Update fr.coffee. https://github.com/codecombat/codecombat/commit/
237b97a. Accessed: 2015-11-07.

[29] Update readme.md. https://github.com/thoughtbot/paperclip/commit/
d49bca2. Accessed: 2015-11-07.

[30] Usb: digi acceleport further buffer clean up. https://github.com/torvalds/
linux/commit/5fea2a4. Accessed: 2015-11-07.

[31] Usb: ftdi sio: Add support for ge healthcare nemo tracker device. https:
//github.com/torvalds/linux/commit/9c491c3. Accessed: 2015-11-07.

[32] Use constant-time string comparison for auth. https://github.com/reddit/
reddit/commit/83058d4. Accessed: 2015-11-07.

[33] Uses a faster implementation for ensure required validations! https:
//github.com/thoughtbot/paperclip/commit/6b1f610. Accessed: 2015-11-
07.

[34] Wip fog integration. https://github.com/thoughtbot/paperclip/commit/
4047d32. Accessed: 2015-11-07.

[35] C. Bird. Sociotechnical coordination and collaboration in open source
software. In Proceedings of the 2011 27th IEEE International Confer-
ence on Software Maintenance, ICSM ’11, pages 568–573, Washington,
DC, USA, 2011. IEEE Computer Society.

[36] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan.
Mining email social networks. In Proceedings of the 2006 International
Workshop on Mining Software Repositories, MSR ’06, pages 137–143,
2006.

[37] M. Burke, C. Marlow, and T. Lento. Feed me: Motivating newcomer
contribution in social network sites. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’09, pages
945–954, New York, NY, USA, 2009. ACM.

[38] N. Ducheneaut. Socialization in an open source software community:
A socio-technical analysis. Computer Supported Cooperative Work,
14(4):323–368, Aug. 2005.

[39] F. Fagerholm, P. Johnson, A. S. Guinea, J. Borenstein, and J. Mnch.
Onboarding in open source projects. IEEE Software, 31(6):54–61, Nov.
2014.

[40] K. Fogel. Producing Open Source Software: How to Run a Successful
Free Software Project. O’Reilly Media, first edition, Feb 2013.

[41] M. Folwer. Refactoring: Improving the Design of Existing Code.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1999.

[42] M. Goeminne and T. Mens. Evidence for the pareto principle in
open source software activity. In In the Joint Porceedings of the 1st
International workshop on Model Driven Software Maintenance and 5th
International Workshop on Software Quality and Maintainability, pages
74–82, 2011.

[43] G. Gousios, M. Pinzger, and A. v. Deursen. An exploratory study of
the pull-based software development model. In Proceedings of the 36th
International Conference on Software Engineering, ICSE 2014, pages
345–355, New York, NY, USA, 2014. ACM.

[44] G. Gousios, A. Zaidman, M. D. Storey, and A. van Deursen. Work
practices and challenges in pull-based development: The integrator’s
perspective. In 37th IEEE/ACM International Conference on Software
Engineering, ICSE 2015, Florence, Italy, May 16-24, 2015, Volume 1,
pages 358–368, 2015.

[45] A. Hars and S. Ou. Working for free? motivations of participating
in open source projects. In Proceedings of the 34th Annual Hawaii
International Conference on System Sciences, pages 1–9. IEEE, 2001.

[46] G. Hertel, S. Niedner, and S. Herrmann. Motivation of software devel-
opers in open source projects: an internet-based survey of contributors
to the linux kernel. Research Policy, 32(7):1159–1177, July 2003.

[47] C. Jensen, S. King, and V. Kuechler. Joining free/open source software
communities: An analysis of newbies’ first interactions on project mail-
ing lists. In Proceedings of the 44th Hawaii International Conference
on System Sciences, HICSS ’10, pages 1–10. IEEE, Jan. 2011.

[48] B. Kitchenham and S. Pfleeger. Personal opinion surveys. In F. Shull,
J. Singer, and D. Sjberg, editors, Guide to Advanced Empirical Software
Engineering, pages 63–92. Springer London, 2008.

[49] B. Kitchenham, S. Pfleeger, L. Pickard, P. Jones, D. Hoaglin,
K. El Emam, and J. Rosenberg. Preliminary guidelines for empirical
research in software engineering. Software Engineering, IEEE Transac-
tions on, 28(8):721–734, Aug 2002.

[50] K. Lakhani and R. Wolf. Perspectives on Free and Open Source
Software, chapter Why Hackers Do What They Do: Understanding
Motivation and Effort in Free/Open Source Software Projects, pages
1–22. The MIT Press, Cambridge, Mass., 2005.

[51] J. Marlow, L. Dabbish, and J. Herbsleb. Impression formation in online
peer production: Activity traces and personal profiles in github. In Pro-
ceedings of the 2013 Conference on Computer Supported Cooperative
Work, CSCW ’13, pages 117–128, 2013.

