
Are Pieces of Contextual Information Suitable for
Predicting Co-Changes? An Empirical Study

Igor Scaliante Wiese 1, Rodrigo Takashi Kuroda 2, Igor Steinmacher 3, Gustavo Ansaldi Oliva 4, Reginaldo Ré 1, Christoph

Treude 5, Marco Aurelio Gerosa 3

Dept. de Ciência da Computação 1
Universidade Tec. Federal do Paraná - Brazil
{igor, reginaldo}@utfpr.edu.br

PPGI / UTFPR – CP 2
Universidade Tec. Federal do Paraná - Brazil
rodrigokuroda@gmail.com

School of Informatics, Computing, and Cyber Systems 3
Northern Arizona University - United States
{Marco.Gerosa, Igor.Steinmacher}@nau.edu

School of Computing 4
Queen’s University - Canada
gustavo@cs.queensu.ca

School of Computer Science 5
University of Adelaide
Australia
christoph.treude@adelaide.edu.au

ABSTRACT
Models that predict software artifact co-changes have been proposed to assist developers in altering a software system, and
they often relying on coupling. However, developers have not yet widely adopted these approaches, presumably because of the
high number of false recommendations. In this work, we conjecture that the contextual information related to software changes,
which is collected from issues (e.g., issue type, reporter, etc.), developers' communication (e.g., number of issue comments,
issue discussants, words in the discussion, etc.), and commit metadata (e.g., number of lines added, removed, and modified),
improves the accuracy of co-change prediction. We built customized prediction models for each co-change and evaluated the
approach on 129 releases from a curated set of 10 Apache Software Foundation projects. Comparing our approach with the
widely-used association rules as a baseline, we found that contextual information models and association rules provide a similar
number of co-change recommendations, but our models achieved a significantly higher F-measure. In particular, we found that
contextual information significantly reduces the number of false recommendations compared to the baseline model. We con-
clude that contextual information is an important source for supporting change prediction and may be used to warn developers
when they are about to miss relevant artifacts while performing a software change.

KEYWORDS
Co-change prediction; logical coupling; change coupling; change propagation; change impact analysis; social factors; contex-
tual information

1 INTRODUCTION
Changes are part of software development. Developers modify artifacts to fix defects, add new features, or improve existing

source code. In order to make the necessary changes to fulfill a task (e.g., a change request), developers often execute manual
and time-consuming tasks. Co-change prediction approaches have been proposed to support developers while they perform
software changes (Bohner and Arnold 1996; Zimmermann et al. 2005; Hassan and Holt 2004). These approaches are based on
the premise that if there is coupling between two files in a release, these files are prone to co-change in the consecutive release.

Predicting co-changes can be useful to avoid incomplete changes by notifying developers about artifacts that are likely to
change together (Hassan and Holt 2004), and to help newcomers complete their first contribution, especially when newcomers
have little knowledge about the source code and the software architecture (Steinmacher et al. 2016).

Approaches that have been proposed to predict co-changes often rely on source code analysis, such as dynamic analysis
(Orso et al. 2004), static analysis (Briand et al. 1999), frequent past changes and change coupling analysis (Gall et al. 1998;
Ying et al. 2004; Zimmermann et al. 2005), and conceptual analysis (Gethers and Poshyvanyk 2010; Revelle et al. 2011). Other
approaches combine these techniques into hybrid methods (Hassan and Holt 2004; Gethers et al. 2012; Kagdi et al. 2013; Dit
et al. 2014). However, despite the advances in this area, the number of false recommendations is still high, presumably because
the couplings do not adequately capture the situations in which the artifacts change together (Canfora et al. 2014; Oliva and
Gerosa 2015a). Contextual information may help to characterize the change context, improving the performance of the predic-
tion models.

Developers change software artifacts for various reasons and the context involved in the changes may indicate the conditions
in which two artifacts are prone to co-change. To investigate this hypothesis, we built prediction models at the file level for
each pair of artifacts, using contextual information from one release to predict if in issues of the consecutive release the two
artifacts would change together. Our investigation sheds light on the possibility of using information about the context in which
the software change occurred to reduce the number of false recommendations and to improve the effectiveness of co-change
prediction. Contextual information is not considered by current approaches, yet it can be beneficial since software artifacts are
changed for different reasons (Oliva et al. 2013; Canfora et al. 2014; Oliva and Gerosa 2015b).

In previous work (Wiese et al. 2015, 2016), we conducted an exploratory study with two projects by using random forest
classifiers trained with contextual information from past changes to improve the co-change prediction. We relied on the concept
of change coupling to select the pairs of files most likely to co-change and to compare our prediction model to an association
rule model (Oliva and Gerosa 2015b). In this paper, we build upon our previous work to investigate the extent to which con-
textual information correctly predicts co-changes in a larger sample of projects and without limiting the analysis to the top 25
co-changes. We analyze whether our approach leads to predictions that are more accurate compared to a baseline model based
on association rules (using different support and confidence thresholds). In addition, we contacted developers from the studied
projects and asked them to inspect the results and discuss their perspective about adopting the proposed approach in practice.

We analyzed 10 open source projects and 129 releases. Overall, we found that contextual information extracted from issues,
developers’ communication, and commit metadata enables a highly accurate prediction of co-changes, correctly predicting
19,746 out of 26,189 co-changes (75%). Association rules covered 33% of all possible co-changes, while contextual
information models covered 25%. However, association rules issued more wrong recommendations than contextual
information models (111k vs 16k). We also found that contextual information models based on numeric metrics can predict
many more co-change instances and can be used to evaluate more instances (137k vs 19k), but that categorical information can
improve the accuracy of the prediction models by an average of 12% of recall and 23% of precision. These results suggest that
our model can be leveraged for the development of novel co-change prediction tools to support software evolution and mainte-
nance.

 3

2 STUDY DESIGN
In this section, we present our research questions and their rationale (Section 2.1), followed by an overview of our approach,
including the data collection steps, the way we selected and tagged each co-change to build the prediction models, and the
evaluation method (Section 2.2). Finally, we list and describe the studied systems (Section 2.3).

2.1 Research Questions
Previous work has shown that prediction models can be built to predict co-change occurrences (Zimmermann et al. 2005).

We conjecture that it is possible to improve these models by using contextual information collected from issues, developers’
communication, and commit metadata. We aim to investigate how many co-change instances can be correctly predicted by
contextual information models compared to a baseline model built with association rules, which is widely used in the literature
(Ball et al. 1997; Ying et al. 2004; Zimmermann et al. 2005; Gethers et al. 2012; Kagdi et al. 2013). Hence, we formulate our
first research question as follows:

(RQ1) How does co-change prediction based on contextual information models compare to association rules in terms of
accuracy and coverage?

To determine the accuracy of the prediction models, we check whether they only suggest co-changes that indeed occurred

in a specific commit (precision) and whether all co-changes that occurred in a commit are suggested (recall). More specifically,
we compare the F-measure (harmonic mean between precision and recall) achieved by the two models under different experi-
mental settings. We also compare the models in terms of their coverage, which we calculate as the ratio of co-changes that we
can correctly predict using each approach compared to the number of co-changes that occurred in each release.

Knowing how well a given model performs is not the only criterion governing its adoption. From a practical perspective, it
is important to reason about the cost of collecting the data required to build the model. This aspect is particularly important in
the domain of this study, since pieces of contextual information might come from various sources (e.g., version control and
issue tracking systems) or might involve intensive computation to be obtained (e.g., building a communication network from
development discussion threads). Therefore, discovering which key features (metrics) enable building models with significantly
less effort is important in practice. Determining key features may also serve as input to drive new theories about the reasons
behind change coupling. This reflection leads to our second research question:

 (RQ2) What are the most influential kinds of contextual information when predicting co-changes?

2.2 Approach overview
Figure 1 shows an overview of our approach. The approach is split into two main parts: (i) compute association rules from a
release to predict co-changes in the consecutive release, and (ii) extract contextual information metrics and build a classifier
for each antecedent file found by association rules to predict co-changes in the consecutive release. Our dataset and scripts are
available on Zenodo1.

1	 Dataset and scripts are available at https://zenodo.org/record/2635857

Figure 1. Approach Overview

As an illustrative example, let us assume that we want to predict co-changes between two files, namely JMSConduit.java
(File A) and JMSOldConfigHolder.java (File B) from the Apache CXF project. Calculating the frequency of changes during
release 2.0, we find that File A changed 33 times, including 15 times when it changed together (co-changed) with File B. Based
on this historical information, it seems reasonable to infer that both files are prone to change together in the consecutive release
(2.1). Indeed, the frequency of past changes would correctly predict co-changes in 19 commits. However, in other 26 commits,
File A changed, but without a corresponding change in File B. In this case, the frequency-of-past-changes approach would
yield 26 false recommendations.

In our approach, we collect contextual information for each commit that includes File A in the release 2.0 and build a
prediction model for the pair File A and B, because they frequently changed together in the past. This model indicates, for
release 2.1, 17 co-changes between both files, and 19 cases in which File A changed without File B. Considering this example,
our approach wrongly predicts 7 co-changes between both files (false positives) and 2 cases in which File A changed without
File B (false negatives), but it correctly predicts 36 commits. Comparing our approach to the association rules approach in this
example, contextual information reduced the number of false recommendations by 65%. For this example, the most influential
contextual information used by our model was the number of lines changed, the number of words used to describe an issue,
and who reported the issue.

In the following, we describe each step in more detail.
Step 1) Collecting Issues and Commits
We used two data sources: Version Control Systems (VCS) and Issue Tracking Systems (ITS). Issues (e.g., change requests
and bug reports) are often logged in an Issue Tracking System (ITS), such as Bugzilla or JIRA, and have a unique identifier
(ID). This ID helps identify the commits in the version control system associated with an issue. We	extracted	data	from	the	
issues	and	commits	of	the	studied	software	projects.	We	used	Bicho2	to	parse	and	collect	all	issues	from	JIRA	ITS.	To	collect	data	from	
VCS	archives,	we	used	the	CVSAnalY3	tool.

Since an issue might be resolved after several commits, to avoid missing cases of co-changes related to an issue we grouped
commits that addressed the same issue. To link issues and commits, we searched the commit messages for the expression
“project name” + “issue_number” (e.g. Hadoop-1000), since this pattern is often used by Apache projects. We also checked if
the commits were made while the issue was holding the status open and if the status changed to “fixed” afterward.

Step 2) Applying the association rules algorithm
An association rule is an implication of the form I ⇒ J, where I and J are two disjoint sets of items (a.k.a., item sets). A

relevant rule I ⇒ J means that when I occurs, J is likely to co-occur. In this study, a rule I ⇒ J means that J is change-coupled
to I. We also consider that I and J are file sets composed by one single file, where I = {fi} and J = {fj} and fi ≠ fj. The relevance
of association rules can be measured according to several metrics. In this study, we employ the metrics of support and confi-
dence, which have been extensively used in previous Software Engineering research studies (Zimmermann et al. 2005; Moonen
et al. 2016; Rolfsnes et al. 2016).

2	https://github.com/MetricsGrimoire/Bicho
3	https://github.com/MetricsGrimoire/CVSAnalY	

 5

For each release, we calculated all possible rules involving pairs of files. Since we wanted to compare our results to the
association rules approach, we filtered the co-changes by values of support and confidence. We collected co-changes with
support 2, 3, 4, 5, 6, 7, 8, and higher than 8. For each support value, we applied confidence thresholds ranging from 50-70%,
71-90%, and 91-100%. We used these thresholds based on previous work and after analyzing the distribution of support and
confidence values identified in each project. We also filtered out co-changes with support of less than two, because a unitary
weight does not reflect how often two classes usually change together (Beyer and Noack 2005).