[52] N. McDonald and S. Goggins. Performance and participation in open
source software on github. In CHI ’13 Extended Abstracts on Human
Factors in Computing Systems, CHI EA ’13, pages 139–144, New York,
NY, USA, 2013. ACM.

[53] I. Moura, G. Pinto, F. Ebert, and F. Castor. Mining energy-aware
commits. In Mining Software Repositories (MSR), 2015 IEEE/ACM
12th Working Conference on, pages 56–67, May 2015.

https://github.com/torvalds/linux/commit/1371c89
https://github.com/torvalds/linux/commit/1371c89
https://github.com/kubernetes/kubernetes/commit/dd04554
https://github.com/kubernetes/kubernetes/commit/dd04554
https://github.com/discourse/discourse/commit/53f35cc
https://github.com/discourse/discourse/commit/53f35cc
https://github.com/thoughtbot/paperclip/commit/4b8dce4
https://github.com/thoughtbot/paperclip/commit/4b8dce4
https://github.com/apenwarr/sshuttle/commit/95c9b78
https://github.com/apenwarr/sshuttle/commit/95c9b78
https://github.com/rg3/youtube-dl/commit/1a2adf3
https://github.com/rg3/youtube-dl/commit/1a2adf3
https://github.com/rails/rails/commit/53c1ae9
https://github.com/rails/rails/commit/53c1ae9
https://github.com/koalaman/shellcheck/commit/f054e2e
https://github.com/koalaman/shellcheck/commit/f054e2e
https://github.com/AFNetworking/AFNetworking/pull/713
https://github.com/AFNetworking/AFNetworking/pull/713
https://github.com/lulzlabs/AirChat/commit/03cd91d
https://github.com/lulzlabs/AirChat/commit/03cd91d
https://github.com/lhartikk/ArnoldC
https://github.com/lhartikk/ArnoldC
https://github.com/caskroom/homebrew-cask/commit/4984e28
https://github.com/caskroom/homebrew-cask/commit/4984e28
https://github.com/CocoaLumberjack/CocoaLumberjack/commit/3bf4585
https://github.com/CocoaLumberjack/CocoaLumberjack/commit/3bf4585
http://github.com/vinta/awesome-python
https://github.com/thoughtbot/paperclip/commit/62a9f64
https://github.com/thoughtbot/paperclip/commit/62a9f64
https://github.com/github/hubot-scripts/commit/2b20f1d
https://github.com/github/hubot-scripts/commit/2b20f1d
https://github.com/TransitApp/SVProgressHUD/commit/eebd6ec
https://github.com/TransitApp/SVProgressHUD/commit/eebd6ec
https://github.com/angular/angular.js/commit/da9eac8
https://github.com/angular/angular.js/commit/da9eac8
https://github.com/github/hubot-scripts/commit/a33c8ba
https://github.com/github/hubot-scripts/commit/a33c8ba
https://github.com/torvalds/linux/commit/839052d
https://github.com/torvalds/linux/commit/839052d
https://github.com/thoughtbot/paperclip/commit/6f2ca93
https://github.com/thoughtbot/paperclip/commit/6f2ca93
http://github.com/teijo/jquery-bracket
https://github.com/caskroom/homebrew-cask/commit/3046a4d
https://github.com/caskroom/homebrew-cask/commit/3046a4d
https://github.com/torvalds/linux/commit/ddca3b8
https://github.com/torvalds/linux/commit/ddca3b8
https://github.com/ruby-grape/grape/commit/d3f0c29
https://github.com/ubuwaits/beautiful-web-type
https://github.com/numbbbbb/the-swift-programming-language-in-chinese
https://github.com/numbbbbb/the-swift-programming-language-in-chinese
https://github.com/codecombat/codecombat/commit/237b97a
https://github.com/codecombat/codecombat/commit/237b97a
https://github.com/thoughtbot/paperclip/commit/d49bca2
https://github.com/thoughtbot/paperclip/commit/d49bca2
https://github.com/torvalds/linux/commit/5fea2a4
https://github.com/torvalds/linux/commit/5fea2a4
https://github.com/torvalds/linux/commit/9c491c3
https://github.com/torvalds/linux/commit/9c491c3
https://github.com/reddit/reddit/commit/83058d4
https://github.com/reddit/reddit/commit/83058d4
https://github.com/thoughtbot/paperclip/commit/6b1f610
https://github.com/thoughtbot/paperclip/commit/6b1f610
https://github.com/thoughtbot/paperclip/commit/4047d32
https://github.com/thoughtbot/paperclip/commit/4047d32

[54] M. Nagappan, T. Zimmermann, and C. Bird. Diversity in software
engineering research. In Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2013, pages 466–476,
2013.

[55] K. Nakakoji, Y. Yamamoto, Y. Nishinaka, K. Kishida, and Y. Ye.
Evolution patterns of open-source software systems and communities.
In Proceedings of the International Workshop on Principles of Software
Evolution, IWPSE ’02, pages 76–85, New York, NY, USA, 2002. ACM.