Step 3) Calculating Contextual Information Metrics
To build the prediction models, we used metrics calculated from contextual information of issue reports, developers’ com-

munication, and commit metadata, as described in the following.
Issue Context: We hypothesize that some co-changes are more likely to happen when fixing a bug, while others appear when
implementing new features. The assignee works on issues related to specific parts of the software, and an issue reported by the
same reporter might involve the same files, since the reporter might be interested in some specific requirements. The metrics
defined for this dimension are: was the issue reopened? (categorical), issue type (categorical), issue assignee (categorical), and
issue reporter (categorical).
Communication Context: Discussion characteristics can indicate how proneness files co-change. For example, some co-
changes can happen in issues with more messages or more words (wordiness), either because the issue is difficult to understand,
or because the files necessary to fix this issue are complex. The metrics defined for the communication context are: number of
issue comments, number of issue discussants, number of words in the discussion, and number of distinct developers.
Developer's Role in Communication: Developers involved in a discussion have different values of Betweenness and Close-
ness. Previous work has shown the importance of these metrics in other software engineering problems (Bird et al., 2009). We
calculated the closeness and betweenness centrality for this dimension based on Wassermann and Faust (1994).
Structural Hole of Communication: Structural hole metrics denote gaps between nodes in a social network and represent that
people on either side of the hole have access to different flows of information, indicating that there is a diversity of information
flow in the network. In previous work, we successfully used structural holes to identify recurrent change couplings (Wiese et
al. 2014b). In this sense, these metrics represent a way to analyze the communication network revolving around software co-
changes. The metrics are: constraint, hierarchy, effective size, and efficiency. We calculated these metrics based on Wasser-
mann and Faust (1994).
Communication Network Properties: Network properties indicate aspects of how the social network is organized. Networks
with more arcs indicate more message exchange intensity. Networks with more nodes indicate greater involvement of devel-
opers. The social network property is useful for predicting defects (Bird et al., 2009; Conway, 1968). The metrics are: size,
ties, diameter, and density. We calculated these metrics based on Wassermann and Faust (1994).
Commit Context: Code churn or a specific operation (add or delete) on lines of codes can indicate specific aspects for different
co-changes. The metrics are: committer (categorical), # of lines of code added, # of lines of code deleted, code churn, and is
the committer the file owner? (categorical).

Step 4) Building Classifiers
Training/Test Set separation. For the validation of our prediction models, we went through all releases of each project, build-
ing the training set in one release and using the changes occurred in the consecutive release as a test set. Table 1 presents an
example of the training set to predict co-changes between JMSConduit.java and JMSOldConfigHolder.java.

Table 1. An example of a training set built with metrics collected from JMSConduit.Java changes to predict when the
co-change with JMSOldConfigHolder.java is likely to occur

Pair of files #
Commit

Issue

Set of metrics from contextual information (issues, developers’
communication, and commit) Co-Change

JMSConduit.java –
JMSOldConfigHolder.java 1 1760

Issue Type = Bug, Issue Reopened = 0, Assignee = ffang,
Reporter = ffang, # of commenters = 3, # of dev commenters = 2, wordiness

= 438…
0

JMSConduit.java –
JMSOldConfigHolder.java 50 1832

Issue Type = Improvement, Issue Reopened = 0, Assignee = chris@die-
schneider.net,

Reporter = chris@die-schneider.net, # of commenters = 3, # of dev
commenters = 2, wordiness = 764…

1

JMSConduit.java –
JMSOldConfigHolder.java 72 2207

Issue Type = Bug, Issue Reopened = 0, Assignee = njiang,
Reporter = liucong, # of commenters = 2, # of dev commenters = 1,

wordiness = 311…
0

JMSConduit.java –
JMSOldConfigHolder.java 220 2316

Issue Type = Improvement, Issue Reopened = 0, Assignee = dkulp,
Reporter = marat, # of commenters = 1, # of dev commenters = 0, wordiness

= 43…
1

JMSConduit.java –
JMSOldConfigHolder.java … … … ...

The column "Pair of files" indicates the co-change analyzed. In this example, File A (JMSConduit.java) is the antecedent
and File B (JMSOldConfigHolder.java) is the descendent identified by the relevant association rule. All metrics are computed
for File A. In this sense, the set of metrics was extracted from each commit and issue (indicated in the corresponding columns)
in which file A (JMSConduit.java) was changed.
Tagging co-changes. To tag each co-change, we looked at the descendent. Each commit containing File A (antecedent) was
checked, and when the commit propagated changes to File B (descendent), we assigned the commit to class “1.” Otherwise,
we assigned it to class “0” to indicate that only File A was changed in the commit. Therefore, the value 1 indicates that the
antecedent (File A) and the descendent (File B) were committed together. The first 4 lines indicate that file A had 4 commits
in 4 distinct issues, but only commits 50 and 220 (2 and 4 line in Table 1) propagated changes to File B (Class column = 1).
Classifier Construction. For each release of each project analyzed, we generated a .csv file to use as a training or test set. The
release version N is used as a training set and the release version N+1 is used as a test set. We ran the random forest technique
to construct classifiers to predict the co-changes.

Random forest is frequently used in classification problems since the models can be used with large and small datasets, and
it also can handle problems of missing data (Breiman 2001). Random forest has been used in several previous software engi-
neering studies and tends to have good predictive power (Lessmann et al. 2008; McIntosh et al. 2014; Dias et al. 2015; Macho
et al. 2016). The random forest technique builds a large number of decision trees at training time using a random subset of all
the attributes. Using an aggregation of votes from all trees, the random forest technique decides whether the final score is higher
than 0.5 to determine if a co-change will be predicted as true. We implemented our classifiers using the R package Caret (Kuhn
2008).

Step 5) Evaluating the co-change prediction performance
To evaluate our classifier, we used training and test sets generated for each release of each project under study. For each

release, we found the relevant association rules, considering a broad range of support and confidence values.
Taking Table 1 as an example, we have an association rule JMSConduit ⇒ JMSOldConfigHolder, meaning that “when

JMSConduit is changed, JMSOldConfigHolder is likely to change.” This implies a change coupling from the right-hand side
(RHS) to the left-hand side (LHS), i.e., changes in LHS often imply changes to the RHS. Thus, in the consecutive release (test
set), we evaluate the commits in which LHS changes, because we want to know what its impact on RHS is (co-change vs no
co-change).

The performance of the classifier was measured in terms of recall, precision, F-measure and Mathews Correlation Coeffi-
cient (MCC). Below, we describe each one of them:
 Recall: We calculated recall to identify the proportion of instances that the model nominated for changing together and
those actually changed. To obtain the recall value, we used the following formula: TP/TP+FN.

Precision: We measured precision to identify the rate of predicted co-changes that have actually changed together. To obtain
the precision value, we used the following formula: TP/TP+FP.

F-measure is the harmonic mean of precision and recall. We used the following formula: 2*(precision*recall)/(precision +
recall).

Mathews Correlation Coefficient (MCC) is a correlation coefficient between the observed and predicted classification.
This measure takes into account TP, FP, TN, and FN values and is generally regarded as a balanced measure, which can be
used even if the classes are unbalanced. Because we found many imbalances in our data, we do not report the Area under the
Curve, which can be a biased measure (Powers, 2011). For binary classification tasks, MCC has attracted the attention of the
machine learning community as a method to summarize the confusion matrix into a single value (Powers, 2011). An MCC

 7

coefficient of +1 represents a perfect prediction and 0 means a random prediction between prediction and observations. We
calculated MCC using the following expression (Powers, 2011):

MCC	 = 	
(𝑇𝑃 ∗ 	𝑇𝑁) − (𝐹𝑃 ∗ 𝐹𝑁)

.(𝑇𝑃 + 𝐹𝑃) ∗ (𝑇𝑃 + 𝐹𝑁) ∗ (𝑇𝑁 + 𝐹𝑃) ∗ (𝑇𝑁 + 𝐹𝑁)

Finally, to study the most influential contextual information, we computed Breiman’s variable importance score (Breiman
2001) for each numeric contextual information: the larger the score, the greater the importance of the contextual information.
We used the variable importance function (varImp) of the Caret R package to obtain normalized Z-scores (scale = TRUE);
thus, the values returned by each prediction range from 0 to 100.

2.3 Studied software projects
We studied 10 Apache Software Foundation projects. We selected projects from different domains and with different numbers
of lines of code (LOC), numbers of active developers (#Devs), and activity levels according to OpenHub4 data. All projects
have more than 300k of LOC, at least 36 developers contributing actively, and generally very high activity levels. All projects
were implemented in Java and had XML files.

Table 2 summarizes the data collected from each project. Cloudstack and Solr are newer projects, thus, both projects have
fewer data. In total, we used data from around 24k issues and 54k commits linked to issues, and we analyzed 7k distinct
association rules over 129 releases. The collected commits represent 26% of the total number of commits found in the version
control system of the subject systems.

Table 2. Studied Projects
Projects Releases Issues Commits Linked to issues Association rules

Camel 22 3494 7765 (30.54%) 479
Cassandra 14 1597 2405 (14.18%) 519

Cloudstack 4 556 1382 (3.36%) 47
CXF 9 3139 8308 (40.95%) 1464

Derby 11 2605 7469 (69.80%) 1547
Hadoop 22 2453 4306 (12.33%) 363

Hbase 14 5494 13372 (64.59%) 1954
Hive 12 2014 2393 (32.81%) 310

Lucene 17 2032 6433 (24.07%) 294
Solr 4 418 555 (15.99%) 54

Total 129 23802 54388 7031

3 RESULTS

3.1 (RQ1) How do co-change predictions based on contextual information models compare to association rules in
terms of accuracy and coverage?

We built a classifier for each co-change following the approach described in Section II. It is important to mention that we built
two different types of classifiers using contextual information: (i) ACI models, which used all contextual information metrics
calculated in each release; and (ii) NCI models, which only considered numeric contextual information metrics. The reason to
test both models is related to applicability; ACI models can be less useful, since a value for categorical information can be
present in the test set, but not in the training set.

To answer RQ1, we calculated how many co-changes we could correctly predict compared to the number of correct predic-
tions made with association rules with support ≥ 2 and confidence value ≥ 50%. We used these thresholds based on the literature
that used association rules to infer change couplings (Zimmermann et al. 2005; Bavota et al. 2013). It is important to mention
that the association rule model is widely used in the literature and can be considered a baseline model (Ball et al. 1997; Ying
et al. 2004; Zimmermann et al. 2005; Gethers et al. 2012; Kagdi et al. 2013; Dit et al. 2014).

4	OpenHub	can	be	accessed	at	https://www.openhub.net	

In Table , we report the confusion matrix for each technique. TP is the number of right recommendations for a single co-
change, similar to the practical scenario described in Section II.B. TN values are related to recommendations in which the co-
change did not occur but only one file changed in a specific commit.

Table 3. Confusion matrix values for contextual information and association rules models
Models TP FP FN TN

ACI 5,264 765 652 13,288
NCI 19,746 10,007 6,443 101,167
AR 26,189 111,174 0 0

We found that models built using numeric contextual information correctly predicted 19k co-changes covering 24.62% of
all possible co-changes that happened in all tested releases. Association rules covered 32.94% of all co-changes, correctly
predicting 26k co-changes. The coverage of the former ranged from 2.54% (SolR) to 68.76% (Derby). Association coverage
ranged from 5.42% (SolR) to 79.70% (Derby). The models built with numeric contextual information and association rules
were able to test all 137k co-changes that happened in 54k commits.

Inspecting the dataset, we observed that models built with all contextual information (ACI) discarded commits from the test
set for which string values were not found in the training set, e.g., if a new developer committed a file in release 2.1 (test set)
but not in release 2.0 (training set). Because of this, using categorical information combined with numeric information reduced
the number of analyzed co-changes to 6.62% of all co-changes, correctly predicting 5k co-changes.

To evaluate the quality of the predictions, we compared the values of precision, recall, F-measure and MCC by project,
support, and confidence thresholds. Table 4 presents an overview of the evaluation metrics. Recall, precision, F-measure, and
MCC indicate how accurately the all contextual information, numeric contextual information, and association rules models can
predict co-changes. We could observe that all contextual information models (ACI) have higher values of MCC and F-measure;
however, they have fewer true positives than numeric contextual information (NCI) and association rules (AR) models.