[56] S. Nanz and C. A. Furia. A comparative study of programming
languages in rosetta code. In Proceedings of the 37th International
Conference on Software Engineering - Volume 1, ICSE ’15, pages 778–
788, 2015.

[57] S. Oreg and O. Nov. Exploring motivations for contributing to open
source initiatives: The roles of contribution context and personal values.
Computers in Human Behavior, 24(5):2055–2073, Sept. 2008.

[58] Y. Park and C. Jensen. Beyond pretty pictures: Examining the benefits of
code visualization for open source newcomers. In Proceedings of the 5th
IEEE International Workshop on Visualizing Software for Understanding
and Analysis, VISSOFT ’09, pages 3–10. IEEE, Sept. 2009.

[59] R. Pham, L. Singer, O. Liskin, F. Figueira Filho, and K. Schneider.
Creating a shared understanding of testing culture on a social coding
site. In Proceedings of the 2013 International Conference on Software
Engineering, ICSE ’13, pages 112–121, Piscataway, NJ, USA, 2013.
IEEE Press.

[60] R. Pham, L. Singer, and K. Schneider. Building test suites in social
coding sites by leveraging drive-by commits. In Proceedings of the 2013
International Conference on Software Engineering, ICSE ’13, pages
1209–1212, 2013.

[61] B. Ray, D. Posnett, V. Filkov, and P. Devanbu. A large scale study of
programming languages and code quality in github. In Proceedings of
the 22Nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering, FSE 2014, pages 155–165, 2014.

[62] E. S. Raymond. The Cathedral and the Bazaar. O’Reilly & Associates,
Inc., Sebastopol, CA, USA, 1st edition, 1999.

[63] E. S. Raymond. The Cathedral and the Bazaar: Musings on Linux and
Open Source by an Accidental Revolutionary. O’Reilly & Associates,
Inc., Sebastopol, CA, USA, 2001.

[64] M. P. Robillard. What makes apis hard to learn? answers from
developers. IEEE Softw., 26(6):27–34, Nov. 2009.

[65] S. K. Shah. Motivation, governance, and the viability of hybrid forms in
open source software development. Management Science, 52(7):1000–
1014, July 2006.

[66] I. Steinmacher, T. Conte, M. A. Gerosa, and D. F. Redmiles. Social
barriers faced by newcomers placing their first contribution in open
source software projects. In Proceedings of the 18th ACM Conference
on Computer Supported Cooperative Work & Social Computing, CSCW
’15, pages 1–13, New York, NY, USA, Feb. 2015. ACM.

[67] I. Steinmacher, M. A. G. Silva, M. A. Gerosa, and D. F. Redmiles.
A systematic literature review on the barriers faced by newcomers to
open source software projects. Information and Software Technology,
59:67–85, Mar. 2015.

[68] I. Steinmacher, I. S. Wiese, A. P. Chaves, and M. A. Gerosa. Why
do newcomers abandon open source software projects? In Proceedings
of the 2013 6th International Workshop on Cooperative and Human
Aspects of Software Engineering, CHASE ’13, pages 25–32. IEEE, 2013.

[69] A. Strauss and J. M. Corbin. Basics of Qualitative Research : Techniques
and Procedures for Developing Grounded Theory. SAGE Publications,
3rd edition, 2007.

[70] H.-T. Tsai and P. Pai. Why do newcomers participate in virtual commu-
nities? an integration of self-determination and relationship management
theories. Decision Support Systems, 57:178–187, Jan. 2014.

[71] B. Vasilescu, V. Filkov, and A. Serebrenik. Perceptions of diversity on
github: A user survey. In Proceedings of the 2015 8th International
Workshop on Cooperative and Human Aspects of Software Engineering,
CHASE ’15. IEEE, 2015.

[72] G. von Krogh, S. Haefliger, S. Spaeth, and M. W. Wallin. Carrots
and rainbows: Motivation and social practice in open source software
development. MIS Quarterly, 36(2):649–676, June 2012.

[73] G. von Krogh, S. Spaeth, and K. R. Lakhani. Community, joining,
and specialization in open source software innovation: A case study.
Research Policy, 32(7):1217–1241, 2003.

[74] M. Zhou and A. Mockus. Who will stay in the floss community?
modelling participant’s initial behaviour. IEEE Transactions on Software
Engineering, 41(1):82–99, 2015.

	Introduction
	Study Methodology
	Research Questions
	Study 1: Mining software repositories
	Study 2: Surveys with practitioners

	Study Results
	RQ1. How common are casual contributors in OSS projects?
	RQ2. What are the characteristics of a casual contribution?
	RQ3. How do casual contributors and project maintainers perceive casual contributions?

	Implications
	Related Work
	Threats to Validity
	Conclusion
	References