Table 4. Overview of evaluation metrics
Models Recall* Precision* F-1* MCC* % FP % FN
ACI 0.87 0.89 0.88 0.83 14.53 4.91
NCI 0.66 0.75 0.71 0.63 51.31 6.49
AR 0.19 1.00 0.32 N/A 81.17 0.00

* average values over all releases evaluated
We found that numeric contextual information models have a value of F-measure twice as high as that of association rules

models. In terms of correct recommendations, numeric contextual information models issued 1 correct co-change recommen-
dation every 1.38 attempts. Association rules issued 1 correct co-change recommendation every 5.24 attempts. We also ob-
served that NCI models have 57.8% false alarms (% FP + % FN). Comparing the number of false alarms with AR models, we
observed that NCI models have 23.37% fewer false alarms, leading to 30,828 commits with fewer false alarms. MCC shows
the correlation between what we observed in each commit and what we predicted for each commit. Contextual information
showed a high correlation between observed and predicted values. MCC can be interpreted similarly to other types of correla-
tion, e.g., Pearson and Spearman. In this sense, we consider that values higher than 0.6 indicate strong correlation and values
higher than 0.8 indicate very strong correlation. We could not calculate MCC values for AR since these models are used only
to recommend co-changes.

Figure 2 presents the F-measures for all contextual information models (first boxplot), association rules models (second
boxplot), and numeric contextual information models (third boxplot). We notice that the boxplots for the model using the all-
contextual-information range from 0.0 to 1.0 in six cases (Camel, Cassandra, Hadoop, Hive, Lucene, and Solr). These models
can thus be very good or very bad when predicting co-changes. However, the median F-measure of these models was higher
in 7 out of 10 projects when compared to the F-measure from numeric contextual information and association rule models.

Observing the median values, association rule models performed better than numeric contextual information and all contex-
tual information models in the Camel project. Numeric contextual information models performed better than all contextual
information and association rules models in the Cassandra and Solr projects. In five projects (Cassandra, CXF, Derby, Hbase,

 9

and Lucene), models based on contextual information performed better than association rule models. Especially in CXF and
Derby, the difference of quality is very evident.

Figure 2. F-measure values to predict co-changes by project considering all releases

Figure 3 presents the F-measure values to predict co-changes for different thresholds of support and confidence. We chose
these values based on the literature (Zimmermann et al. 2005; Bavota et al. 2013) and the analysis of the distribution of these
values. In the graph depicted in Figure 3, the black line represents the all-contextual-information models; the light grey repre-
sents the numeric contextual information models; and the grey line indicates the association rules models. The last line indicates
the percentage of co-changes that can be predicted using only the specific threshold of support and confidence.

The F-measure for numeric contextual information models values ranged from 0.56 to 0.86. The F-measure for association
rules models values ranged from 0.26 to 0.50. Numeric contextual information models had more true positives than the all-
contextual-information models, but the latter had higher F-measures.

Figure 3. Average F-measure values to predict co-changes by thresholds of support and confidence

Association rules models obtained their best F-measure when support was at least 8 and confidence was at least 70%. How-
ever, using only these rules to predict when the expected co-change occurred, the coverage decreases considerably.

Models based on contextual information improved the quality of co-change prediction (F-measure values) compared to the
association rules model. Even with high values of support and confidence, contextual information models outperformed asso-
ciation rules.

3.2 (RQ2) What are the most influential kind of contextual information when predicting co-changes?
As we mentioned in Section 2.2 – Step 5, we computed Breiman’s variable importance score (Breiman 2001) to determine the
influence of each predictor. In Table 5, we report the average variable importance score considering the numeric contextual
information models. The grey cells highlight the TOP 5 types of contextual information for each project. It is hard to define the
best subset, since all types of contextual information were frequently used by random forest to predict co-changes. However,
we can observe that six metrics (#3, #4, #6, #15, #16, and #17) obtained the best scores across all projects.

We also analyzed the performance considering only the three best metrics from the commit context (metrics #15, #16, and
#17 – Table 5) against the three best metrics from the social information dimension (metrics #3, #4, and #6 – Table 5). We
found a small effect size difference in favor of commit context when the F-measure average was compared (56% vs. 50%)
across all projects analyzed.

The results suggest that, to identify whether a co-change will occur in a specific commit, it is important to analyze the
number of lines added and removed and the code churn. On the other hand, it is also important to use information from social
aspects related to the number of comments and how “close” the developers are in the communication network. Closeness is an
indicator of how spread the information is between the developers (Bird et al, 2009). We also observe that the length of the
discussion plus the length of the issue report (description), measured by wordiness, is an influential characteristic to predict co-
changes.

Finally, it is important to highlight that it is possible to use only data from the commit context to build the classifiers. The
metrics related to the number of lines of code added and removed and the code churn were frequently selected by the classifier
as important contextual information in 6 out of 10 projects. We found that it is possible to achieve an F-measure of 56% (on
average) by using only this information versus 32% by using association rules models.

This result is particularly interesting because even using only information from commits – the same source necessary to
perform association rules analysis – the co-change prediction can be improved.

 11

On average, the numeric contextual information models used 6 out of 17 metrics. The metrics related to Commit (#15, #16,
and #17), Communication (#3 and #4), and Developer Role (#6) obtained the highest importance score over all releases ana-
lyzed.

Table 5. Average of variable importance score for each kind of contextual information
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Camel 24.7 21.5 41.8 59.5 3.9 32.0 22.1 27.0 23.3 22.2 24.5 27.2 22.5 15.1 50.7 49.9 63.1
Cassandra 23.4 22.5 48.2 56.5 13.8 51.4 45.7 43.0 46.6 45.5 23.9 35.4 33.2 8.8 51.0 51.6 65.8

Cloudstack 19.1 19.5 54.3 52.2 22.1 48.6 41.2 35.8 46.4 40.7 19.6 27.0 39.0 15.5 37.8 32.4 57.2
CXF 22.5 21.4 32.8 58.0 1.5 21.8 15.7 17.7 13.6 16.4 22.9 17.7 10.6 13.2 53.3 52.1 62.2

Derby 25.5 17.8 37.1 40.8 13.6 38.7 34.8 32.8 30.8 33.1 25.6 32.6 26.3 13.0 53.9 53.4 64.1
Hadoop 27.8 23.8 45.5 50.5 25.0 50.5 45.4 44.5 45.9 45.9 28.7 40.7 41.4 11.7 39.9 39.0 53.5

Hbase 26.5 24.5 43.7 49.5 26.7 47.8 41.7 43.9 43.0 44.2 26.6 39.9 37.6 12.5 40.2 39.5 53.6
Hive 27.9 20.5 49.3 55.4 21.0 49.3 44.2 46.3 44.5 46.0 28.1 39.1 35.5 12.0 38.6 38.9 52.9

Lucene 23.5 13.0 34.3 38.9 17.6 37.3 32.0 32.0 31.0 33.3 25.2 29.4 26.4 14.4 56.4 54.6 65.7
Solr 21.3 16.4 48.3 52.9 15.7 45.2 34.4 37.7 41.5 37.2 23.7 32.5 27.8 14.2 51.7 55.2 76.0

Total 24.2 20.1 43.5 51.4 16.1 42.3 35.7 36.1 36.7 36.4 24.9 32.1 30.0 13.1 47.3 46.7 61.4
1 - # of Issue discussants, 2 - # of Issue Developer Commenters, 3 - # of Issue Comments, 4 – Issue Wordiness, 5 – Betweenness centrality, 6 – Closeness
centrality, 7 – Efficiency, 8- Effective Size, 9 – Constraint, 10 – Hierarchy, 11 – Size, 12 – Ties, 13 – Density, 14 – Diameter, 15 - # of lines of code added,
16 – # of lines of code deleted, 17 – Code Churn

4 DISCUSSION
We discuss our results from the perspective of the implications for practice and research, and how developers see the results.

4.1 Implications for Practice and Research
We investigated the tradeoff between the coverage and accuracy when we predict if an expected co-change occurred in a

specific commit. We found that association rules models can retrieve more co-changes, but these models suffer from false
recommendation that decreases their prediction accuracy.

To improve the accuracy of association models, the rules need to be more relevant with high values of support and confi-
dence, but the coverage becomes smaller. In a practical scenario, choosing the best thresholds is not easy (Zimmermann et al.
2005). Hence, models based on contextual information are simpler because they do not require prior configuration. We used a
random forest algorithm with default configuration. However, it is important to mention that the effort to collect data is higher
for contextual information models because association rules only depend on commit data.

Models based on contextual information have a smaller coverage, but are more accurate, improving the precision in relation
to association rule models. The use of machine learning techniques combined with contextual information reduced the number
of false recommendations, capturing the context when an expected co-change occurs in a specific commit. The contextual
information models achieved high accuracy in projects with a large number of commits (such as CXF, Derby, and Hbase). On
the other hand, in projects with fewer commits (such as Cloudstack and Solr), association rule models showed better results.

The use of contextual information is promising, however, it is an open question how much context is necessary to improve
coverage and accuracy. We did not test the entropy of changes in these projects, but the entropy of changes can show the
possible effects of disorder caused by continuous changes (Hassan 2009; Canfora et al. 2014).

Another important question that arises from our study is related to the period when the training and test set were created. A
release period often focuses on a specific goal, for example, correcting critical bugs, refactoring some part of the project, or
implementing new features. It is not clear what the effect was of choosing this timeframe. We conjecture that a release can
capture “related context” to build training sets.

Using textual and Boolean metrics in contextual information models, we could improve the accuracy of co-change predic-
tions. However, the coverage was penalized. In open source projects, these sources of contextual information may not be
feasible, since developers may contribute only occasionally, making sporadic commits or reporting issues. However, these
metrics can be good indicators in enterprise environments, when all contributors are previously known.

4.2 Community Feedback

To adopt the approach in practice, developers’ perspectives are crucial. To explore how developers of the analyzed project see
the results, we sent messages to the developers’ mailing list of each analyzed project. We asked the developers to share their
impressions about our results, highlighting that we did not use any information related to structural dependencies to predict
which files would co-change. We also asked their impression of the influence of contextual information and how the approach
would help them in practice.

We created a website5 for each community, presenting a practical example such as the one described in Section 2, the details
of the method used to predict co-changes, and a spreadsheet with the results. We received more than 500 pageviews and re-
ceived feedback and interacted with 20 distinct developers.

According to the developers, the proposed approach can be used in practice, especially to support newcomer developers to
navigate through the code and complete the changes. This can be observed in a message from a CXF developer: “…I agree
with Chris [fictitious name] that may be useful to help newcomers to navigate in the project [to make their contributions] …”
However, some developers disagreed that the approach would be useful during code review.

Regarding the importance of contextual information to predict co-changes, developers were surprised by the results, since
it is a common practice to find artifacts that are structurally connected or contained in the same package. A developer from
Derby said: “... yes, I agree that is the normal way. Also through code review, running tests, and messages from the compiler.
Is your idea that, given a database of change history as you have described it, some tool would be able to notice when the
developer makes a certain type of change, and then suggest other related changes that are typically made at the same time…?
[Yes]… I think that's a pretty interesting idea.” CloudStack developers suggested that the approach could be used to guide
developers during the test phase. CloudStack uses Test Driven Development, and sometimes it is very hard to find related
classes that need to be instantiated to write test cases.

Developers also discussed the real example described in the message. For example, a developer from Lucene/Solr inspected
the results and identified co-changes in which the prediction models captured commits involving changes in both projects at
the same time. In such cases, the developer suggested that it is interesting to make a prediction “between projects,” especially
when commits to a project cause or require changes in an associated sub-project.

In addition to the suggestions, developers discussed and pointed out a limitation of the proposed approach. There are cases
in which a new file could have been created and the absence of historical information would not allow execution of the predic-
tion models. A CloudStack developer suggested using the history of files in the same package to build prediction models for
new files. According to the developer, files of the same package could have “a similar context,” and this context could be used
to deal with this “cold start” problem.

5 RELATED WORK
Researchers have relied on coupling concepts to recommend co-changes. For example, Zimmermann and colleagues (Zimmer-
mann et al. 2005) built an Eclipse plug-in that collects information about source code changes from repositories and warns
developers about probable co-changes. They used association rules to suggest change coupling among files at method and file
levels. The authors reported precision values around 30% and recommended that the analysis should be made at the file level
instead of method level. More recently, the TARMAQ algorithm was proposed (Rolfsnes et al. 2016) to improve this approach.

Zhou et al. (Zhou et al. 2008) proposed a model to predict co-changes using Bayesian networks. They extracted features like
static source code dependencies, past co-change frequency, age of change, author information, change request, and change
candidate. They conducted experiments on two open source projects (Azureus and ArgoUML) and reported precision values
around 60% and recall values of 40%.

Recently, Sun et al. (Sun et al. 2015) compared three tools based on coupling concepts. They compared ROSE (association
rules) (Zimmermann et al. 2005), IRC2M (conceptual coupling), and Columbus (structural coupling). The combination of any
two approaches improved the accuracy in general terms, however, the combination of three approaches did not improve the
results. The authors reported recall values ranging from 55% to 70% and precision values between 30% and 45%.

Our paper differs from previous work since we consider previously unused contextual information. We also tested the results
in 10 projects. In general, 4 projects were used by previous research. Using information related to developers' communication

5	Example	for	Derby	project:	http://igor.pro.br/cochanges/derby.html	

 13

and issue context is new and presented promising results to reduce the number of false positives and negatives. Future work
can investigate how to develop hybrid approaches to obtain even better results.

6 THREATS TO VALIDITY
In the following, we discuss the threats to the validity of our study.

A threat related to co-change identification is tangled commits (Herzig and Zeller 2013), since developers often commit
unrelated or loosely related code changes in a single commit. In our study, this threat is limited, as we are linking commits per
issue. In addition, we performed a careful selection of issues, using issues that were closed, fixed, and for which the source
code was integrated.

The set of metrics used might not be complete. We dealt with this threat by performing a selection of measurements along
different dimensions of software development. We chose metrics from contextual information related to issue, communication,
and commit metadata. To select the set of metrics, we were inspired by previous work on prediction models and a mapping
study (Wiese et al. 2014a).

Another concern is related to overfitting. In prediction models, overfitting occurs when a prediction model has random error
or noise instead of an underlying relationship. Our models were planned to be specific to each pair of files. To address the
overfitting of our classifiers, we used the random forest algorithm. According to the literature (Breiman 2001; McIntosh et al.
2014), during the model training phase the algorithm selects contextual information with less correlation. Furthermore, training
and test sets were always from different releases, i.e., release N to build the training set and release N+1 to test. In any case,
the usage of a high number of metrics may influence the results for each classifier, making them more accurate. However, it is
important to highlight that on average the numeric contextual information models used 6 out of 17 metrics, and it is possible
to achieve F-measure values of 56% (on average) by using only three metrics from commit information versus 32% by using
association rules models (RQ2).
External Validity: In our analysis, we collected data from 10 Apache projects. Each project was selected to reflect different
domains and communities, which may reflect the way that the software changes. However, our results might not generalize to
other communities and projects. Replication of this work in a large set of systems is required in order to achieve more general
conclusions.

7. CONCLUSIONS
Co-change prediction approaches aim to assist developers in identifying artifacts that are likely to change together. Previous
approaches rely on different types of software coupling to make recommendations of co-changes. In this paper, we investigated
novel sources of information. Based on the idea that artifacts change for different reasons, we gathered contextual sociotech-
nical information from tasks, communication, and commit metadata from software changes to build prediction models to iden-
tify when a co-change occurs in a specific commit.

We set out to investigate the coverage and accuracy of contextual information by studying 10 Apache projects. The main
contributions of this work are:

• An approach to build customized models for each pair of files based on contextual information: according to the
effect size measure, contextual information models have more accuracy to predict co-changes than association
rules, regardless of the support and confidence thresholds (RQ1).

• To identify the most influential subset of contextual information: we could identify the best subset of metrics related
to contextual information. We found that social aspects are relevant to predict co-changes, especially the length of
discussion collected from issue reports and how “close” developers are in the social communication network. The
number of lines of code added and removed and code churn were also important metrics used by the co-change
prediction models (RQ2).

In conclusion, we found that contextual information has two advantages when compared to association rule models: (i) it
reduces the number of false recommendations, and (ii) it determines, independent of thresholds, if a dependency is strong
enough to be used as a co-change indicator. We are currently building a tool to test our approach in projects from outside the
Apache Software Foundation, as well as compare it to other types of couplings used to recommend co-changes.

REFERENCES
Ball T, Kim J, Siy HP (1997) If your version control system could talk. ICSE Work Process Model Empir Stud Softw Eng. doi:

10.1.1.48.910
Bavota G, Dit B, Oliveto R, et al (2013) An empirical study on the developers’ perception of software coupling. Proc - Int Conf

Softw Eng 692–701. doi: 10.1109/ICSE.2013.6606615
Beyer D, Noack A (2005) Clustering Software Artifacts Based on Frequent Common Changes. In: 13th International Workshop

on Program Comprehension (IWPC’05). pp 259–268
Bird, C., Nagappan, N., Murphy, B., Gall, H., Devanbu, P., 2009. Putting it all together: Using socio-technical networks to

predict failures. In: Proceedings - International Symposium on Software Reliability Engineering, ISSRE. pp. 109–119.
Bohner SA, Arnold RS (1996) Software Change Impact Analysis. IEEE Computer Society Press
Breiman L (2001) Random forests. Mach Learn 45:5–32. doi: 10.1023/A:1010933404324
Briand LC, Wust J, Lounis H (1999) Using coupling measurement for impact analysis in object-orientedsystems. Proc IEEE

Int Conf Softw Maint - 1999 (ICSM’99) ’Software Maint Bus Chang (Cat No99CB36360). doi:
10.1109/ICSM.1999.792645

Canfora G, Cerulo L, Cimitile M, Di Penta M (2014) How changes affect software entropy: An empirical study. Empir Softw
Eng 19:1–38. doi: 10.1007/s10664-012-9214-z

Conway ME (1968) How do committees invent. Datamation 14:28–31
D. M. Powers, “Evaluation: from Precision, Recall and F-measure to ROC, Informedness, Markedness and Correlation,” J.

Mach. Learn. Technol., vol. 2, pp. 37–63, 2011
Dias M, Bacchelli A, Gousios G, et al (2015) Untangling fine-grained code changes. In: 2015 IEEE 22nd International

Conference on Software Analysis, Evolution, and Reengineering, SANER 2015 - Proceedings. pp 341–350
Dit B., Wagner M., Wen S., et al (2014) ImpactMiner: A tool for change impact analysis. In: 36th International Conference on

Software Engineering, ICSE Companion 2014 - Proceedings. pp 540–543
Gall H, Hajek K, Jazayeri M (1998) Detection of logical coupling based on product release history. Proceedings Int Conf Softw

Maint (Cat No 98CB36272). doi: 10.1109/ICSM.1998.738508
Gethers M, Dit B, Kagdi H, Poshyvanyk D (2012) Integrated impact analysis for managing software changes. In: Proceedings

- International Conference on Software Engineering. pp 430–440
Gethers M, Poshyvanyk D (2010) Using Relational Topic Models to capture coupling among classes in object-oriented software

systems. In: IEEE International Conference on Software Maintenance, ICSM
Hall T, Beecham S, Bowes D, et al (2012) A systematic literature review on fault prediction performance in software

engineering. IEEE Trans. Softw. Eng. 38:1276–1304
Hassan AE (2009) Predicting faults using the complexity of code changes. In: Proceedings - International Conference on

Software Engineering. pp 78–88
Hassan AE, Holt RC (2004) Predicting change propagation in software systems. In: IEEE International Conference on Software

Maintenance, ICSM. pp 284–293
Herzig K, Zeller A (2013) The impact of tangled code changes. In: IEEE International Working Conference on Mining Software

Repositories. pp 121–130
Kagdi H, Gethers M, Poshyvanyk D (2013) Integrating conceptual and logical couplings for change impact analysis in software.

Empir Softw Eng 18:933–969. doi: 10.1007/s10664-012-9233-9
Kuhn M (2008) Building Predictive Models in R Using the caret Package. J Stat Softw 28:1–26
Lessmann S, Baesens B, Mues C, Pietsch S (2008) Benchmarking Classification Models for Software Defect Prediction: A

Proposed Framework and Novel Findings. IEEE Trans Softw Eng 34:485–496. doi: 10.1109/TSE.2008.35
Macho C, McIntosh S, Pinzger M (2016) Predicting Build Co-Changes with Source Code Change and Commit Categories. In:

Proc. of the International Conference on Software Analysis, Evolution, and Reengineering (SANER). pp 541–551
McIntosh S, Adams B, Nagappan M, Hassan AE (2014) Mining Co-Change Information to Understand when Build Changes

are Necessary. In: Proc. of the 30th Int’l Conf. on Software Maintenance and Evolution (ICSME). pp 241–250
Moonen L, Di Alesio S, Binkley D, Rolfsnes T (2016) Practical Guidelines for Change Recommendation using Association

Rule Mining. In: International Conference on Automated Software Engineering (ASE). p 11
Oliva GA, Gerosa MA (2015a) Experience Report: How do Structural Dependencies Influence Change Propagation? An

Empirical Study. In: Proceedings of the 26th IEEE International Symposium on Software Reliability Engineering

 15

Oliva GA, Gerosa MA (2015b) Change Coupling Between Software Artifacts: Learning from Past Changes. In: Bird C,
Menzies T, Zimmermann T (eds) The Art and Science of Analyzing Software Data. Morgan Kaufmann, pp 285–324

Oliva GA, Steinmacher I, Wiese I, Gerosa MA (2013) What can commit metadata tell us about design degradation? In:
Proceedings of the 2013 International Workshop on Principles of Software Evolution - IWPSE 2013. ACM Press, p 18

Orso A, Apiwattanapong T, Law J, et al (2004) An empirical comparison of dynamic impact analysis algorithms. Proceedings
26th Int Conf Softw Eng. doi: 10.1109/ICSE.2004.1317471

Revelle M, Gethers M, Poshyvanyk D (2011) Using structural and textual information to capture feature coupling in object-
oriented software. Empir Softw Eng 16:773–811. doi: 10.1007/s10664-011-9159-7

Rolfsnes T, Alesio S Di, Behjati R, et al (2016) Generalizing the Analysis of Evolutionary Coupling for Software Change
Impact Analysis. 23rd IEEE Int Conf Softw Anal Evol Reengineering 12. doi: 10.1109/SANER.2016.101

Steinmacher I, Treude C, Conte T, Gerosa MA (2016) Overcoming Open Source Project Entry Barriers with a Portal for
Newcomers". In: 38th International Conference on Software Engineering. pp 1–12

Sun X, Li B, Leung H, et al (2015) Static change impact analysis techniques: A comparative study. J Syst Softw 109:137–149.
doi: http://dx.doi.org/10.1016/j.jss.2015.07.047

Wasserman, S., & Faust, K. (1994). Social Network Analysis: Methods and Applications (Structural Analysis in the Social
Sciences). Cambridge: Cambridge University Press. doi:10.1017/CBO9780511815478

Wiese IS, Côgo FR, Ré R, et al (2014a) Social metrics included in prediction models on software engineering: a mapping study.
In: Wagner S, Penta M Di (eds) The 10th International Conference on Predictive Models in Software Engineering,
{PROMISE} ’14, Torino, Italy, September 17, 2014. ACM, pp 72–81

Wiese IS, Kuroda RT, Junior DNR, et al (2014b) Using Structural Holes Metrics from Communication Networks to Predict
Change Dependencies. In: Baloian N, Burstein F, Ogata H, et al. (eds) Collaboration and Technology - 20th International
Conference, {CRIWG} 2014, Santiago, Chile, September 7-10, 2014. Proceedings. Springer, pp 294–310

Wiese IS, Ré R, Steinmacher I, et al (2016) Using contextual information to predict co-changes. J Syst Softw. doi:
http://dx.doi.org/10.1016/j.jss.2016.07.016

Wiese IS, Ré R, Steinmacher I, et al (2015) Predicting Change Propagation from Repository Information. In: Proceedings -
29th Brazilian Symposium on Software Engineering, SBES 2015. pp 100–109

Ying ATT, Murphy GC, Ng R, Chu-Carroll MC (2004) Predicting source code changes by mining change history. IEEE Trans
Softw Eng 30:574–586. doi: 10.1109/TSE.2004.52

Zhou Y, Wursch M, Giger E, et al (2008) A Bayesian Network Based Approach for Change Coupling Prediction. Fifteenth
Work Conf Reverse Eng Proc 27–36\r348

Zimmermann T, Weißgerber P, Diehl S, Zeller A (2005) Mining version histories to guide software changes. IEEE Trans Softw
Eng 31:429–445. doi: 10.1109/TSE.2005.72

